首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evidence suggests that endothelial cell layer heparan sulfate proteoglycans include a variety of different sized molecules which most likely contain different protein cores. In the present report, approximately half of endothelial cell surface associated heparan sulfate proteoglycan is shown to be releasable with soluble heparin. The remaining cell surface heparan sulfate proteoglycan, as well as extracellular matrix heparan sulfate proteoglycan, cannot be removed from the cells with heparin. The heparin nonreleasable cell surface proteoglycan can be released by membrane disrupting agents and is able to intercalate into liposomes. When the heparin releasable and nonreleasable cell surface heparan sulfate proteoglycans are compared, differences in proteoglycan size are also evident. Furthermore, the intact heparin releasable heparan sulfate proteoglycan is closer in size to proteoglycans isolated from the extracellular matrix and from growth medium than to that which is heparin nonreleasable. These data indicate that cultured porcine aortic endothelial cells contain at least two distinct types of cell surface heparan sulfate proteoglycans, one of which appears to be associated with the cells through its glycosaminoglycan chains. The other (which is more tightly associated) is probably linked via a membrane intercalated protein core.Abbreviations ECM extracellular matrix - HSPG heparan sulfate proteoglycan - PAE porcine aortic endothelial - PBS phosphate buffered saline  相似文献   

2.
3.
Ovarian granulosa cells synthesize anticoagulant heparan sulfate proteoglycans (aHSPGs), which bind and activate antithrombin III. To determine if aHSPGs could contribute to the control of proteolytic activities involved in follicular development and ovulation, we studied the pattern of expression of these proteoglycans during the ovarian cycle. aHSPGs were localized on cells and tissues by (125)I-labeled antithrombin III binding followed by microscopic autoradiography. Localization of aHSPGs has shown that cultured granulosa cells, hormonally stimulated by gonadotropins to differentiate in vitro, up-regulate their synthesis and release of aHSPGS: In vivo, during gonadotropin-stimulated cycle, aHSPGs are present on granulosa cells of antral follicles and are strongly labeled in preovulatory follicles. These data demonstrate that aHSPG expression in the ovarian follicle is hormonally induced to culminate in preovulatory follicles. Moreover, we have shown that five heparan sulfate core proteins mRNA (perlecan; syndecan-1, -2, and -4; and glypican-1) are synthesized by granulosa cells, providing attachment for anticoagulant heparan sulfate chains on the cell surface and in the extracellular matrix. These core proteins are constantly expressed during the cycle, indicating that modulations of aHSPG levels observed in the ovary are likely controlled at the level of the biosynthesis of anticoagulant heparan sulfate glycosaminoglycan chains. This expression pattern enables aHSPGs to focus serine protease inhibitors in the developing follicle to control proteolysis and fibrin formation at ovulation.  相似文献   

4.
Aging poses one of the largest risk factors for the development of cardiovascular disease. The increased propensity toward vascular pathology with advancing age maybe explained, in part, by a reduction in the ability of circulating endothelial progenitor cells to contribute to vascular repair and regeneration. Although there is evidence to suggest that colony forming unit‐Hill cells and circulating angiogenic cells are subject to age‐associated changes that impair their function, the impact of aging on human outgrowth endothelial cell (OEC) function has been less studied. We demonstrate that OECs isolated from cord blood or peripheral blood samples from young and old individuals exhibit different characteristics in terms of their migratory capacity. In addition, age‐related structural changes were discovered in OEC heparan sulfate (HS), a glycocalyx component that is essential in many signalling pathways. An age‐associated decline in the migratory response of OECs toward a gradient of VEGF significantly correlated with a reduction in the relative percentage of the trisulfated disaccharide, 2‐O‐sulfated‐uronic acid, N, 6‐O‐sulfated‐glucosamine (UA[2S]‐GlcNS[6S]), within OEC cell surface HS polysaccharide chains. Furthermore, disruption of cell surface HS reduced the migratory response of peripheral blood‐derived OECs isolated from young subjects to levels similar to that observed for OECs from older individuals. Together these findings suggest that aging is associated with alterations in the fine structure of HS on the cell surface of OECs. Such changes may modulate the migration, homing, and engraftment capacity of these repair cells, thereby contributing to the progression of endothelial dysfunction and age‐related vascular pathologies.  相似文献   

5.
The orientation of lipoteichoic acid (LTA) molecules on the surface of bacterial cells undoubtedly is determined by the ability of the LTA, during its transit through the cell wall, to bind via its polyglycerophosphate backbone or its glycolipid moieties to other constituents of the cytoplasmic membrane and the cell wall. We have investigated the possibility that LTA may become anchored to the cell surface by binding through its polyanionic backbone to positively charged regions of cell wall proteins. LTA was found to prevent the precipitation of partially purified HCl extracts of several strains of streptococci as well as a structurally defined streptococcal M protein molecule (pep M24) in 83% solutions of ethanol. The formation of complexes between LTA and M protein was demonstrated further by immunoelectrophoresis of pep M24 protein with increasing concentrations of radiolabeled LTA and by using antiserum against pep M24 to develop precipitin arcs. Pep M24 electrophoresed alone produced a single precipitin arc close to the origin. In contrast, when electrophoresed as a mixture with LTA or deacylated LTA, the M protein produced a second precipitin arc toward the anode coinciding with the area of migration of the radioactive LTA. Increasing concentrations of LTA or deacylated LTA shifted increasing amounts of the pep M24 antigen to the region of the second arc. Maleylation of M protein to block the positively charged free amino groups before mixing it with LTA prevented the formation of complexes. The complexes formed by the M protein with LTA, but not with deacylated LTA, showed the capacity to bind bovine serum albumin; LTA had been shown previously to bind to the fatty acid binding sites on bovine serum albumin. These results indicate that the LTA molecule is able to bind via its polyanionic backbone to positively charged residues of surface proteins of cells of S. pyogenes. The implications of such interaction as to the orientation of LTA molecules on the surface of cells of S. pyogenes are discussed.  相似文献   

6.
Leukotriene (LT) synthesis and metabolism were studied in porcine aortic endothelial cells. Leukotrienes were identified by combinations of guinea pig lung parenchymal strip bioassay, radioimmunoassay, and UV spectrophotometry with high performance liquid chromatography. Endothelial cells stimulated with the calcium ionophore, A23187, were unable to convert arachidonic acid to detectable levels of LTA4-derived products including the biologically active metabolites, LTB4 or LTC4. However, these cells readily converted exogenous LTA4 to the potent slow-reacting substance, LTC4. Smaller quantities of 11-trans-LTC4 and LTD4 were also observed. LTB4 was not detectable in these incubations nor was LTB4 metabolism observed. The possible intercellular transfer of LTA4 between polymorphonuclear leukocytes (PMNL) and endothelial cells was tested since PMNL release LTA4 when stimulated and have significant contact with endothelium. When A23187-stimulated neutrophils were coincubated with endothelial cells, a significant increase in LTC4 levels was detected over PMNL alone. LTC4 is formed by the enzymatic conjugation of glutathione (GSH) with LTA4. Therefore in some experiments, endothelial cells were prelabeled with [35S]cysteine to allow intracellular synthesis of [35S]GSH. When unlabeled PMNL were added, as a source of LTA4 to the prelabeled endothelial cells, substantial levels of [35S] LTC4 were recovered. The data indicate that endothelial cells synthesize LTC4 from LTA4. They also demonstrate a specific PMNL-endothelial cell interaction in which endothelial cell LTC4 synthesis results from the intercellular transfer of LTA4 produced by PMNL.  相似文献   

7.
8.
We report here in vivo gene transfer between cancer cells is associated with acquisition of high metastatic behavior. The 143B‐GFP cell line with high metastatic potential and the MNNG/HOS‐RFP cell line with low metastatic potential, both derived from the TE85 human osteosarcoma cell line, were either co‐transplanted or transplanted alone in the tibia in nude mice. Upon mixed transplantation of the two differently labeled sublines, resulting metastatic colonies are single colored either red or green, thereby demonstrating their clonality and enabling facile color‐coded quantification. When MNNG/HOS‐RFP and 143B‐GFP were co‐transplanted in the tibia, the number of lung metastases of MNNG/HOS‐RFP increased eight‐fold compared to MNNG/HOS‐RFP transplanted alone (P < 0.01). In contrast, no enhancement of MNNG/HOS‐RFP metastases occurred when MNNG/HOS‐RFP and 143B‐GFP were transplanted separately in the right and left tibiae, respectively. This result suggests that the presence of 143B‐GFP increased the metastatic potential of MNNG/HOS‐RFP within the mixed tumor. We observed transfer of the Ki‐ras gene from 143B‐GFP to MNNG/HOS‐RFP after they were co‐implanted suggesting the Ki‐ras played a role in increasing the metastatic potential of MNNG/HOS‐RFP in the presence of 143B‐GFP. These data suggest the possible role of in vivo gene transfer in enhancing the metastatic potential of cancer cells. The data also further demonstrated the power of color‐coded imaging to visualize cancer‐cell/cancer‐cell interactions in vivo. J. Cell. Biochem. 108: 362–367, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
CD44 is a cell surface glycoprotein that functions as hyaluronan receptor. Mouse and human serum contain substantial amounts of soluble CD44, generated either by shedding or alternative splicing. During inflammation and in cancer patients serum levels of soluble CD44 are significantly increased. Experimentally, soluble CD44 overexpression blocks cancer cell adhesion to HA. We have previously found that recombinant CD44 hyaluronan binding domain (CD44HABD) and its non-HA-binding mutant inhibited tumor xenograft growth, angiogenesis, and endothelial cell proliferation. These data suggested an additional target other than HA for CD44HABD. By using non-HA-binding CD44HABD Arg41Ala, Arg78Ser, and Tyr79Ser-triple mutant (CD443MUT) we have identified intermediate filament protein vimentin as a novel interaction partner of CD44. We found that vimentin is expressed on the cell surface of human umbilical vein endothelial cells (HUVEC). Endogenous CD44 and vimentin coprecipitate from HUVECs, and when overexpressed in vimentin-negative MCF-7 cells. By using deletion mutants, we found that CD44HABD and CD443MUT bind vimentin N-terminal head domain. CD443MUT binds vimentin in solution with a Kd in range of 12-37 nM, and immobilised vimentin with Kd of 74 nM. CD443MUT binds to HUVEC and recombinant vimentin displaces CD443MUT from its binding sites. CD44HABD and CD443MUT were internalized by wild-type endothelial cells, but not by lung endothelial cells isolated from vimentin knock-out mice. Together, these data suggest that vimentin provides a specific binding site for soluble CD44 on endothelial cells.  相似文献   

10.
Spiral artery remodeling at the maternal–fetal interface is crucial for successful pregnancy and requires the interaction between the first trimester trophoblast and the endothelial cells of the maternal vessels. However, the precise mechanism of this dialog has yet to be determined. The current study investigated whether lysophosphatidic acid (LPA) modulates trophoblast–endothelial crosstalk in vitro. HTR-8/SVneo trophoblast cell line (H8) was seeded on top of Geltrex, incubated with LPA or LPA + NS-398 (selective cyclooxygenase-2 inhibitor), LPA + 1400W (selective inducible nitric oxide synthase inhibitor) or LPA + IL-6 neutralizing antibody and assayed for tube formation to model the acquisition of trophoblast endovascular phenotype. The supernatants were collected and used as conditioned media (CM). To test trophoblast–endothelial crosstalk, the endothelial cell line EA.hy926 was incubated with trophoblast CM. The CM from LPA-induced tubulogenesis stimulated endothelial cells migration and did not modify the apoptosis. Soluble factors derived from cyclooxygenase-2 and IL-6 pathways were involved in H8–EA.hy926 interaction under the LPA effect. Moreover, LPA increased the levels of IL-6 mRNA by cyclooxygenase-2 pathway in H8 cells. Collectively, LPA promotes trophoblast–endothelial crosstalk in vitro and induces the release of trophoblast soluble factors that stimulate endothelial cells migration without changes in apoptosis. The evidence presented here provides new insights about an active role of LPA as a lipid mediator regulating vascular remodeling at the maternal–fetal interface.  相似文献   

11.
Leukotriene (LT) A4 metabolism was studied in human platelets and endothelial cells, since both cells could be involved in transcellular formation of LTC4. Upon addition of exogenous LTA4, both cells produced LTC4 as a major metabolite at various incubation times, and no LTB4, LTD4, or LTE4 was detected. Kinetic studies revealed a higher apparent Km for LTA4 in endothelial cells as compared to platelets (5.8 microM for human umbilical vein endothelial cells (HUVEC) versus 1.3 microM for platelets); platelets were more efficient in this reaction with a higher Vmax (174 pmol/mg protein/min) versus 15 pmol/mg protein/min in HUVEC. The formation of LTC4 and corresponding kinetic parameters were not modified when platelets or endothelial cells were stimulated by thrombin prior to or simultaneously with the addition of LTA4. In both cells LTC4 synthase activity was not modified by repeated addition of LTA4 showing that it is not a suicide-inactivated enzyme. Furthermore, in platelets and endothelial cells, the enzyme activity was localized in the membrane fraction and was distinct from cytosolic glutathione-S-transferases. Platelet membrane fractions showed apparent Km values of 31 microM and 1.2 mM for LTA4 and GSH, respectively. Inhibition of LTC4 formation from platelets and endothelial cells preparations by S-substituted glutathione derivatives was correlated to the length of the S-alkyl chain. The same substances inhibited cytosolic glutathione-S-transferases with significantly lower IC50, confirming the distinct nature of the two enzymes. These results show that platelets and HUVEC possess similar enzymes for the production of LTC4 from LTA4; however, platelets seem to have a higher efficiency than HUVEC in performing this reaction.  相似文献   

12.
Removal of the core α1,6 fucose from the glycans in the Fc region of IgG1 antibodies has been demonstrated to improve antibody‐dependent cellular cytotoxicity (ADCC) activity. In order to produce afucosylated antibodies using transient transfection, a FUT8 knockout (FUT8KO) cell line was generated in a CHO host cell line using the zinc finger nuclease technology. Transient transfection of DNA into mammalian cells using the cationic polymer, polyethylenimine (PEI), is commonly used for rapid generation of recombinant proteins. FUT8KO cells evaluated in PEI transfections yielded lower titers than parental CHO WT cells. FACS and HPLC analyses revealed that the FUT8KO cells had lower cell surface heparan sulfate (HS) levels than CHO WT. Removal of cell surface HS resulted in reduced uptake of PEI‐transfected DNA (PEI:DNA) and lower transfection titers suggesting that PEI:DNA relies on HS for binding and cellular entry. The absence of cell surface HS did not severely impact transfections performed with cationic liposomes. We undertook two approaches to improve transient production of afucosylated antibodies. First, we evaluated transfection of FUT8KO cells with cationic liposomes, which were observed to be less dependent on HS levels for uptake. Transfection of FUT8KO cells using the cationic liposome, DMRIE‐C, produced similar titers to CHO WT in both shake flask and large‐scale 10 L bioreactors. The second approach was to engineer a cell line overexpressing exostosin‐1 (EXT1), an enzyme responsible for HS chain elongation, to increase HS content. EXT1‐FUT8KO and CHO WT cells produced comparable levels of antibody from PEI transfections. Biotechnol. Bioeng. 2010;106: 751–763. © 2010 Wiley Periodicals, Inc.  相似文献   

13.
14.
The selective destruction of the supporting vasculature of tumours has been proposed as a means of therapy. Fundamental to this approach is the identification of suitable targets on tumour-endothelium. To detect proteins that may be up-regulated on the luminal (apical) surface of tumour-associated endothelium confluent endothelial cells were examined following incubation with tumour cell conditioned medium (TCM) from, or co-culture with, a range of breast carcinoma and small cell lung carcinoma (SCLC) cell lines. Exposed endothelial membrane proteins were labelled with sulpho-NHS-biotin and detected by enhanced chemiluminescence following two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) and western blotting. TCM induced varying levels of proliferative activity in endothelial cells; generally breast TCM contained greater mitogenic activity than SCLC TCM. Exposure of human breast and lung microvascular, and umbilical vein endothelial cells to soluble tumour cell factors from several breast cancer and SCLC cells lines produced similar changes in luminal protein profiles: Breast cancer cells and in particular the MDA-MB-231 cell line induced the most pronounced changes. The expression of six proteins was altered consistently on endothelial cells stimulated with soluble tumour cell factors. However, similar changes were observed following incubation with ECGS suggesting that they were related to endothelial cell proliferation per se. As these proteins were altered in breast and lung microvascular, and umbilical vein endothelial cells stimulated by a variety of breast cancer and SCLC cell lines they support the potentially broad applicability of anti-vascular approaches targeted at the endothelium.  相似文献   

15.
Anoikis is a form of programmed cell death induced by loss of contact from neighboring cells or from their extracellular matrix (ECM). Many tumorigenic cells are anoikis resistant, facilitating cancer progression and metastasis. Trastuzumab is a monoclonal antibody used for the treatment of breast and gastric cell cancer, but its mechanism of action is not well elucidated and its target molecules not well defined. Heparan sulfate proteoglycans (HSPGs) and glycosaminoglycans (GAGs) play important roles in tumor development and in response of cancer cells to drugs. This study investigates the effect of trastuzumab on the expression of HSPGs and sulfated glycosaminoglycans (SGAGs) in anoikis-resistant endothelial cells. After trastuzumab treatment, endothelial cells resistant to anoikis show an increase in adhesion to fibronectin followed by a decrease in invasion, proliferation, and angiogenic capacity. In addition, a significant increase in the number of cells in the S phase of the cell cycle was also observed. In relation to HSPGs and SGAGs expression, we observed a decrease in syndecan-4 and perlecan expression, as well as in the heparan sulfate biosynthesis in anoikis-resistant endothelial cells after exposure to trastuzumab. Our results suggest that trastuzumab interacts with GAGs and proteoglycans of the cell surface and ECM and through this interaction controls cellular events in anoikis-resistant endothelial cells.  相似文献   

16.
The production and localization of laminin, as a function of cell density (sparse versus confluent cultures) and growth stage (actively growing versus resting cultures), has been compared on the cell surfaces of cultured vascular and corneal endothelial cells. Comparison of the abilities of the two types of cells to secrete laminin and fibronectin into their incubation medium reveals that vascular endothelial cells can secrete 20-fold as much laminin as can corneal endothelial cells. In contrast, both cell types produce comparable amounts of fibronectin. Furthermore, if one compares the secretion of laminin and fibronectin as a function of cell growth, it appears that the laminin released into the medium by either vascular or corneal endothelial cells, is a function of cell density and cell growth, since this release is most pronounced when the cells are sparse and actively growing, and decreases by 10- and 30-fold, respectively, when either vascular or corneal endothelial cell cultures become confluent. With regard to fibronectin secretion, no such variation can be seen with vascular endothelial cell cultures, regardless of whether they are sparse and actively growing or confluent and resting. Corneal endothelial cell cultures, demonstrated a twofold increase in fibronectin production when they were confluent and resting as compared to when they were sparse and actively growing. When the distribution of laminin versus fibronectin within the apical and basal cell surfaces of cultured corneal and vascular endothelial cells is compared, one can observe that unlike fibronectin, which in sparse and subconfluent cultures can be seen to be associated with both the apical cell surface. In confluent cultures, laminin can be found associated primarily with the extracellular matrix beneath the cell monolayer, where it codistributes with type IV collagen.  相似文献   

17.
The cytokine midkine (MK) promotes tumor growth mainly by inducing angiogenesis. Here, we identified the source of MK in the vascular system under hypoxic conditions and demonstrated the relevance of MK during ischemia of normal tissue. Hypoxia increased MK protein expression in human polymorphonuclear neutrophils (PMN), monocytes, and human umbilical vein endothelial cells (HUVEC) compared with normoxia. Immunoelectron microscopy showed elevated cell surface expression of MK in PMN and monocytes during hypoxia. However, only HUVEC released significant amounts of soluble MK during hypoxia compared with normoxia (301 ± 81 pg/ml vs. 158 ± 45 pg/ml; P < 0.05). Exogenous MK induced neovascularization in a chorioallantoic membrane (CAM) assay compared with negative control as measured by counting the number of branching points per visual field (1,074 ± 54 vs. 211 ± 70; P < 0.05). In a hind limb ischemia model, the angiogenic response was almost completely absent in MK-deficient mice, whereas control animals showed a profound angiogenic response measured as proliferating endothelial cells per visual field (45 ± 30 vs. 169 ± 34; P < 0.01). These unanticipated results identified endothelial cells as the source of soluble MK in the vascular system during hypoxia and defined MK as a pivotal player of angiogenesis during ischemia in nonmalignant tissue.  相似文献   

18.
The cellular distribution and nature of proteoglycans synthesised by human breast cancer cells in culture were studied. Proteoglycans were labelled with [35S] sulfate, purified, and characterised after ion-exchange chromatography followed by gel-filtration chromatography and treatment with glycosaminoglycan degrading enzymes. Proteoglycans were isolated from the culture medium and from cell layers of the hormono-dependent well-differentiated MCF-7 cell line, the hormono-independent poorly-differentiated MDA-MB-231 and the HBL-100 cell line which is derived from non malignant breast epithelium. HBL-100 and MDA-MB-231 cells produced larger amounts of proteoglycans which had a lower degree of sulfation than MCF-7 cells. Gel-filtration chromatography on Sepharose CL-6B indicated that HBL-100 and MDA-MB-231 cells accumulated cell surface heparan sulfate proteoglycans (HSPG), with a high apparent molecular weight (Kav 0.1). In contrast, the MCF-7 cell monolayers synthesised small sulfated macromolecules (Kav 0.4) which possessed mostly chondroitin sulfate chains. Moreover, considerable differences in the nature of the sulfated proteoglycans released into the culture medium of these breast epithelial cell lines were observed. MCF-7 cells released into the culture medium HSPG as the main proteoglycan component while MDA-MB-231 and HBL-100 cells released mainly chondroitin sulfate proteoglycans. In these three cell lines, medium-released sulfated macromolecules have a higher hydrodynamic size than cell-associated ones. Proteoglycans purified by ion-exchange chromatography were tested for their ability to bind 125I FGF-2. We demonstrated that HBL-100 and MDA-MB-231 cells bind more FGF-2 to their heparan sulfate proteoglycans than MCF-7 cells. Taken together, these results suggest that differences in proteoglycan synthesis of human breast epithelial cells could be responsible for differences in their proliferative and/or invasive properties. J. Cell. Biochem. 64:605–617. © 1997 Wiley-Liss, Inc.  相似文献   

19.
Elevated cellular plasminogen activator activity has been associated with significant alterations in the in vitro phenotype of both malignant cell lines and nonmalignant endothelial cells. To examine the role of elevated cellular plasminogen activator activity in the production of altered endothelial cell behavior, bovine coronary artery endothelial cells were transduced with a retroviral vector expressing large amounts of tissue plasminogen activator. Cells transduced with the tissue plasminogen activator vector were compared with both untransduced cells and cells transduced with a control vector in a series of in vitro assays of cellular attachment, proliferation, migration, and invasion. The morphology of the 2 transduced populations was unchanged. There was a small decrease (5–15%) in the horizontal migration rate of both transduced cell populations, as compared with that of untransduced cells. No significant differences were detected among the three cell populations in any of the other assays. We conclude that expression of high levels of tissue plasminogen activator does not specifically affect endothelial cell phenotype in vitro. These data lend support to the hypothesis that elevated plasminogen activator activity is necessary but not sufficient to produce alterations in endothelial cell behavior. © 1993 Wiley-Liss, Inc.  相似文献   

20.
Certain immunocompetent myeloid cells, such as eosinophils, basophils and mast cells, have a large capacity to synthesize the potent proinflammatory and spasmogenic mediator leukotriene (LT) C4 via a specific microsomal glutathione S-transferase (MGST) termed LTC4 synthase (LTC4S). Here, we report that MGST2, a distant homologue of LTC4S, is abundantly expressed in Human umbilical vein endothelial cells (HUVEC) and converts LTA4 into a single product, LTC4. Thus, using Northern blot, RT-PCR, Western blot, and enzyme activity assays, we show that MGST2 is the main, if not the only, enzyme that converts LTA4 into LTC4 in membrane preparations of HUVEC. In fact, we failed to detect any expression of LTC4S, MGST1 or MGST3 in these cells, indicating that MGST2 is a critical enzyme for transcellular LTC4 biosynthesis in the vascular wall. Unlike LTC4S, MGST2 prefers the naturally occurring free acid of LTA4 over the methyl ester as substrate and is also susceptible to product inhibition with an IC50 of about 1 microM for LTC4. Moreover, HUVEC were found to express the CysLT1 receptor in line with a paracrine and autocrine role for cysteinyl-leukotrienes in endothelial cell function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号