共查询到20条相似文献,搜索用时 10 毫秒
1.
We propose a magnetic field exposure system (tetracoil) for in vitro and in vivo experiments, composed of two couples of circular coils satisfying a spherical constraint, whose characteristics are chosen in order to maximize the uniformity region of the magnetic field. Analytical calculations and computer simulations show that our system, as compared to the other most largely used magnetic field exposure systems, represents an optimal compromise in terms of field uniformity, accessibility for biological experiments, and ratio between overall dimension and uniformity region. 相似文献
2.
Magnetic field systems were added to existing electric field exposure apparatuses for exposing cell suspensions in vitro and small animals in vivo. Two horizontally oriented, rectangular coils, stacked one directly above the other, have opposite electric currents. This configuration minimizes leakage fields and allows sham- and field-exposure systems to be placed in the same room or incubator. For the in vitro system, copper plates formed the loop-pair, with up to 900 A supplied by a 180:1 transformer. Electric fields were supplied via electrodes at the ends of cell-culture tubes, eight of which can be accommodated by each exposure system. Two complete systems are situated in an incubator to allow simultaneous sham and field exposure up to 1 mT. For the in vivo system, four pairs of 0.8 x 2.7-m coils made of copper bus bar are employed. This arrangement is energized from the power grid via a 30:1 transformer; horizontal magnetic flux densities up to 1 mT can be generated. Pairs of electrode plates spaced 30.5 cm apart provide electric field exposure of up to 130 kV/m. Four systems with a capacity of 48 rats each are located in one room. For both the in vitro and in vivo systems, magnetic exposure fields are uniform to within +/- 2.5%, and sham levels are at least 2,500-fold lower than exposure levels. Potential confounding factors, such as heating and vibration, were examined and found to be minimal. 相似文献
3.
Transcranial magnetic stimulation or repetitive transcranial magnetic stimulation (TMS/rTMS) is currently being used in treatments of the central nervous system diseases, for instance, depressive states. The principles of localized magnetic stimulation are summarized and the risk and level of occupational field exposure of the therapeutic staff is analyzed with reference to ICNIRP guidelines for pulses below 100 kHz. Measurements and analysis of the occupational exposure to magnetic fields of the staff working with TMS/rTMS are presented. 相似文献
4.
5.
Larry Dlugosz Kathleen Belanger Pamela Johnson Michael B. Bracken 《Bioelectromagnetics》1994,15(6):593-597
Two types of dosimeters for measuring human exposure to 60 Hz magnetic fields were compared. Fifty adults wore the single-axis, wrist model AMEX (average magnetic field exposure system) and the triple axis, hip-pocket or pouch model AMEX-3D meters for 2 days. Ninety-six percent of the tests were accomplished without apparent dosimeter failure. The average root mean square magnetic flux density measurements with the AMEX3D (mean = 0.10 μT, S.D. = 0.07, range = 0.03 ? 0.31) were significantly higher than with the AMEX meter (mean = 0.07 μT, S.D. 0.05, range = 0.02 ? 0.27 μT) (t test, P < 0.01). There was substantial correlation between the AMEX and the AMEX-3D measurements (Pearson's correlation coefficient = 0.65, P < 0.01) but poor concordance (Intraclass correlation coefficient = ? 0.25). These results suggest that there is a wide variation in exposure to extremely low frequency magnetic fields in the population. Magnetic field measurements with the AMEX-3D are nearly always higher than with the AMEX dosimeters. Caution is advised when comparing magnetic field measurements made with different types of dosimeters. © 1994 Wiley-Liss, Inc. 相似文献
6.
We describe devices designed for magnetic field exposures in which field amplitude and gradients are controlled simultaneously. Dosimetry based on field continuation of high resolution magnetic field scans and numerical models is compared with validation measurements. The dosimetry variables we consider are based on the assumption that the biological or chemical system under study has field transducers that are spatially isotropic, so that absolute field amplitude and two gradient components fully describe local exposure. 相似文献
7.
It has been suggested that “double-wound” (bifilar) exposure coils are capable of producing a sham environment in which hum and vibration will be “similar” to the field-exposed condition. We found by direct measurements in a bifilar coil system that vibration amplitude in sham and exposed conditions differed by a factor of 50 when our test system was driven at B = 10 mT. We also found that the normal laboratory environment can include vibrations of an intensity similar to that produced by the exposure system, although not necessarily of similar spectral distribution. © 1996 Wiley-Liss, Inc. 相似文献
8.
We exposed rats to circularly polarized 50 Hz magnetic fields to determine if plasma testosterone concentration was affected. Previous experiments indicate that magnetic fields suppress the nighttime rise in melatonin, suggesting that other neuroendocrine changes might occur as well. Male Wistar-King rats were exposed almost continuously for 6 weeks to magnetic flux densities of 1,5, or 50 μT. Blood samples were obtained by decapitation at 12:00 h and 24:00 h. Plasma testosterone concentration showed a significant day-night difference, with a higher level at 12:00 h when studied in July and December, but the day-night difference disappeared when concentrations were studied in April. In three experiments, magnetic field exposure had no statistically significant effect on plasma testosterone levels compared with the sham-exposed groups. These findings indicate that 6 weeks of nearly continuous exposure to circularly polarized, 50 Hz magnetic fields did not change plasma testosterone concentration in rats. © 1994 Wiley-Liss, Inc. 相似文献
9.
Limits on exposures to extremely low-frequency electric fields, magnetic fields and contact currents, designated as voluntary guidelines or standards by several organizations worldwide, are specified so as to minimize the possibility of neural stimulation. The limits, which we refer to as guidelines, derive from "basic restrictions" either on electric fields or current density within tissue, or on avoidance of annoying or startling interactions that may be experienced with spark discharge or contact current. Further, the guidelines specify more conservative permissible doses and exposure levels for the general public than for exposures in controlled environments, which most typically involve occupational settings. In 2001 we published an update on guideline science. This paper covers more recent developments that are relevant to the formulation and implementation of the next generation of guidelines. The paper deals with neurostimulation thresholds and the relevance of magnetophosphenes to setting guideline levels; dosimetry associated with contact current benchmarked against basic restrictions; tissue and cellular dosimetry from spark discharge; assessment of exposures to high electric fields in realistic situations (e.g., line worker in a transmission tower); a simplified approach to magnetic field assessment in non-uniform magnetic fields; and a quantitative approach to sampling workplace exposure for assessing compliance. 相似文献
10.
Rossella Lodato Caterina Merla Rosanna Pinto Sergio Mancini Vanni Lopresto Giorgio A. Lovisolo 《Bioelectromagnetics》2013,34(3):211-219
In occupational environments, an increasing number of electromagnetic sources emitting complex magnetic field waveforms in the range of intermediate frequencies is present, requiring an accurate exposure risk assessment with both in vitro and in vivo experiments. In this article, an in vitro exposure system able to generate complex magnetic flux density B‐fields, reproducing signals from actual intermediate frequency sources such as magnetic resonance imaging (MRI) scanners, for instance, is developed and validated. The system consists of a magnetic field generation system and an exposure apparatus realized with a couple of square coils. A wide homogeneity (99.9%) volume of 210 × 210 × 110 mm3 was obtained within the coils, with the possibility of simultaneous exposure of a large number of standard Petri dishes. The system is able to process any numerical input sequence through a filtering technique aimed at compensating the coils' impedance effect. The B‐field, measured in proximity to a 1.5 T MRI bore during a typical examination, was excellently reproduced (cross‐correlation index of 0.99). Thus, it confirms the ability of the proposed setup to accurately simulate complex waveforms in the intermediate frequency band. Suitable field levels were also attained. Moreover, a dosimetry index based on the weighted‐peak method was evaluated considering the induced E‐field on a Petri dish exposed to the reproduced complex B‐field. The weighted‐peak index was equal to 0.028 for the induced E‐field, indicating an exposure level compliant with the basic restrictions of the International Commission on Non‐Ionizing Radiation Protection. Bioelectromagnetics 34:211–219, 2013. © 2012 Wiley Periodicals, Inc. 相似文献
11.
Tsukasa Shigemitsu Kazuma Takeshita Yoichi Shiga Masamichi Kato 《Bioelectromagnetics》1993,14(2):107-116
The design, construction, and results of evaluation of an animal-exposure system for the study of biological effects of extremely low frequency (ELF) magnetic fields are described. The system uses a square coil arrangement based on a modification of the Helmholtz coil. Due to the cubic configuration of this exposure system, horizontal and vertical magnetic fields as high as 0.3 mT can be generated. Circularly polarized magnetic fields can also be generated by changing the current and phase difference between two sets of coils. Tests were made for uniformity of the magnetic field, stray fields, sham-exposure ratio of stray field, changes of temperature and humidity, light intensity and distribution inside the animal-housing space, and noise due to air-conditioning equipment. Variation of the magnetic field was less than 2% inside the animal housing. The stray-field level inside the sham-exposure system is less than 2% of experimental exposure levels. The system can be used for simultaneous exposure of 48 rats (2 to a cage) or 96 mice (4 to a cage). © 1993 Wiley-Liss. Inc. 相似文献
12.
Transformer stations in apartment buildings may offer a possibility to conduct epidemiological studies that involve high exposure to extremely low frequency magnetic fields (MF), avoid selection bias and minimize confounding factors. To validate exposure assessment based on transformer stations, measurements were performed in thirty buildings in three Finnish cities. In each building, spot measurements in all rooms and a 24-h recording in a bedroom were performed in one apartment above a transformer station (AAT), in one first floor (FF) reference apartment, and one reference apartment on upper floors (UF). The apartment mean of spot measurements was 0.62 microT in the AATs, 0.21 microT in the FF and 0.11 microT in the UF reference apartments The 24-h apartment mean (estimated from the spot measurements and the bedroom 24-h recording) was 0.2 microT or higher in 29 (97%) AATs, in 7 (25%) FF and in 3 (10 %) UF reference apartments. The corresponding numbers for the 0.4 microT cut-off point were 19 (63%), 4 (14%), and 1 (3.3%). The higher MF level in the FF reference apartments indicates that they should not be considered "unexposed" in epidemiological studies. If such apartments are excluded, a transformer station under the floor predicts 24-h apartment mean MF with a sensitivity of 0.41 (or 0.58) and a specificity of 0.997 (or 0.97), depending on the MF cut-off point (0.2 or 0.4 microT). The results indicate that apartments can be reliably classified as high and low MF field categories based on the known location of transformer stations. 相似文献
13.
T Kobayashi K Shimizu G Matsumoto F Nishiyama H Nakamura S Ohta M Kato 《Bioelectromagnetics》1983,4(4):303-314
In most previous 50/60-Hz experiments, subjects were placed in a dielectric cage and the electric field was applied from outside the cage. Although the field outside the cage was kept uniform in space and constant in time, the field inside the cage undergoes undesirable temporal and spatial variations. We have designed an electric-field exposure system that overcomes these problems by having a metal cage constitute a part of the field generating electrodes. The uniformity along the diameter of the cages for mice and cats are more than 84.2% and 74.3%, respectively. 相似文献
14.
The evidence of magnetic field (MF) effects on melatonin production in humans is limited and inconsistent. Part of the inconsistencies might be explained by findings suggesting interaction with light in pineal responses to MFs. To test this hypothesis, we reanalyzed data from a previously published study on 6-hydroxy melatonin sulfate (6-OHMS) excretion in women occupationally exposed to extremely low-frequency MFs. Based on questionnaire data on exposure to light-at-night (LAN), and measurement-based MF data, the 60 women were classified to four groups: no MF, no LAN; MF, no LAN; no MF, LAN; MF, LAN. The lowest excretion of 6-OHMS was observed in the group of women who were exposed to both MF and LAN, and the differences between the four groups were significant (P < .0001). The result is based on low numbers, but supports the hypothesis that daytime occupational exposure to MF enhances the effects of nighttime light exposure on melatonin production. 相似文献
15.
R. de Seze C. Bouthet S. Tuffet P. Deschaux A. Caristan J. M. Moreau B. Veyret 《Bioelectromagnetics》1993,14(5):405-412
Natural Killer cell activity and antibody response were studied in Balb/c mice which were exposed in vivo to uniform pulsed magnetic fields (square-wave, 0.8 Hz, 120 mT maximum field strength, 0.1 s rise-time) for 5 days, 10 h/day. No effects were found in antibody response to sheep red blood cell (SRBC) immunization as assayed by counting the plaque-forming cells (PFC) in the spleens of animals on the sixth day. Following 5-day exposures, the activity of Natural Killer (NK) cells was measured in vitro by challenge with YAC-1 cells, in experiments in which mice were not immunized. An increase of NK cytotoxic activity due to exposure was found which depended on the age of the mice (effect observed above 12 weeks) and on the strength of the applied field (effect observed above 30 mT). © 1993 Wiley-Liss. Inc. 相似文献
16.
17.
James R. Gauger Tim R. Johnson James E. Stangel Robert C. Patterson Dean A. Williams J. Brooks Harder David L. McCormick 《Bioelectromagnetics》1999,20(1):13-23
A magnetic field exposure laboratory has been constructed to support National Toxicology Program studies for the evaluation of the toxicity and carcinogenicity of pure, linearly polarized, 60 Hz magnetic fields in rodents. This dual corridor, controlled access facility can support the simultaneous exposure of 1200 rats and 1200 mice. The facility contains fully redundant electrical and environmental control systems and was constructed using non‐metallic materials to maintain low levels of background (ambient), stray, and cross‐talk magnetic fields. The exposure module design provides for large uniform exposure volumes with good control of stray and cross‐talk fields, while allowing the use of roll‐around cage racks for simplified animal husbandry. Stray fields and cross‐talk have been further reduced by the inclusion of “steering coils” in each exposure module. Ambient 60 Hz fields (less cross‐talk) in all exposure rooms are <0.1 μT (1 mG), and static magnetic fields have been mapped extensively. Magnetic field strength, waveform, temperature, relative humidity, light intensity, noise level, vibration, and air flow in all animal holding areas are tightly regulated, and are monitored continuously during all studies. Field uniformity in the animal exposure volumes is better than ±10%; a systematic program of cage, rack, and room rotation controls for possible positional effects within the exposure system. Magnetic fields are turned on and off over multiple cycles to prevent the induction of transients associated with abrupt field level changes. Total harmonic distortion is <3% at all field strengths. The facility has been used to study magnetic field bioeffects in rodent model systems in experiments ranging in duration from 8 weeks to 2 years. Bioelectromagnetics 20:13–23, 1999. © 1999 Wiley‐Liss, Inc. 相似文献
18.
Y. Kinouchi T. Ushita K. Sato H. Miyamoto H. Yamaguchi Y. Yoshida 《Bioelectromagnetics》1984,5(4):399-410
A magnetic field generator constructed of rare earth-cobalt magnets is proposed for examining the biological effects of static magnetic fields (less than 1 T) on tissue cultures. Important quantities of a magnetic field from a biological-effects viewpoint, ie, its strength and the product of strength and gradient, are analysed. A practical procedure for designing the generator with optimum parameters is given. Also, parameters are determined which will yield a sinusoidal spatial field distribution. 相似文献
19.
P.K.C. Wang 《Bioelectromagnetics》1997,18(4):299-306
Extremely low-frequency (ELF) magnetic field exposure systems are usually subject to field disturbances induced by external sources. Here, a method for designing a feedback control system for cancelling the effect of external ELF magnetic field disturbances on the magnetic field over the exposure area is presented. This method was used in the design of a feedback-controlled exposure system for an inverted microscope stage. The effectiveness of the proposed feedback control system for disturbance rejection was verified experimentally and by means of computer simulation. Bioelectromagnetics 18:299–306, 1997. © 1997 Wiley-Liss, Inc. 相似文献
20.
Considerable interest has developed during the past ten years regarding the hypothesis that living organisms may respond to temporal variability in ELF magnetic fields to which they are exposed. Consequently, methods to measure various aspects of temporal variability are of interest. In this paper, five measures of temporal variability were examined: Arithmetic means (D(mean)) and rms values (D(rms)) of the first differences (i.e., absolute value of the difference between consecutive measurements) of magnetic field recordings; "standardized" forms of D(rms), denoted RCMS, obtained by dividing D(rms) by the standard deviations of the magnetic field data; and mean (F(mean)) and rms (F(rms)) values of fractional first differences. Theoretical investigations showed that D(mean) and D(rms) are virtually unaffected by long-term systematic trends (changes) in exposure. These measures thus provide rather specific measures of short-term temporal variability. This was also true to a lesser extent for F(mean) and F(rms). In contrast, the RCMS metric was affected by both short-term and long-term exposure variabilities. The metrics were also investigated using a data set consisting of twice-repeated two-calendar-day recordings of bedroom magnetic fields and personal exposures of 203 women residing in the western portion of Washington State. The predominant source of short-term temporal variability in magnetic field exposures arose from the movement of subjects through spatially varying magnetic fields. Spearman correlations between TWA bedroom magnetic fields or TWA personal exposures and five measures of temporal variability were relatively low. Weak to moderate levels of correlation were observed between temporal variability measured during two different sessions separated in time by 3 or 6 months. We conclude that first difference and fractional difference metrics provide specific and fairly independent measures of short-term temporal variability. The RCMS metric does not provide an easily interpreted measure of short-term or long-term temporal variability. This last result raises uncertainties about the interpretation of published studies that use the RCMS metric. 相似文献