首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An exposure facility for wide application to cell exposure to an ELF (extremely low frequency) magnetic field was developed. It is suitable for conducting experiments under a high-intensity, variable-frequency magnetic field, on the biological effects of the ELF magnetic field in an in vitro study. The exposure system consists of Merritt's 4-square coil as a basic component to generate the required magnetic field intensity of 10 mT at 50 Hz with spatial field uniformity less than +/-3% in a 400 mm cube. Concentric compensation coils are adopted to eliminate the effects of stray fields on sham (control) samples in the vicinity of the exposure system. The uniformity of the magnetic field in the exposure coil, the increase in the power supply capacity due to the existence of compensation coils, and the stray field estimation were investigated carefully. After fabricating the system, performance tests were carried out and all the characteristics were found to be satisfactory. In addition, the ideal configuration for a concentric coil system was proposed.  相似文献   

2.
For in vitro studies on the effect of extremely low frequency (ELF) magnetic field exposures in different laboratories, a programmable, high precision exposure system enabling blinded exposures has been developed and fully characterized. It is based on two shielded 4 coil systems that fit inside a commercial incubator. The volume of uniform B field exposure with 1% field tolerance is 50% larger compared to a Merrit 4 coil system with the same coil volume. The uncertainties for the applied magnetic fields have been specified to be less than 4%. The computer controlled apparatus allows signal waveforms that are composed of several harmonics, blind protocols, monitoring of exposure and environmental conditions and the application of B fields up to 3.6 mT root-mean-square amplitude. Sources of artifacts have been characterized: sham isolation >43 dB, parasitic incident E fields <1 V/m, no recognizable temperature differences in the media for exposure or sham state, and vibrations of the mechanically decoupled dish holder <0.1 m/s(2) (= 0.01 g), which is only twice the sham acceleration background level produced by the incubator and fan vibrations.  相似文献   

3.
The rationale for selection of an animal model, the experimental design, and the design and evaluation of an exposure system used in studies of 60-Hz magnetic fields are described. The studies were conceived to assay development of cancer and immune responsiveness in mice exposed to magnetic fields. The exposure system utilized a quadrupole-coil configuration to minimize stray magnetic fields. Four square-wound coil provided a uniform field within a volume occupied by 16 animal cages. The magnetic field had a mean flux density of 2 mT that varied less than +/- 10% within the volume occupied by animals' cages. The flux density decreased to less than 0.1 microT at a distance of 2 m from the coils. In each exposure system 32 animals could be housed in plastic cages.  相似文献   

4.
The design, construction, and results of evaluation of an animal-exposure system for the study of biological effects of extremely low frequency (ELF) magnetic fields are described. The system uses a square coil arrangement based on a modification of the Helmholtz coil. Due to the cubic configuration of this exposure system, horizontal and vertical magnetic fields as high as 0.3 mT can be generated. Circularly polarized magnetic fields can also be generated by changing the current and phase difference between two sets of coils. Tests were made for uniformity of the magnetic field, stray fields, sham-exposure ratio of stray field, changes of temperature and humidity, light intensity and distribution inside the animal-housing space, and noise due to air-conditioning equipment. Variation of the magnetic field was less than 2% inside the animal housing. The stray-field level inside the sham-exposure system is less than 2% of experimental exposure levels. The system can be used for simultaneous exposure of 48 rats (2 to a cage) or 96 mice (4 to a cage). © 1993 Wiley-Liss. Inc.  相似文献   

5.
Magnetic field systems were added to existing electric field exposure apparatuses for exposing cell suspensions in vitro and small animals in vivo. Two horizontally oriented, rectangular coils, stacked one directly above the other, have opposite electric currents. This configuration minimizes leakage fields and allows sham- and field-exposure systems to be placed in the same room or incubator. For the in vitro system, copper plates formed the loop-pair, with up to 900 A supplied by a 180:1 transformer. Electric fields were supplied via electrodes at the ends of cell-culture tubes, eight of which can be accommodated by each exposure system. Two complete systems are situated in an incubator to allow simultaneous sham and field exposure up to 1 mT. For the in vivo system, four pairs of 0.8 x 2.7-m coils made of copper bus bar are employed. This arrangement is energized from the power grid via a 30:1 transformer; horizontal magnetic flux densities up to 1 mT can be generated. Pairs of electrode plates spaced 30.5 cm apart provide electric field exposure of up to 130 kV/m. Four systems with a capacity of 48 rats each are located in one room. For both the in vitro and in vivo systems, magnetic exposure fields are uniform to within +/- 2.5%, and sham levels are at least 2,500-fold lower than exposure levels. Potential confounding factors, such as heating and vibration, were examined and found to be minimal.  相似文献   

6.
A magnetic field exposure laboratory has been constructed to support National Toxicology Program studies for the evaluation of the toxicity and carcinogenicity of pure, linearly polarized, 60 Hz magnetic fields in rodents. This dual corridor, controlled access facility can support the simultaneous exposure of 1200 rats and 1200 mice. The facility contains fully redundant electrical and environmental control systems and was constructed using non‐metallic materials to maintain low levels of background (ambient), stray, and cross‐talk magnetic fields. The exposure module design provides for large uniform exposure volumes with good control of stray and cross‐talk fields, while allowing the use of roll‐around cage racks for simplified animal husbandry. Stray fields and cross‐talk have been further reduced by the inclusion of “steering coils” in each exposure module. Ambient 60 Hz fields (less cross‐talk) in all exposure rooms are <0.1 μT (1 mG), and static magnetic fields have been mapped extensively. Magnetic field strength, waveform, temperature, relative humidity, light intensity, noise level, vibration, and air flow in all animal holding areas are tightly regulated, and are monitored continuously during all studies. Field uniformity in the animal exposure volumes is better than ±10%; a systematic program of cage, rack, and room rotation controls for possible positional effects within the exposure system. Magnetic fields are turned on and off over multiple cycles to prevent the induction of transients associated with abrupt field level changes. Total harmonic distortion is <3% at all field strengths. The facility has been used to study magnetic field bioeffects in rodent model systems in experiments ranging in duration from 8 weeks to 2 years. Bioelectromagnetics 20:13–23, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

7.
We propose a magnetic field exposure system (tetracoil) for in vitro and in vivo experiments, composed of two couples of circular coils satisfying a spherical constraint, whose characteristics are chosen in order to maximize the uniformity region of the magnetic field. Analytical calculations and computer simulations show that our system, as compared to the other most largely used magnetic field exposure systems, represents an optimal compromise in terms of field uniformity, accessibility for biological experiments, and ratio between overall dimension and uniformity region.  相似文献   

8.
A study was carried out in 1990 to guide the development of a protocol for assessing residential exposures of children to time-weighted-average (TWA) power-frequency magnetic fields. The principal goal of this dosimetry study was to determine whether area (i.e., spot and/or 24 h) measurements of power-frequency magnetic fields in the residences and in the schools and daycare centers of 29 children (4 months through 8 years of age) could be used to predict their measured personal 24-h exposures. TWA personal exposures, measured with AMEX-3D meters worn by subjects, were approximately log-normally distributed with both residential and nonresidential geometric means of 0.10 μT (1.0 mG). Between-subjects variability in residential personal exposure levels (geometric standard deviation of 2.4) was substantially greater than that observed for nonresidential personal exposure levels (1.4). The correlation between log-transformed residential and total personal exposure levels was 0.97. Time-weighted averages of the magnetic fields measured in children's bedrooms, family rooms, living rooms, and kitchens were highly correlated with residential personal exposure levels (r = 0.90). In general, magnetic field levels measured in schools and daycare centers attended by subjects were smaller and less variable than measured residential fields and were only weakly correlated with measured nonresidential personal exposures. The final measurement protocol, which will be used in a large US study examining the relationship between childhood leukemia and exposure to magnetic fields, contains the following elements: normal- and low-power spot magnetic field measurements in bedrooms occupied by subjects during the 5 years prior to the date of diagnosis for cases or the corresponding date for controls; spot measurements under normal and low power-usage conditions at the centers of the kitchen and the family room; 24-h magnetic-field recordings near subjects' beds; and wire coding using the Wertheimer-Leeper method. © 1994 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    9.
    A common mistake in biomagnetic experimentation is the assumption that Helmholtz coils provide uniform magnetic fields; this is true only for a limited volume at their center. Substantial improvements on this design have been made during the past 140 years with systems of three, four, and five coils. Numerical comparisons of the field uniformity generated by these designs are made here, along with a table of construction details and recommendations for their use in experiments in which large volumes of uniform intensity magnetic exposures are needed. Double-wrapping, or systems of bifilar windings, can also help control for the non-magnetic effects of the electric coils used in many experiments. In this design, each coil is wrapped in parallel with two separate, adjacent strands of copper wire, rather than the single strand used normally. If currents are flowing in antiparallel directions, the magnetic fields generated by each strand will cancel and yield virtually no external magnetic field, whereas parallel currents will yield an external field. Both cases will produce similar non-magnetic effects of ohmic heating, and simple measures can reduce the small vibration and electric field differences. Control experiments can then be designed such that the only major difference between treated and untreated groups is the presence or absence of the magnetic field. Double-wrapped coils also facilitate the use of truly double-blind protocol, as the same apparatus can be used either for experimental or control groups.  相似文献   

    10.
    In order to run a series of in vitro studies on the effect of extremely low-frequency magnetic fields on cell cultures, developing and characterizing an appropriate exposure system is required. The present design is based on a two-shielded Lee-Whiting coils system. The circular design was chosen because its axial symmetry allowed for both reducing simulation unknowns and measurement points during the characterization, and additionally made the machining of the parts easier. The system can generate magnetic flux densities (B fields) up to 1 mT root-mean-square amplitude (rms) with no active cooling system in the incubator, and up to 3 mTrms with it. The double-wrapped windings with twisted pairs allow for the use of each set of coils either as exposure or control with no detectable parasitic B field in the control. The artifacts have also been analyzed; the B field in the center of the sham control chamber is about 1 µTrms for a maximum of 3 mTrms in the exposure chamber, the parasitic incident electric fields are less than 1 V/m, the temperature difference between sham and exposure chamber is less than or equal to 0.2 °C, and the typical vibration difference between sham and exposure is less than 0.1 m/s2. © 2020 Bioelectromagnetics Society.  相似文献   

    11.
    The exposure from low-frequency electric and magnetic fields to sleeping subjects was analyzed at 343 sites. To establish the exposure due to electric fields, a new method was used to measure the current density on the body surface of the test subjects lying in their beds. The exposure due to magnetic fields was determined by short-term measurements of the magnetic flux density using induction coils. The exposures from the electric and magnetic fields were compared. The result was that, in general, the electric fields contribute much more to the total exposure than the magnetic fields.  相似文献   

    12.
    We have developed an intermediate frequency (IF) magnetic field exposure system for in vitro studies. Since there are no previous studies on exposure to heating-frequency magnetic fields generated from an induction heating (IH) cook top, there is a strong need for such an exposure system and for biological studies of IF magnetic fields. This system mainly consists of a magnetic-field-generating coil housed inside an incubator, inside which cultured cells can be exposed to magnetic field. Two systems were prepared to allow the experiment to be conducted in a double-blind manner. The level of the generated magnetic field was set to 532 microT rms in the exposure space, 23 kHz, 80 times the value in the International Commission on Non-ionizing Radiation Protection (ICNIRP) guidelines, with a spatial field uniformity better than 3.8%. The waveforms were nearly sinusoidal. It was also confirmed that the parasitic electric field was 157 V/m rms and the induced electric field was 1.9 V/m rms. The temperature was maintained at 36.5 +/- 0.5 degrees C for 2 h. Furthermore, leaked magnetic flux density was 0.7 microT rms or lower at extremely low frequency (ELF) and IF in the stopped system when the other system was being operated, and the environmental magnetic flux density was 0.1 microT rms or lower at the center of the coils. As a result, it was confirmed that this system could be successfully used to evaluate the biological effects of exposure to IF magnetic fields.  相似文献   

    13.
    Electromagnetic fields (EMFs) have been demonstrated to enhance mammalian peripheral nerve regeneration in vitro and in vivo. Using an EMF signal shown to enhance neurite outgrowth in vitro, we tested this field in vivo using three different amplitudes. The rat sciatic nerve was crushed. Whole body exposure was performed for 4 h/day for 5 days in a 96-turn solenoid coil controlled by a signal generator and power amplifier. The induced electric field at the target tissue consisted of a bipolar rectangular pulse, having 1 and 0.3 ms durations in each polarity, respectively. Pulse repetition rate was 2 per second. By varying the current, the coils produced fields consisting of sham (no current) and peak magnetic fields of 0.03 mT, 0.3 mT, and 3 mT, corresponding to peak induced electric fields of 1, 10, and 100 microV/cm, respectively, at the tissue target. Walking function was assessed over 43 days using video recording and measurement of the 1-5 toe-spread, using an imaging program. Comparing injured to uninjured hind limbs, mean responses were evaluated using a linear mixed statistical model. There was no difference found in recovery of the toe-spread function between any EMF treatments compared to sham.  相似文献   

    14.
    For more than a decade, Midwest Research Institute (MRI) has investigated the effects of exposure to 60 Hz electric and magnetic fields (EMF) on human physiology, performance, and biochemistry. This accumulated experience, new research directions, and limited resources made it important to design more comprehensive and operationally cost-effective exposure facilities. Here we describe the new, integrated laboratory exposure test facilities recently constructed at MRI and present data on relevant characteristics of the exposure systems. Concentric coil systems were developed to generate uniform magnetic fields within the three new exposure rooms, with rapid cancellation of the field to ambient levels in the rest of the laboratory. Control systems are fully automated, computer-based, and independent. These provide the operational flexibility needed to present fields of different magnitudes, frequencies, and polarization. The local geomagnetic field can be modulated and/or canceled, and both AC and DC fields can be presented in various combinations. Capabilities for conducting double-blind experiments with true active-sham exposure conditions were implemented using bifilar windings and applying current flow in the opposite direction for each wire in a pair. The new facilities provide a comprehensive capability for laboratory-based human research on the potential effects of exposure to AC and DC magnetic fields.  相似文献   

    15.
    16.
    The effects of static and 50 Hz magnetic fields on cytochrome-C oxidase activity were investigated in vitro by strictly controlled, simultaneous polarographic measurements of the enzyme's high- and low-affinity redox reaction. Cytochrome-C oxidase was isolated from beef heart. Control experiments were carried out in the ambient geomagnetic and 50 Hz magnetic fields at respective flux densities of 45 and 1.8 μT. The experimentally applied fields, static and time-varying, were generated by Helmholtz coils at flux densities between 50 μT and 100 mT. Exposures were timed to act either on the combined enzyme-substrate interchange or directly on the enzyme's electron and proton translo-cations. Significant changes as high as 90% of the overall cytochrome-C oxidase activity resulted during exposure (1) to a static magnetic field at 300 μT or 10 mT in the high-affinity range, and (2) to a 50 Hz magnetic field at 10 or 50 mT in the low-affinity range. No changes were observed at other flux densities. After exposure to a change-inducing, static or time-varying field, normal activity returned. © 1993 Wiley-Liss. Inc.  相似文献   

    17.
    Proposals to enhance the amount of radiation dose delivered to small tumors with radioimmunotherapy by constraining emitted electrons with very strong homogeneous static magnetic fields has renewed interest in the cellular effects of prolonged exposures to such fields. Past investigations have not studied the effects on tumor cell growth of lengthy exposures to very high magnetic fields. Three malignant human cell lines, HTB 63 (melanoma), HTB 77 IP3 (ovarian carcinoma), and CCL 86 (lymphoma; Raji cells), were exposed to a 7 Tesla uniform static magnetic field for 64 hours. Following exposure, the number of viable cells in each group was determined. In addition, multicycle flow cytometry was performed on all cell lines, and pulsed-field electrophoresis was performed solely on Raji cells to investigate changes in cell cycle patterns and the possibility of DNA fragmentation induced by the magnetic field. A 64 h exposure to the magnetic field produced a reduction in viable cell number in each of the three cell lines. Reductions of 19.04 ± 7.32%, 22.06 ± 6.19%, and 40.68 ± 8.31% were measured for the melanoma, ovarian carcinoma, and lymphoma cell lines, respectively, vs. control groups not exposed to the magnetic field. Multicycle flow cytometry revealed that the cell cycle was largely unaltered. Pulsed-field electrophoresis analysis revealed no increase in DNA breaks related to magnetic field exposure. In conclusion, prolonged exposure to a very strong magnetic field appeared to inhibit the growth of three human tumor cell lines in vitro. The mechanism underlying this effect has not, as yet, been identified, although alteration of cell growth cycle and gross fragmentation of DNA have been excluded as possible contributory factors. Future investigations of this phenomenon may have a significant impact on the future understanding and treatment of cancer. © 1996 Wiley-Liss, Inc.  相似文献   

    18.
    We describe the design, construction details, and performance characteristics of an exposure system designed to provide very well controlled extremely-low-frequency magnetic field exposures of in vitro samples. This system uses Helmholtz coils placed inside temperature-controlled mu-metal chambers to provide simultaneous ac and dc field exposures at any relative angle with minimal residual background field. The system has both exposed and sham-exposed chambers and is operated under computer control in such a way as to ensure blind exposure of samples.  相似文献   

    19.
    Several animal studies have been carried out at the Institut Armand Frappier (IAF) to determine whether chronic exposure to 60 Hz linearly polarized sinusoidal magnetic fields might increase the risk of cancer development of female Fisher rats. The magnetic field exposure facility was developed to meet the requirements of the study protocol for chronic exposure of large number of animals to field intensities of sham < 0.2 microT, 2 microT, 20 microT, 200 microT, and 2000 microT. At each exposure level, including sham, the animals are distributed in a group of four exposure units. Each exposure unit contains two exposure volumes having uniform distribution of magnetic fields for the animals, while the magnetic field external to the unit falls off rapidly due to the "figure-eight" coil topography used. A program of "shake down" tests, followed by verification and calibration of the exposure facility, was carried out prior to starting the animal experiments. Continuous monitoring of the magnetic field and other environmental parameters was an important part in the overall quality assurance program adopted.  相似文献   

    20.
    A system is described that uses an oscillating magnetic field to produce power-frequency electric fields with strengths in excess of those produced in an animal or human standing under a high-voltage electric-power transmission line. In contrast to other types of exposure systems capable of generating fields of this size, no electrodes are placed in the conducting growth media: the possibility of electrode contamination of the exposed suspension is thereby eliminated. Electric fields in the range 0.02–3.5 V/m can be produced in a cell culture with total harmonic distortions less than 1.5%. The magnetic field used to produce electric fields for exposure is largely confined within a closed ferromagnetic circuit, and experimental and control cells are exposed to leakage magnetic flux densities less than 5 μT. The temperatures of the experimental and control cell suspensions are held fixed within ±0.1°C by a water bath. Special chambers were developed to hold cell cultures during exposure and sham exposure. Chinese hamster ovary (CHO) cells incubated in these chambers grew for at least 48 h and had population doubling times of 16–17 h, approximately the same as for CHO cells grown under standard cell-culture conditions.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号