首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Piscidin 4, an antimicrobial peptide recently isolated from mast cells of hybrid striped bass (Morone chrysops female × Morone saxatilis male), is unusual in that it is twice as long (44 amino acids) as the typical members of the piscidin family. We previously showed that native piscidin 4 had a modified amino acid at position 20, but synthetic piscidin 4 (having an unmodified Trp at position 20) had similar potent activity against a number of both human and fish bacterial pathogens. In this study, the structure and membrane topology of synthetic piscidin 4 were examined using liposomes as model bilayers. Circular dichroism analyses revealed that it had a disordered structure in aqueous solution and folded to form a relatively weak α-helical structure in both membrane-mimetic trifluoroethanol solutions and liposome suspensions. Fluorescence data (piscidin 4 embedded in liposomes) and leakage experiments indicated that piscidin 4 interacted strongly with the hydrophobic part of the liposome. Binding of piscidin 4 to liposomes induced significant blue shifts of the emission spectra of the single Trp residue (Trp20). Quenching of Trp20 by water-soluble quencher (either acrylamide or I-) indicated that the fluorescence of Trp20 decreased more in the presence of liposomes than in buffer solution, thus revealing that Trp20 is less accessible to the quenchers in the presence of liposomes. The relative leakage abilities of piscidin 4 (1 μM) with liposomes were in the following order: DPPC (100%)≥EYPC (94%)>DPPC/DPPG (65%)>EYPC/EYPG (0%). This high activity against DPPC and EYPC liposomes was contrary to our data suggesting that piscidin 4 has a much weaker tendency to form an α-helix than other piscidins, such as piscidin 1. However, the structural similarity of protozoan membranes to EYPC liposomes might explain our discovery of the potent activity of piscidin 4 against the important skin/gill parasite ich (Ichthyophthirius multifiliis), but its negligible hemolytic activity against vertebrate membranes (hybrid striped bass or human erythrocytes). It also suggests that other conformation(s) in addition to the α-helix of this peptide may be responsible for its selective activity. This differential toxicity also suggests that piscidin 4 plays a significant role in the innate defense system of hybrid striped bass and may be capable of functioning extracellularly.  相似文献   

2.
The conformation of synthetic HA317-329-NH2representing the major B- and T-cell epitopic region of influenza virus hemagglutinin, its palmitoylated derivative (HA317-329-Thr(Pal)-NH2), and the intersubunit peptide (HA317-341-NH2) comprising also the fusion peptide, were studied in aqueous buffer and in the presence of neutral and negatively charged liposomes. The free peptide is unordered in aqueous solution, even in the presence of liposomes. However, grafting the palmitic acid or the fusion peptide onto the C-terminus of the peptide enables the hydrophilic HA317-329to adopt folded (turn) and β-strand structure on the surface of neutral and negatively charged liposomes, respectively. The results emphasize the importance of some kind of anchor for achieving a specific conformation of epitopic peptide HA317-329-NH2on the surface of liposomes.  相似文献   

3.
Abstract

Desmopressin-containing liposome formulations have been developed for intranasal administration previously. Positively charged liposomes were found to be an efficient delivery system for desmopressin. In this study, stability of the loaded desmopressin in positively charged liposomes was further investigated. Comparison of the stability of desmopressin in solution and liposomes was made. Degradation of desmopressin was shown to follow a pseudo-first-order reaction. Degradation of desmopressin in both solution and liposomes demonstrated the same kinetic behavior and exhibited no significant difference in half-lives. Similar v-shape pH-rate profile was found for desmopressin degradation in solution and liposomes. At pH 4.0, the inflection point of the v-shape pH-rate curve, the reaction rate of desmopressin was lowest and the stability was greatest. The stability of lipid ingredients of dioleoylphosphatidylcholine (DOPC), cholesterol (C), and stearylamine (S) in the liposome dispersion at pH 4.0 was studied. Results demonstrated that DOPC, C, and S were relatively stable in the liposome structure when formulated with desmopressin. The degradation of desmopressin in solution and liposomes in the presence of α-chymotrypsin was investigated. A longer half-life for desmopressin in liposomes than in solution was observed. It was suggested that desmopressin was protected by the liposomes against α-chymotrypsin digestion.  相似文献   

4.
The present study was undertaken to examine the structural features that may be important to explain the immunogenicity of the (110–121) peptide sequence (FWRGDLVFDFQV) of VP3 capsid protein of hepatitis A virus. A conformational analysis of the preferred conformations by CD and molecular mechanics was carried out. Present results suggest that the interaction with liposomes as biomembrane model induces and stabilizes the amphipathic β-structure of the peptide. To study the contribution of amino acid replacements at the RGD tripeptide as well as the influence of the peptide chain length on peptide conformation, solid-phase peptide synthesis of several peptide analogs was carried out and the peptide conformation was studied using CD spectroscopy. The results show that the RGD sequence is necessary to induce the β-structure in the presence of liposomes. © 1998 John Wiley & Sons, Inc. Biopoly 45: 479–492, 1998  相似文献   

5.
The events accompanying the inhibitory effect of α-tocopherol and/or ascorbate on the peroxidation of soybean L-α-phosphatidylcholine liposomes, which are an accepted model of biological membranes, were investigated by electron paramagnetic resonance, optical and polarograpic methods. The presence of α-tocopherol radical in the concentration range 10?8–10?7 M was detected from its EPR spectrum during the peroxidation of liposomes, catalysed by the Fe3+-triethylnetatramine complex. The α-tocopherol radical, generated in the phosphatidylcholine bilayer, is accessible to ascorbic acid, present in the aqueous phase at physiological concentrations. Ascorbic acid regenerates from it the α-tocopherol itself. A kinetic rate constant of about 2·105 M?·s?1 was estimated from the reaction as it occurs under the adopted experimental conditions. The scavenging effect of α-tocopherol on lipid peroxidation is maintained as long a ascorbic acid is present.  相似文献   

6.
Plantaricin A (plA) is a 26-residue bacteria-produced peptide pheromone with membrane-permeabilizing antimicrobial activity. In this study the interaction of plA with membranes is shown to be highly dependent on the membrane lipid composition. PlA bound readily to zwitterionic 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC) monolayers and liposomes, yet without significantly penetrating into these membranes. The presence of cholesterol attenuated the intercalation of plA into SOPC monolayers. The association of plA to phosphatidylcholine was, however, sufficient to induce membrane permeabilization, with nanomolar concentrations of the peptide triggering dye leakage from SOPC liposomes. The addition of the negatively charged phospholipid, 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-rac-glycerol POPG (SOPC/POPG; molar ratio 8:2) enhanced the membrane penetration of the peptide, as revealed by (i) peptide-induced increment in the surface pressure of lipid monolayers, (ii) increase in diphenylhexatriene (DPH) emission anisotropy measured for bilayers, and (iii) fluorescence characteristics of the two Trps of plA in the presence of liposomes, measured as such as well as in the presence of different quenchers. Despite deeper intercalation of plA into the SOPC/POPG lipid bilayer, much less peptide-induced dye leakage was observed for these liposomes than for the SOPC liposomes. Further changes in the mode of interaction of plA with lipids were evident when also the zwitterionic phospholipid, 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphoethanolaminne (POPE) was present (SOPC/POPG/POPE, molar ratio 3:2:5), thus suggesting increase in membrane spontaneous negative curvature to affect the mode of association of this peptide with lipid bilayer. PlA induced more efficient aggregation of the SOPC/POPG and SOPC/POPG/POPE liposomes than of the SOPC liposomes, which could explain the attenuated peptide-induced dye leakage from the former liposomes. At micromolar concentrations, plA killed human leukemic T-cells by both necrosis and apoptosis. Interestingly, plA formed supramolecular protein-lipid amyloid-like fibers upon binding to negatively charged phospholipid-containing membranes, suggesting a possible mechanistic connection between fibril formation and the cytotoxicity of plA.  相似文献   

7.
Bombolitins are five structurally related heptadecapeptides acting at the membrane level able to lyse erythrocytes and liposomes and to enhance the activity of phospholipase A 2(PLA2). In the presence of SDS or phospholipid vesicles bombolitins are able to form amphiphilic α-helical structures and this property seems to be the major determinant of bioactivity. In order to test the model of interaction between bombolitin I and membranes, an analogue was synthesized in which all the lysines were replaced by arginines: ([Arg2,9,12, Ile10] bornbolitin I). The design ofthis sequence allowed the synthesis of a second analogue through a specijic postsynthetic dansylation at the ?-amino group qf a lysine residue replacing the original leucine residue at position 7. The, first analogue was, fiilly characterized by CD and two-dimensional nmr in the presence of SDS or phospholipid vesicles. The peptide, folds into an amphiphilic α-helical confbrrnation with the helical segment spanning the central part of the sequencefrom Ile3 to His16. This behavior is identical to that observed for the native sequence. The replacement of Iysine residues by arginine hus no detectable effect on the conformational prderence of the peptide chain. By CD and fluorescence spectroscopy measurements, the fluorophore-containing analogue [Arg2,9,12, Lys7(?-dansyl)] bombolitin I also folded into the α-helical conformation in the presence of SDS micelles or phospholipid vesicles. In particular, the dansyl fluorophore, which is located approximately in the middle of the apolar surface ojthe amphiphilic helix, is clearly buried in a hydrophobic environment when the peptide is bound to phospholipid vesicles. These findings support the hypothesis that the peptide helices are oriented parallel to the vesicle surface. © 1995 John Wiley & Sons, Inc.  相似文献   

8.
Plantaricin A (plA) is a 26-residue bacteria-produced peptide pheromone with membrane-permeabilizing antimicrobial activity. In this study the interaction of plA with membranes is shown to be highly dependent on the membrane lipid composition. PlA bound readily to zwitterionic 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC) monolayers and liposomes, yet without significantly penetrating into these membranes. The presence of cholesterol attenuated the intercalation of plA into SOPC monolayers. The association of plA to phosphatidylcholine was, however, sufficient to induce membrane permeabilization, with nanomolar concentrations of the peptide triggering dye leakage from SOPC liposomes. The addition of the negatively charged phospholipid, 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-rac-glycerol POPG (SOPC/POPG; molar ratio 8:2) enhanced the membrane penetration of the peptide, as revealed by (i) peptide-induced increment in the surface pressure of lipid monolayers, (ii) increase in diphenylhexatriene (DPH) emission anisotropy measured for bilayers, and (iii) fluorescence characteristics of the two Trps of plA in the presence of liposomes, measured as such as well as in the presence of different quenchers. Despite deeper intercalation of plA into the SOPC/POPG lipid bilayer, much less peptide-induced dye leakage was observed for these liposomes than for the SOPC liposomes. Further changes in the mode of interaction of plA with lipids were evident when also the zwitterionic phospholipid, 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphoethanolaminne (POPE) was present (SOPC/POPG/POPE, molar ratio 3:2:5), thus suggesting increase in membrane spontaneous negative curvature to affect the mode of association of this peptide with lipid bilayer. PlA induced more efficient aggregation of the SOPC/POPG and SOPC/POPG/POPE liposomes than of the SOPC liposomes, which could explain the attenuated peptide-induced dye leakage from the former liposomes. At micromolar concentrations, plA killed human leukemic T-cells by both necrosis and apoptosis. Interestingly, plA formed supramolecular protein-lipid amyloid-like fibers upon binding to negatively charged phospholipid-containing membranes, suggesting a possible mechanistic connection between fibril formation and the cytotoxicity of plA.  相似文献   

9.
Alamethicin (Alm), an antimicrobial peptide rich in α-aminoisobutyric acid (Aib), is known to self-assemble to form channels in the membranes. Previously, we reported that HG-Alm, an Alm analog with a single His residue at the N-terminus, forms channel assemblies with extremely long lifetimes in the presence of Zn2+. In this study, HG-Alm analogs, in the sequences of which all Aib residues were substituted by Leu, norvaline (Nva), or norleucine (Nle), were synthesized and their leakage activities were measured using fluorescent dye-loaded liposomes. We found that these peptides could be categorized into two classes with different gating responses to Zn2+.  相似文献   

10.
Macrophages are pivotal in promoting wound healing. We hypothesized that topical application of liposomes with glycolipids that carry Galα1-3Galβ1-4GlcNAc-R epitopes (α-gal liposomes) on wounds may accelerate the healing process by rapid recruitment and activation of macrophages in wounds. Immune complexes of the natural anti-Gal Ab (constituting ~1% of Ig in humans) bound to its ligand, the α-gal epitope on α-gal liposomes would induce local activation of complement and generation of complement chemotactic factors that rapidly recruit macrophages. Subsequent binding of the Fc portion of anti-Gal coating α-gal liposomes to FcγRs on recruited macrophages may activate macrophage genes encoding cytokines that mediate wound healing. We documented the efficacy of this treatment in α1,3galactosyltrasferase knockout mice. In contrast to wild-type mice, these knockout mice lack α-gal epitopes and can produce the anti-Gal Ab. The healing time of excisional skin wounds treated with α-gal liposomes in these mice is twice as fast as that of control wounds. Moreover, scar formation in α-gal liposome-treated wounds is much lower than in physiologic healing. Additional sonication of α-gal liposomes resulted in their conversion into submicroscopic α-gal nanoparticles. These α-gal nanoparticles diffused more efficiently in wounds and further increased the efficacy of the treatment, resulting in 95-100% regeneration of the epidermis in wounds within 6 d. The study suggests that α-gal liposome and α-gal nanoparticle treatment may enhance wound healing in the clinic because of the presence of high complement activity and high anti-Gal Ab titers in humans.  相似文献   

11.
A peptide corresponding to the N-terminal region of the S protein of hepatitis B virus (Met-Glu-Asn-Ile-Thr-Ser-Gly-Phe-Leu-Gly-Pro-Leu-Leu-Val-Leu-Gln) has been previously demonstrated to perform aggregation and destabilization of acidic liposome bilayers and to adopt a highly stable beta-sheet conformation in the presence of phospholipids. The changes in the lipid moiety produced by this peptide have been followed by fluorescence depolarization and electron microscopy. The later was employed to determine the size and shape of the peptide-vesicle complexes, showing the presence of highly aggregated and fused structures only when negatively charged liposomes were employed. 1,6-Diphenyl-1,3,5-hexatriene depolarization measurements showed that the interaction of the peptide with both negatively charged and zwitterionic liposomes was accompanied by a substantial reduction of the transition amplitude without affecting the temperature of the gel-to-liquid crystalline phase transition. These data are indicative of the peptide insertion inside the bilayer of both types of liposomes affecting the acyl chain order, though only the interaction with acidic phospholipids leads to aggregation and fusion. This preferential destabilization of the peptide towards negatively charged phospholipids can be ascribed to the electrostatic interactions between the peptide and the polar head groups, as monitored by 1-(4-(trimethylammoniumphenyl)-6-phenyl-1,3, 5-hexatriene fluorescence depolarization analysis.  相似文献   

12.
The roles of peptide-peptide charged interaction and lipid phase separation in helix-helix association in lipid bilayers were investigated using a model peptide, P24, as a transmembrane α-helical peptide, and its four analogues. Fluorescence amino acids, tryptophan (P24W) and pyrenylalanine (P24Pya), were introduced into the sequence of P24, respectively. Association of these peptides permits the resonance excitation energy transfer between tryptophan in P24W and pyrenylalanine in P24Pya or excimer formation between P24Pya themselves. To evaluate the effect of charged interaction on the association between α-helical transmembrane segments in membrane proteins, charged amino acids, glutamic acid (P24EW) and lysine (P24KPya), were introduced into P24W and P24Pya, respectively. Energy transfer experiments indicated that the charged interaction between the positive charge of lysine residue in P24KPya and the negative charge of glutamic acid residue in P24EW did not affect the aggregation of transmembrane peptides in lipid membranes. As the content ratio of sphingomyelin (SM) and cholesterol (Ch) was increased in the egg phosphatidylcholine (PC), the stronger excimer fluorescence spectra of P24Pya were observed, indicating that the co-existence of SM and Ch in PC liposomes, that is, the raft of SM and Ch, promotes the aggregation of the α-helical transmembrane peptides in lipid bilayers. Since the increase in the contents of SM and Ch leads to the decrease in the content of liquid crystalline-order phase, the moving area of transmembrane peptides might be limited in the liposomes, resulting in easy formation of the excimer in the presence of the lipid-raft.  相似文献   

13.
The antioxidative effect of α-tocopherol incorporated into lecithin liposomes was studied. Lipid peroxidation of liposome membranes, assayed as malondialdehyde production, was catalyzed by ascorbic acid and Fe2+. The peroxidation reaction, which did not involve the formation of singlet oxygen, superoxide, hydrogen peroxide, or a hydroxyl radical, was inhibited by α-tocopherol and a model compound of α-tocopherol, 2,2,5,7,8-pentamethyl-6-hydroxy-chroman (TMC), but not by phytol, α-tocopherylquinone, or α-tocopheryl acetate. One mole of α-tocopherol completely prevented peroxidation of about 100 moles of polyunsaturated fatty acid. Decrease in membrane fluidity by lipid peroxidation, estimated as increase of fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) embedded in the membrane, was also inhibited by α-tocopherol and TMC, reflecting their antioxidant functions. Cholesterol did not act as an antioxidant, even when incorporated in large amount into the liposome membranes, but it increased the antioxidative efficiency of α-tocopherol. When a mixture of liposomes with and without α-tocopherol was incubated with Fe2+ and ascorbic acid, α-tocopherol did not protect the liposomes not containing α-tocopherol from peroxidation. However, preincubation of the mixture, or addition of Triton X-100 allowed the α-tocopherol to prevent peroxidation of the liposomes not containing α-tocopherol. In contrast, in similar experiments, liposomes containing TMC prevented peroxidation of those without TMC without preincubation. Tocopherol in an amount so small as to exhibit only a slight antioxidative effect was oxidized when incorporated in egg lecithin liposomes, but it mostly remained unoxidized when incorporated in dipalmitoyllecithin liposomes, indicating that oxygen activated by ascorbic acid-Fe2+ does not oxidize α-tocopherol directly. Thus, decomposition of α-tocopherol may be caused by its interaction with peroxy and/or alkoxyl radicals generated in the process of lipid peroxidation catalyzed by Fe2+ and ascorbic acid.  相似文献   

14.
Given their high alanine and glycine levels, plaque formation, α-helix to β-sheet interconversion and fusogenicity, FP (i.e., the N-terminal fusion peptide of HIV-1 gp41; 23 residues) and amyloids were proposed as belonging to the same protein superfamily. Here, we further test whether FP may exhibit ‘amyloid-like’ characteristics, by contrasting its structural and functional properties with those of Aβ(26-42), a 17-residue peptide from the C-terminus of the amyloid-beta protein responsible for Alzheimer's. FTIR spectroscopy, electron microscopy, light scattering and predicted amyloid structure aggregation (PASTA) indicated that aqueous FP and Aβ(26-42) formed similar networked β-sheet fibrils, although the FP fibril interactions were weaker. FP and Aβ(26-42) both lysed and aggregated human erythrocytes, with the hemolysis-onsets correlated with the conversion of α-helix to β-sheet for each peptide in liposomes. Congo red (CR), a marker of amyloid plaques in situ, similarly inhibited either FP- or Aβ(26-42)-induced hemolysis, and surface plasmon resonance indicated that this may be due to direct CR-peptide binding. These findings suggest that membrane-bound β-sheets of FP may contribute to the cytopathicity of HIV in vivo through an amyloid-type mechanism, and support the classification of HIV-1 FP as an ‘amyloid homolog’ (or ‘amylog’).  相似文献   

15.
The membrane-destabilizing effect of the peptide melittin on phosphatidylcholine membranes is modulated by the presence of cholesterol. This investigation shows that inclusion of 40 mol % cholesterol in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine or 1,2-dioleoyl-sn-glycero-3-phosphocholine liposomes reduces melittin's affinity for the membrane. It is significant that the presence of cholesterol does not increase the amount of membrane-associated melittin needed to cause maximum leakage from, or major structural rearrangements of, the liposomes. Furthermore, comparison of microscopy and leakage data suggests that melittin-induced leakage occurs via different mechanisms in the cholesterol-free and cholesterol-supplemented systems. In the absence of cholesterol, leakage of carboxyfluorescein takes place from intact liposomes in a manner compatible with the presence of small melittin-induced pores. In the presence of cholesterol, on the other hand, adsorption of the peptide causes complete membrane disruption and the formation of long-lived open-bilayer structures. Moreover, in the case of cholesterol-supplemented systems, melittin induces pronounced liposome aggregation. Cryotransmission electron microscopy was used, together with ellipsometry, circular dichroism, turbidity, and leakage measurements, to investigate the effects of melittin on phosphatidylcholine membranes in the absence and presence of cholesterol. The melittin partitioning behavior in the membrane systems was estimated by means of steady-state fluorescence spectroscopy measurements.  相似文献   

16.
The cytotoxic activity of 10 analogs of the idealized amphipathic helical 21-mer peptide (KAAKKAA)3, where three of the Ala residues at different positions have been replaced with Trp residues, has been investigated. The peptide's cytotoxic activity was found to be markedly dependent upon the position of the Trp residues within the hydrophobic sector of an idealized α-helix. The peptides with Trp residues located opposite the cationic sector displayed no antitumor activity, whereas those peptides with two or three Trp residues located adjacent to the cationic sector exhibited high cytotoxic activity when tested against three different cancer cell lines. Dye release experiments revealed that in contrast to the peptides with Trp residues located opposite the cationic sector, the peptides with Trp residues located adjacent to the cationic sector induced a strong permeabilizing activity from liposomes composed of a mixture of zwitterionic phosphatidylcholine and negatively charged phosphatidylserine (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine (POPS)) (2:1) but not from liposomes composed of zwitterionic phosphatidylcholine, POPC. Fluorescence blue shift and quenching experiments revealed that Trp residues inserted deeper into the hydrophobic environment of POPC/POPS liposomes for peptides with high cytotoxic activity. Through circular dichroism studies, a correlation between the cytotoxic activity and the α-helical propensity was established. Structural studies of one inactive and two active peptides in the presence of micelles using NMR spectroscopy showed that only the active peptides adopted highly coiled to helical structures when bound to a membrane surface.  相似文献   

17.
The synthesis on solid phase of a peptide sequence (GGRGRS) related to an integrin adhesion site as well as the preparation of some hydrophobic derivatives is described.

The incorporation of these peptides to the surface of liposomes was carried out either through the NGPE (N-glutaryl dipalmitoyl phosphatidyl choline) carboxyl-group or mixing hydrophobic peptide derivatives with lipids since the beginning of the process. The influence of these factors on the entrapment yield of 5-FUR (5-fluorouridine) was determined. Best results, calculated as percentage of drug encapsulation, were obtained when the peptide was linked to preformed liposomes via an NGPE-amide bond. On the contrary, the presence of these hydrophobic peptides on the bilayers decreases the overall yield of encapsulation of 5-FUR. Nevertheless, considering drug/lipid relationship and scaling-up requirements it seems that the use of myristoyl peptide derivative should be the procedure of choice.

Physicochemical studies carried out with the peptides indicated that the presence of hydrophobic moieties linked to the parent peptide increases the tendency to self aggregation as detected through fluorescence studies using DPH (1, 6 diphenyl hexatriene) as marker, reducing in this way the efficiency of incorporation of hydrophobic peptides to the surface of liposomes.  相似文献   

18.
Staphylococcus aureus self-assembling α-hemolysin heptamer is an acute virulence factor that determines the severity of S. aureus infections. Hence, inhibiting the heptamer formation is of considerable interest. However, both natural and chemical inhibitors reported so far has difficulties related to toxicity, bioavailability, and solubility, which necessitate in identifying some alternatives. Hence, in this study, potential peptides for α-hemolysin inhibition was developed using in silico based approach. Haddock server was used to understand the residues involved in complex formation. Based on the key residues involved in the interaction, 20 peptides were designed and docked with the α-hemolysin monomer (Chain A). Further, the best scored Chain A-peptide complex was chosen and docked with Chain B to identify the ability of dimer formation in the presence of designed peptide. The stability of the Chain A–B dimer, Chain A-peptide and Chain A-peptide-Chain B complex was studied by performing molecular dynamic simulation over 3,000 ps. The peptide IYGSKANRQTDK was found to be binding efficiently with Chain A of α-hemolysin with highest binding energy and also revealed that the designed peptide disturbed the dimer formation, which provided useful information in developing promising lead for inhibiting α-hemolysin assembly in the future.  相似文献   

19.
Although liposomes have proven useful for the delivery of drugs and gene therapy vectors, their potencies are often compromised by poor unloading following uptake into their target cells. We have consequently explored the properties of a novel 29-residue amphipathic peptide that was designed by arrangement of hydrophobic and hydrophilic residues to disrupt liposomes at lower peptide concentrations than previously tested peptides. The peptide was indeed found to promote pH-dependent liposome unloading with improved efficiency. A peptide of the same sequence, but half the length, however, promoted pH-dependent permeabilization only at much higher concentrations. Further characterization of the longer peptide revealed that release of liposome contents (i) occurred at a pH of ∼6, (ii) became less efficient as the size of the encapsulated cargo increased, and (iii) was moderately suppressed in cholesterol-containing liposomes. Use of this peptide to enhance the cytotoxicity of cytosine arabinoside encapsulated in folate-targeted liposomes demonstrated an increase in drug potency of ∼30-fold. Gene expression by a serum-stable folate-targeted liposomal vector was also measurably enhanced by inclusion of the peptide. We conclude that intracellular unloading of liposomal contents can be significantly improved by co-encapsulation of an optimally designed, pH-sensitive peptide.  相似文献   

20.
To define the molecular mechanism(s) of resveratrol inhibition of lipid peroxidation we have utilized model systems that allow us to study the different reactions involved in this complex process. Resveratrol proved (a) to inhibit more efficiently than either Trolox or ascorbate the Fe2+ catalyzed lipid hydroperoxide-dependent peroxidation of sonicated phosphatidylcholine liposomes; (b) to be less effective than Trolox in inhibiting lipid peroxidation initiated by the water soluble AAPH peroxyl radicals; (c) when exogenously added to liposomes, to be more potent than α-tocopherol and Trolox, in the inhibition of peroxidation initiated by the lipid soluble AMVN peroxyl radicals; (d) when incorporated within liposomes, to be a less potent chain-breaking antioxidant than α-tocopherol; (e) to be a weaker antiradical than α-tocopherol in the reduction of the stable radical DPPH·. Resveratrol reduced Fe3+ but its reduction rate was much slower than that observed in the presence of either ascorbate or Trolox. However, at the concentration inhibiting iron catalyzed lipid peroxidation, resveratrol did not significantly reduce Fe3+, contrary to ascorbate. In their complex, our data indicate that resveratrol inhibits lipid peroxidation mainly by scavenging lipid peroxyl radicals within the membrane, like α-tocopherol. Although it is less effective, its capacity of spontaneously entering the lipid environment confers on it great antioxidant potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号