首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
13C-NMR spectroscopic studies have been made on alginate solutions undergoing sol–gel transition induced by four different divalent cations: Ca, Cu, Co, and Mn. From the analysis of nmr spectra and relaxation times, we have found different interaction modes existing between the Ca–alginate systems and the transition metal (Cu, Co, and Mn)–alginate systems. In the Ca–alginate systems, there exists a specific interaction characterized by a strong autocooperative binding between guluronate residues and calcium ions, and all functional groups in guluronate residues are considered to involve the interaction with calcium ions. On the other hand, in transition metal (Cu, Co, and Mn)–alginate systems, sol–gel transition is characterized by a complex formation in which the carboxyl groups in both mannuronate and guluronate residues are coordinated to metal ions. The other functional groups, like hydroxyl groups, do not participate in the binding to metal ions. It is suggested by relaxation time measurements that from a microscopic point of view the sol–gel transition phenomena can be explained as a dynamic process in which the low frequency molecular motions are dominant and increase their proportions with the formation of three-dimensional cross-links. © 1993 John Wiley & Sons, Inc.  相似文献   

2.
Alginate is a biopolymer used in drug formulations and for surgical purposes. In the presence of divalent cations, it forms solid gels, and such gels are of interest for immobilization of cells and enzymes. In this work, we entrapped trypsin in an alginate gel together with a known substrate, N α-benzoyl-l-arginine-4-nitroanilide hydrochloride (l-BAPNA), and in the presence or absence of d-BAPNA, which is known to be a competitive inhibitor. Interactions between alginate and the substrate as well as the enzyme were characterized with transmission electron microscopy, rheology, and nuclear magnetic resonance spectroscopy. The biocatalysis was monitored by spectrophotometry at temperatures ranging from 10 to 42 °C. It was found that at 37 and 42 °C a strong acceleration of the reaction was obtained, whereas at 10 °C and at room temperature, the presence of d-BAPNA leads to a retardation of the reaction rate. The same effect was found when the reaction was performed in a non-cross-linked alginate solution. In alginate-free buffer solution, as well as in a solution of carboxymethylcellulose, a biopolymer that resembles alginate, the normal behavior was obtained; however, with d-BAPNA acting as an inhibitor at all temperatures. A more detailed investigation of the reaction kinetics showed that at higher temperature and in the presence of alginate, the curve of initial reaction rate versus l-BAPNA concentration had a sigmoidal shape, indicating an allosteric behavior. We believe that the anomalous behavior of trypsin in the presence of alginate is due to conformational changes caused by interactions between the positively charged trypsin and the strongly negatively charged alginate.  相似文献   

3.
Summary In pot experiments with barley, mustard, leek, lettuce and spinach, and in a field experiment with 30 cultivars of barley uptakes of K, Mg, Ca, Na and N were studied at varying concentrations and activities of these cations in the soil solution.The sum of macro cations (K, Mg, Ca, Na) in meq per 100 g aerial plant parts were independent of the chemical composition of the soil solution, but dependent on plant species and on the N concentration in the plant.The ratios of mean net inflows of Mg, Ca and K into plants and corresponding cation activity ratios (aMg/aCa and ) in the soil solution were linearly related and highly correlated under conditions in which growth rate and/or rate of incorporation into new tissues constituted the rate determining step of cation uptake. Consequently, mean net inflows of K, Mg and Ca were independent of ion concentration and ion activity of K, Mg or Ca in the soil solution under the conditions of constant activity ratio.The results agree with the concept that plants have a finite cation uptake capacity, and that plants are in a equilibrium-like state with the activities of K, Mg, and Ca ions in the soil solution. The results indicate that both ratios and content of exchangeable cations should be considered in our evaluation of soil test data.  相似文献   

4.
The binding effect of divalent cation Cu(2+) on the gelation process with a coil-helix transition in Cu(2+)/gellan aqueous solutions has been successfully elucidated by EPR, CD, and viscoelasticity measurements. Generally, Na-type gellan gum in aqueous solution can make gel when accompanied by an intrinsic coil-helix formation induced by hydrogen bonding between chains without any additional cations at T(ch)(-)(in) ( approximately 29 degrees C) with cooling temperature. An extrinsic coil-helix transition, induced by additional divalent cations in advance of the intrinsic sol-gel transition of gellan gum, is separately detected by CD measurement. The extrinsic coil-helix transition temperatures T(ch)(-)(ex) (>47 degrees C), which increased with the Cu(2+) concentration added, were nearly identical to the sol-gel transition temperature, T(sg), determined by the viscoelasticity measurement. Judging from the molar ellipticity by CD measurement and quantitative analysis of EPR spectra, it was elucidated that the helix forming process via divalent cations is composed of two steps ascribed to the different origins, i.e., a chemical binding effect via Cu(2+) ions in the initial stage and hydrogen bonds subsequently. Finally, we propose the coil-helix and the sol-gel transition mechanism initiated by the binding effect with the divalent cation, in which the partial chelate formation can cause local formation of helices and junction zones in the vicinity of the chelates at the initial stage of the process and stabilize the helices and the junction zones. On the other hand, the stabilized helices and junction zones can induce further formation and further stabilization of the Cu(2+)-gellan chelates. The mutual stabilization promotes the formation of three-dimensional network structure at the higher temperature than the intrinsic temperature for network formation.  相似文献   

5.
The cation exchange properties of cell walls isolated from collard (Bassica oleracea var acephala D.C.) leaves were investigated. Cation sorption on cell walls was described by mass-action expressions of ion exchange, rather than by the traditional Donnan equilibrium. The mass-action expressions enable the selectivity of the wall for one cation over another to be determined unambiguously from ion exchange isotherms. We found that: (a) the cation composition of the wall varied as a function of the solution cation concentration, solution cation composition, and pH in a way predicted by mass action; (b) the affinity of the wall for divalent cations increased as the equivalent fraction of divalent cation on the wall increased, and as the concentration of divalent cations in solution increased; (c) the selectivity of the wall for any metal cation pair was not altered by the concentration of H+ in solution or on the wall; (d) H+ sorption on the wall may be treated as a cation exchange reaction making it possible to calculate the relative affinity of the wall for metal cation pairs from H+-metal (Me) titration curves; and (e) the relative affinity of the wall for the cations we studied was: H+ (K+ ≥ Ca2+) > Mg2+. A cation-exchange model including surface complexes is consistent with observed cation selectivity. We conclude that metal cations interact with the wall to minimize or eliminate long-range electrostatic interactions and suggest that this may be due to the formation of site-specific cation-wall surface complexes.  相似文献   

6.
Summary Miniature end-plate currents (MEPCs) and acetylcholine-induced current fluctuations were recorded in voltageclamped, glycerol-treated toad sartorius muscle fibers in control solution and in solutions with added divalent cations. In isosmotic solutions containing 20mm Ca or Mg, MEPCs had time constants of decay ( D ) which were about 30% slower than normal. In isotonic Ca solutions (Na-free), greater increases in both D and channel lifetime were seen; the null potential was –34 mV, and single-channel conductance decreased to approximately 5 pS. Zn or Ni, at concentrations of 0.1–5mm, were much more effective in increasing D than Ca or Mg, although they did not greatly affect channel conductance. The normal temperature and voltage sensitivity of was not significantly altered by any of the added divalent cations. Surface potential shifts arising from screening of membrane fixed charge by divalent cations cannot entirely explain the observed increases in , especially when taken together with changes in channel conductance.  相似文献   

7.
The interaction between pinacyanol chloride and sodium alginate or guluronate-rich alginate is found to effect profound changes in the visible absorbance and circular dichroism spectra. Two different types of aggregates are observed depending on the relative dye/alginate concentrations. With a dye/alginate ratio at 1:1, a complex is deduced based on an analysis of Job’s method and conductometric titrations. Another complex forms at 1:10 dye/alginate ratio and only in the presence of alginate or guluronate-rich alginate. The two aggregates are in dynamic equilibrium according to the presence of isosbestic points in the visible spectra. The effects of pH and divalent cations on the spectra are studied. The 1:10 complex is damaged by addition of hydrochloric acid and divalent cations; however, at low concentration of these agents the spectra indicate conversion of the complex into the 1:1 aggregate. Models for the two complexes are proposed taking into account the preference of guluronate binding sites for chelating ions.  相似文献   

8.
Light scattering measurements were used to assess the effectsof selected divalent and monovalent cations on alginate aggregationin vitro. Alginate, formed with either strontium, calcium orcobalt was partially dissolved with sodium. Calcium-alginatewas also partially dissolved with two other monovalent cations,lithium and potassium. Phosphate, when added to a solution containingcalcium-alginate, scrubbed algin-ate-bound calcium as well asfree calcium in solution. These findings provide an explanationfor an alternative approach for breaking down cell wall alginate. Key words: Alginate aggregates, monovalent cations, divalent cations, light scattering  相似文献   

9.
Interactions of divalent cations with phosphatidylserine bilayer membranes   总被引:3,自引:0,他引:3  
The interaction of divalent cations with a homologous series of diacylphosphatidylserines (diacyl-PS) has been studied by differential scanning calorimetry and X-ray diffraction. Hydrated di-C14-PS (DMPS) exhibits a gel leads to liquid-crystal bilayer transition at 39 degrees C (delta H = 7.2 kcal/mol of DMPS). With increasing MgCl2 concentration, progressive conversion to a phase exhibiting a high melting (98 degrees C), high enthalpy (delta H congruent to 11.0 kcal/mol of DMPS) transition is observed. Similar behavior is observed for DMPS with increasing CaCl2 concentration. In this case, the high-temperature transition of the Ca2+-DMPS complex occurs at approximately 155 degrees C and is immediately followed by an exothermic transition probably associated with PS decomposition. For di-C12-, di-C14-, di-C16- (DPPS), and di-C18-PS, the transition temperatures of the Ca2+-PS complexes are in the range 151-155 degrees C; only di-C10-PS exhibits a significantly lower value, 142 degrees C. A different pattern of behavior is exhibited by DPPS in the presence of Sr2+ or Ba2+, with transitions in the range 70-80 degrees C being observed. X-ray diffraction of the Ca2+-PS complexes at 20 degrees C provides evidence of structural homology. All Ca2+-PS complexes exhibit bilayer structures, the bilayer periodicity increasing linearly from 35.0 A for di-C10-PS to 52.5 A for di-C18-PS. Wide-angle X-ray diffraction data indicate that hydrocarbon chain "crystallization" occurs on Ca2+-PS complex formation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Danel F  Paetzel M  Strynadka NC  Page MG 《Biochemistry》2001,40(31):9412-9420
The factors influencing the oligomerization state of OXA-10 and OXA-14 class D beta-lactamases in solution have been investigated. Both enzymes were found to exist as an equilibrium mixture of a monomer and dimer, with a K(d) close to 40 microM. The dimeric form was stabilized by divalent metal cations. The ability of different metal ions to stabilize the dimer was in the following order: Cd(2+) > Cu(2+) > Zn(2+) > Co(2+) > Ni(2+) > Mn(2+) > Ca(2+) > Mg(2+). The apparent K(d)s describing the binding of Zn(2+) and Cd(2+) cations to the OXA-10 dimer were 7.8 and 5.7 microM, respectively. The metal ions had a profound effect on the thermal stability of the protein complex observed by differential scanning calorimetry. The enzyme showed a sharp transition with a T(m) of 58.7 degrees C in the absence of divalent cations, and an equally sharp transition with a T(m) of 78.4 degrees C in the presence of a saturating concentration of the divalent cation. The thermal transition observed at intermediate concentrations of divalent metal ions was rather broad and lies between these two extremes of temperature. The equilibrium between the monomer and dimer is dependent on pH, and the optimum for the formation of the dimer shifted from pH 6.0 in the absence of divalent cations to pH 7.5 at saturating concentrations. The beta-lactamase activity increased approximately 2-fold in the presence of saturating concentrations of zinc and cadmium ions. Reaction with beta-lactams caused a shift in the equilibrium toward monomer formation, and thus an apparent inactivation, but the divalent cations protected against this effect.  相似文献   

11.
The small-angle x-ray scattering (SAXS) technique has been applied to investigate solution and gel structures of alginate in the absence and presence of two divalent cations: Ca(II) and Cu(II). We have observed a broad maximum in the scattering curve, a characteristic of polyelectrolyte, for the purified alginate sample. The scattering maximum disappears in excess of added simple salt and shifts toward the higher angle region with increasing alginate concentration. Concentration dependence of the position and intensity of the maximum follows power law relations with exponents close to those predicted by theory. Data analysis shows an increase in correlation length ξ and cross-sectional diameter d0, of polymer chains upon gelation and suggests that a dimeric structure is adopted in the junction zone, consistent with the “egg-box” model previously proposed. In the Ca(II)–alginate system, the molecular parameters ξ and d0 are found to have good correlation with the macroscopic properties of gelation, such as gel point determined by viscosity measurements. However, for the Cu(II)–alginate system there is no clearly transitional behavior observed in ξ and d0, implying that the junction zone may be replaced by a more uniformly distributed site binding of Cu(II) ions to the carboxyl groups of both mannuronate and guluronate residues, in confirmation of previous 13C-nmr results. © 1995 John Wiley & Sons, Inc.  相似文献   

12.
Low concentrations of calcium and magnesium ions have been shown to influence microtubule assembly in vitro. To test whether these cations also have an effect on microtubules in vivo, specimens of Actinosphaerium eichhorni were exposed to different concentrations of Ca++ and Mg++ and the divalent cation ionophore A23187. Experimental degradation and reformation of axopodia were studied by light and electron microscopy. In the presence of Ca++ and the ionophore axopodia gradually shorten, the rate of shortening depending on the concentrations of Ca++ and the ionophore used. Retraction of axopodia was observed with a concentration of Ca++ as low as 0.01 mM. After transfer to a Ca++-free solution containing EGTA, axopodia re-extend; the initial length is reached after about 2 h. Likewise, reformation of axopodia of cold-treated organisms is observed only in solutions of EGTA or Mg++, whereas it is completely inhibited in a Ca++ solution. Electron microscope studies demonstrate degradation of the axonemal microtubular array in organisms treated with Ca++ and A23187. No alteration was observed in organisms treated with Mg++ or EGTA plus ionophore. The results suggest that, in the presence of the ionophore, formation of axonemal microtubules can be regulated by varying the Ca++ concentration in the medium. Since A23187 tends to equilibrate the concentrations of divalent cations between external medium and cell interior, it is likely that microtubule formation invivo is influenced by micromolar concentrations of Ca++. These concentrations are low enough to be of physiological significance for a role in the regulation of microtubule assembly in vivo.  相似文献   

13.
Thermodynamics of binding of divalent metal ions including Ca(2+) , Mg(2+) , Ba(2+) , and Cd(2+) to Ca-free horseradish peroxidase (HRP) enzyme was investigated using UV/VIS spectrophotometry and molecular-mechanic (MM) calculations. According to the obtained binding and thermodynamic parameters, trend of the relative binding affinities of these divalent metal cations was found to be: Ca(2+) >Cd(2+) >Mg(2+) >Ba(2+) . Binding analysis based on Scatchard and Hill models showed positive cooperativity effect between the two distal and proximal binding sites. Furthermore, kinetics of binding and reconstitution process was examined (using relaxation-time method) for binding of Ca(2+) (as the typical metal ion) to Ca-free HRP, which was found a second-order type having a two-step mechanism involving fast formation of Ca-free HRP/1?Ca(2+) as the kinetic intermediate in step 1. Finally, by means of MM calculations, the comparative stability energies were evaluated for binding of M(2+) metal cations to Ca-free HRP. Based on MM calculations, preferential binding of Ca(2+) ion was occurred on distal and proximal binding sites of Ca-free HRP associated with higher stability energies (E(total) ). Indeed, among the divalent metal ions, Ca(2+) with the highest binding affinity (maximum value of K(bin) and minimum value of ΔG$\rm{{_{bin}^{0}}}$), maximum value of exothermic binding enthalpy, and stability energies stabilizes the HRP structure along with an optimized catalytic activity.  相似文献   

14.
The helix–coil transition of poly-N5-(2-hydroxyethyl)L -glutamine (PHEG) in aqueous isopropanol was examined by means of optical rotatory dispersion (ORD) and intrinsic viscosity [η] measurements. The Zimm–Bragg parameters σ and s for the transition were determined from the ORD data as a function of molecular weight. It was found that the transition was characterized by a relatively low cooperativity; the values of \documentclass{article}\pagestyle{empty}\begin{document}$ \sqrt \sigma $\end{document} were in the range from 0.039 to 0.066, depending on the solvent composition. These σ values are much larger than those reported for other polypeptide–solvent systems. The transition enthalpy was negative and its magnitude varied with the solvent composition, with a maximum of 620 cal/mol at 40 wt% isopropanol. The curve of [η] versus helical content for a high-molecular-weight sample exhibited a very broad minimum, and this behavior was attributed to the low cooperativity of the transition.  相似文献   

15.
Lu L  Liu X  Dai L  Tong Z 《Biomacromolecules》2005,6(4):2150-2156
The sol-gel transition in aqueous alginate solutions induced by chelation with calcium cations from in situ release has been investigated with viscoelastic methods. Two alginate samples having different molecular weights (MW) were used over the concentration C(Alg) of 2 approximately 6 wt % with different mole ratio f of Ca2+ to the alginate repeat unit. The gel point f(gel) and relaxation critical exponent n were determined according to Winter's criterion, the later agrees well with that obtained from the relaxation modulus. The results indicate that the power law is valid for the dynamic relaxation at the gel point and the critical gel possesses the self-similarity in structure. With increasing C(Alg), f(gel) for the alginate with lower MW decreases dramatically and n is almost constant of about 0.71. In contrast, f(gel) for the higher MW alginate with is almost a constant and n decreases from 0.72 then levels off at 0.37 with increasing C(Alg), indicating that the concentration dependence of n varies with MW of alginate in the starting solution. The fractal dimension d(f) estimated from n suggests a denser structure in the critical gel of higher MW alginate. Either n or d(f) has been found to follow one curve for the two samples if plotted against the number of cross-link junctions per polymer chain, which is proportional to the alginate MW.  相似文献   

16.
Incorporation of strontium into plant calcium oxalate crystals   总被引:6,自引:0,他引:6  
Summary Lemna minor, which produces many calcium oxalate raphide crystals, was grown on media containing in addition to Ca, 200 M of one of the following divalent cations: Ba, Cd, Co, Mn or Sr. Energy dispersive X-ray analysis showed that only Sr was incorporated into the raphides at levels detectable by the analysis technique. Incorporation of Sr into other insoluble compounds, such as cell wall material, could not be detected. Plant species which form different crystal types in their leaves (Beta vulgaris, crystal sand;Arthrostema ciliatum, druse;Glycine canescens, prismatic) also incorporated Sr into their crystals when grown hydroponically on nutrient medium containing 200 M Sr.Axenic cultures ofL. minor were used to examine further the process of Sr incorporation into plant crystals. When grown on nutrient solution with 5 M Ca, increasing the Sr concentration resulted in increases of the amount of Sr incorporated into the raphide crystals. The ratio of Sr to Ca became greater as the Sr concentration was increased. This ratio change was due to both an increase in the amount of Sr incorporated and a decrease in the Ca incorporated. Analysis of the number of crystal idioblasts formed as a function of Sr concentration shows fewer idioblasts are produced as Sr became high. Competition with Ca and interference of Ca utilization by Sr is indicated.  相似文献   

17.
The ultrasonic absorption coefficient per wavelength (alpha lambda), as a function of temperature and frequency, was determined for large unilamellar vesicles (LUV) in the vicinity of their phospholipid phase transition temperature, using a double crystal acoustic interferometer. (The vesicles were composed of a 4:1 (w/w) mixture of dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylglycerol (DPPG). It has been found that alpha lambda reaches a maximum (alpha lambda)max at the phase transition temperature (tm) of the phospholipids in the bilayer, at an ultrasonic relaxation frequency of 2.1 MHz. Divalent cations (Ca2+ and Mg2+), added to LUV suspensions, shifted (alpha lambda)max to higher temperatures, dependent upon the concentration of divalent cation. It was also found that the shape of the alpha lambda versus t curve was significantly changed, representing changes in the Van't Hoff enthalpy of the transition, and therefore, the cooperative unit of the transition. This suggests that divalent cations interact individually with the negatively charged phospholipid headgroups of DPPG and with DPPC headgroups, thus decreasing the cooperative unit of the transition. The observed upward shift in tm suggests an interaction that increases the activation energy and, therefore, the temperature of the phase transition. However, alpha lambda as a function of frequency did not change with the addition of divalent cations and, thus, the relaxation time of the event responsible for the absorption of ultrasound is not changed by the addition of divalent cations.  相似文献   

18.
The sol–gel transition in aqueous alginate solutions of four alginate samples having different molecular weights (MW) and M/G ratios induced by cupric cations was monitored by rheology measurements. The gel point fgel and the relaxation critical exponent n were determined using the Winter’s criterion over the alginate concentration CAlg of 1–4 wt%. The scaling for the zero shear viscosity η0 before the gel point and the equilibrium modulus Ge after the gel point was established against the relative distance ε from the gel point at the concentration of CAlg = 1 wt%, giving the critical exponents k and z. The results indicated that fgel was almost independent of the alginate concentration and became higher for the sample with lower molecular weight. The critical exponent n decreased with the increase in CAlg for these four Cu-alginate samples and the fractal dimension df estimated from n suggested a denser structure in the critical gel with high G content. The critical exponent n evaluated from k and z agreed well with n determined from the Winter’s criterion.  相似文献   

19.
Divalent cations activate the lysophospholipase and transacylase reactions catalyzed by the same enzymes in the yeast Saccharomyces cerevisiae. The activation was observed at neutral pH, but not at the pH optimum of lysophospholipase/transacylase, near 3.5. Adenine nucleotides, especially AMP and ADP, are strong inhibitors of the same group of enzymes. Half maximal inhibition by AMP was found at a concentration of about 20 M. The inhibition by nucleotides in low concentrations is enhanced by divalent cations.  相似文献   

20.
Summary The conditions for formation of effective channels in alginate gels for growth of anchorage-dependent animal cells were examined. Many channels were formed in the gels by adding a low concentration solution of a high molecular weight polymer of alginate to a high concentration solution of divalent cations. It is recommended that an alginate with a high molecular weight and a low mannuronic acid/guluronic acid ratio be gelled by contact with strontium ions for the cultivation of immobilized anchorage-dependent cells because the gels produced have many channels and are mechanically strong.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号