首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The surface of polyethylene slides nanocoated with silica and derivatized with long-chain poly(vinyl-N-hexylpyridinium) becomes permanently bactericidal: it kills 90–99% of (both airborne and waterborne) wild-type and antibiotic-resistant strains of the human pathogen Staphylococcus aureus. The material created was similarly lethal to strains expressing multidrug resistance pumps, the only known mechanism of resistance to cationic antiseptics.  相似文献   

2.
Immobilization of conidiospores of Phanerochaete chrysosporium by adhesion was investigated in static and flow conditions on flat and on porous supports. Reducing the electrostatic repulsion between the spores and the support by adsorption of polycations on the support allows a better adhesion efficiency and a higher density of adhering spores and does not affect germination and growth. Formation of spore aggregates either in the suspension (high ionic strength) or on the support tends to decrease the surface coverage and to give an inhomogeneous distribution of adhering spores due to detachment of aggregates. The density of spores adhering from a flowing suspension is lower as compared with static conditions and does not exceed about 2% of surface coverage; this is due to the influence of tangential forces, to the short contact time with the surface, and to perturbation of the hydrodynamics along the surface by the previously immobilized spores. Obtaining a high coverage of the support by immobilized spores requires the absence of a tangential motion. (c) 1995 John Wiley & Sons, Inc.  相似文献   

3.
Linear double-stranded DNA molecules interact with positively charged polyconidine molecules in aqueous salt solutions to yield liquid-crystalline dispersions (LCDs) with a mean particle diameter of ~6000 Å. The packing density of (DNA-polycation) complexes differs among LCD particles formed at different ionic strengths. X-ray data on the liquid-crystalline phases of (DNA-polyconidine) complexes formed under different conditions were compared with a phase diagram, reflecting polymorphism of liquid crystals of linear double-stranded DNA. It was shown that LCD was hexagonal at 0.15 M ≤ C NaCl < 0.4 M and cholesteric at 0.4 M ≤ C NaCl < 0.55 M. Cholesteric LCD displayed abnormal optical activity in the circular dichroism spectrum. A similar situation was observed with poly(2,5-ionene), another polycation differing in chemical structure from polyconidine. The results demonstrated structural polymorphism of (DNA-polycation) LCDs. It was assumed that the packing mode of (DNA-polycation) complexes in LCD particles can be regulated by changing NaCl concentration. The mechanism generating the cholesteric liquid-crystalline state of DNA in a narrow range of NaCl concentrations is discussed.  相似文献   

4.
Polycations are very useful in biotechnology. However, most existing polycations have high toxicity that significantly limits their clinical translation. We designed poly(ethylene argininylaspartate diglyceride) (PEAD) that is based on arginine, aspartic acid, glycerol, and ethylene glycol. A set of in vitro assays demonstrated that PEAD exhibited no cytotoxicity at 1 mg/mL, which is at least 100 times higher than the widely used polycation-polyethylenimine. Subcutaneous injection of 1 mg PEAD in rats did not cause an adverse response acutely or after 4 weeks. Zeta potential measurements revealed that PEAD has high affinity to biological polyanions such as DNA and hyaluronic acid. This polycation represents a new platform of biocompatible polycations that may lead to clinical innovations in gene therapy, controlled release, tissue engineering, biosensors, and medical devices.  相似文献   

5.
The synthesis of a new benzoxazinone derivative suitable to detect early infection of cultured cells with mycoplasmas is described. p-[beta-(7-dimethylamino 1,4-benzoxazin 2-one 3yl)-vinyl]- phenylpropenoic acid was coupled to kanamycin A, an aminoglycoside leading to a cationic fluorescent probe which fluoresces at 600 nm upon excitation at 490 nm. This fluorescent probe is shown to heavily label the glycocallix of all the mycoplasma strains tested which are found to be associated with contaminated cultured cells and to allow an easy and rapid detection of contamination by fluorescence microscopy and flow cytometry.  相似文献   

6.
AIM: The aim of the present work was to purify and characterize potential natural antibacterial compound from mango ginger (Curcuma amada Roxb.) rhizome. METHODS AND RESULTS: The mango ginger rhizome powder was sequentially extracted and screened for antibacterial activity by agar well diffusion method and broth dilution method. Nonpolar extracts of mango ginger showed high antibacterial activity against gram-positive bacteria with low minimum inhibitory concentration (60-180 ppm). Among five extracts of mango ginger, the chloroform extract demonstrated highest antibacterial activity. Antibacterial activity-guided fractionation of the chloroform extract by repeated silica gel column chromatography yielded pure compound. The purified antibacterial compound was analysed by UV, IR, LC-MS and 2D-HMQCT NMR spectra and was identified as a difurocumenonol, a novel compound not reported previously. CONCLUSIONS: Mango ginger extracts and isolated difurocumenonol demonstrated high antibacterial activity against gram-negative and gram-positive bacteria. SIGNIFICANCE AND IMPACT OF THE STUDY: A novel and natural antibacterial compound as well as mango ginger extracts can be used as food preservative to control the growth of food-borne pathogens and as a source of mango flavour.  相似文献   

7.
AIM: The flavonol galangin, an antimicrobial constituent of the traditional medicines propolis and Helichrysum aureonitens, is being assessed as part of an ongoing investigation into the antibacterial activity of flavonoids. The present study sought to establish whether galangin has any aggregatory effect on bacterial cells. METHODS AND RESULTS: In preparatory time-kill assays, 50 microg ml(-1) of galangin was found to reduce colony counts of c. 5 x 10(7) CFU ml(-1)Staphylococcus aureus NCTC 6571 by approximately 15 000-fold during 60 min of incubation. Subsequent light microscopy studies demonstrated significant increases in the number of large clusters of bacterial cells in populations treated with the flavonol. CONCLUSION: Data presented here show that galangin causes aggregation of bacterial cells. SIGNIFICANCE AND IMPACT OF THE STUDY: The finding that galangin causes bacterial cells to clump together may implicate the cytoplasmic membrane as a target site for this compound's activity. More importantly, this observation indicates that decreases in CFU numbers detected in time-kill and minimum bactericidal concentration (MBC) assays in previous investigations were at least partially attributable to this aggregatory effect. This raises the possibility that galangin is not genuinely bactericidal in action, and calls into question the suitability of time-kill and MBC assays for determining the nature of activity of naturally occurring flavonoids.  相似文献   

8.
Aims: To measure antibacterial activity of the semi-synthetic flavonoid 3-O-octanoyl-(–)-epicatechin and investigate the mechanism of action. Methods and Results: MICs determined by the broth microdilution method were 50 μg ml−1 for β-lactam sensitive and resistant Staphylococcus aureus, and 100 μg ml−1 for vancomycin sensitive and resistant enterococci. In time-kill studies, 100 μg ml−1 3-O-octanoyl-(–)-epicatechin reduced colony forming unit numbers of antibiotic sensitive and methicillin-resistant Staph. aureus below detectable levels within 120 min. Bacterial aggregation was not observed when cells exposed to 3-O-octanoyl-(–)-epicatechin were examined by light microscopy. It was also shown that 50 μg ml−1 3-O-octanoyl-(–)-epicatechin is capable of reducing colony forming unit numbers of high cell density Staph. aureus populations by 80-fold within 60 min incubation, and inducing leakage of 50% of their internal potassium within just 10 min. Conclusions: 3-O-Octanoyl-(–)-epicatechin is active against Gram-positive bacteria, has bactericidal activity against both antibiotic sensitive and resistant strains, and is likely to exert its primary antibacterial effect by damaging the cytoplasmic membrane. Significance and Impact of the Study: 3-O-Octanoyl-(–)-epicatechin has significant antibacterial activity and additional structural modification and/or formulation studies may allow this to be potentiated.  相似文献   

9.
  总被引:1,自引:0,他引:1  
  相似文献   

10.
    
BACKGROUND: Successful non-viral gene targeting requires vectors to meet two conflicting needs-strong binding to protect the genetic material during transit and weak binding at the target site to enable release. Responsive polymers could fulfil such requirements through the switching of states, e.g. the chain-extended coil to chain-collapsed globule phase transition that occurs at a lower critical solution temperature (LCST), in order to transport nucleic acid in one polymer state and release it in another. METHODS: The ability of new synthetic polycations based on poly(ethyleneimine) (PEI) with grafted neutral responsive poly(N-isopropylacrylamide) (PNIPAm) chains to condense DNA into particles with architectures varying according to graft polymer LCST was assessed using a combination of fluorescence spectroscopy, dynamic light scattering (DLS), zeta sizing, gel retardation and atomic force microscopy studies. Transfection assays were conducted under experimental conditions wherein the polymer components were able to cycle across their LCST. RESULTS: Two PEI-PNIPAm conjugate polymers with different LCSTs displayed coil-globule transitions when complexed to plasmid DNA, leading to variations in molecular architecture as shown by changes in emission maxima of an environment-sensitive fluorophore attached to the PNIPAm chains. Gel retardation assays demonstrated differences in electrophoretic mobilities of polymer-DNA complexes with temperatures below and above polymer LCSTs. Atomic force micrographs showed changes in the structures of polymer-DNA complexes for a polymer undergoing a phase transition around body temperature but not for the polymer with LCST outside this range. Transfection experiments in C2C12 and COS-7 cells demonstrated that the highest expression of transgene occurred in an assay that involved a 'cold-shock' below polymer LCST during transfection. CONCLUSIONS: Designed changes in thermoresponsive polycation vector configuration via temperature-induced phase transitions enhanced transgene expression. The results indicate that changes in molecular architecture induced by a carefully chosen stimulus during intracellular trafficking can be used to enhance gene delivery.  相似文献   

11.
    
Ocular drug delivery is constrained by anatomical and physiological barriers, necessitating innovative solutions for effective therapy. Natural polymers like hyaluronic acid, chitosan, and gelatin, alongside synthetic counterparts such as PLGA and PEG, have gained prominence for their biocompatibility and controlled release profiles. Recent strides in polymer conjugation strategies have enabled targeted delivery through ligand integration, facilitating tissue specificity and cellular uptake. This versatility accommodates combined drug delivery, addressing diverse anterior (e.g., glaucoma, dry eye) and posterior segment (e.g., macular degeneration, diabetic retinopathy) afflictions. The review encompasses an in-depth exploration of each natural and synthetic polymer, detailing their individual advantages and disadvantages for ocular drug delivery. By transcending ocular barriers and refining therapeutic precision, these innovations promise to reshape the management of anterior and posterior segment eye diseases.  相似文献   

12.
    
This study found that divalent cations induced the further condensation of partially condensed DNA within nonstochiometric polycation complexes. The addition of a few mmol of a divalent cation such as calcium reduced by half the inflection point at which DNA became fully condensed by poly-L-lysine (PLL) and a variety of other polycations. The effect on DNA condensation was initially observed using a new method, which is based on the concentration-dependent self-quenching of fluorescent moieties (e.g., rhodamine) covalently linked to the DNA backbone at relatively high densities. Additional analyses, which employed ultracentrifugation, dynamic light scattering, agarose gel electrophoresis, and atomic force microscopy, confirmed the effect of divalent cations. These results provide an additional accounting of the process by which divalent cations induce greater chromatin compaction that is based on the representation of chromatin fibers as a nonstoichiometric polyelectrolyte complex. They also offer a new approach to assemble nonviral vectors for gene therapy.  相似文献   

13.
    
Abstract

Materials such as polyvinyl chloride, polypropylene, and polyethylene are used for the construction of medical equipment, including inhalation equipment. Inhalation equipment, because of the wet conditions and good oxygenation, constitutes a perfect environment for microbial biofilm formation. Biofilms may affect microbiological cleanliness of inhalation facilities and installations and promote the development of pathogenic bacteria. Microbial biofilms can form even in saline environments. Therefore, the aim of this study was to evaluate the effect of medicinal brines on microbial biofilm formation on the surfaces of inhalation equipment. The study confirmed the high risk of biofilm formation on surfaces used in inhalation equipment. Isolated microorganisms belonged to potential pathogens of the respiratory system, which can pose a health threat to hospital patients. The introduction of additional contaminants increased the amount of bacterial biofilm. On the other hand, the presence of brines significantly limited the amount of biofilm, thus eliminating the risk of infections.  相似文献   

14.
Seminalplasmin (SPLN) is a 47-residue protein isolated from bovine seminal plasma having potent antimicrobial activity against a broad spectrum of microorganisms. SPLN, also known as caltrin, acts as a calcium transport regulator in bovine sperms. Analysis of the sequence of SPLN reveals a 27-residue stretch with the sequence SLSRYAKLANRLANPKLLETFLSKWIG more hydrophobic than the rest of the protein. It is demonstrated that a synthetic peptide corresponding to this 27-residue segment has antimicrobial activity comparable to that of SPLN. It does not exhibit hemolytic activity at concentrations where antibacterial activity is observed. Since P27 can be conveniently obtained in large amounts by chemical synthesis, it could serve not only as a starting compound to obtain peptides with improved antibacterial activity but also to understand the role of SPLN in reproductive physiology.  相似文献   

15.
The ability to prevent disease by immunization with subunit vaccines that incorporate specific epitopes was demonstrated by DiMarchi et al. (1), who used a synthetic peptide to protect cattle against foot-and-mouth disease. However, generation of antibody to peptide antigens is often difficult owing to the small molecular mass and limited chemical complexity. We tested the hypothesis that recombinant DNA and synthetic peptide techniques would make it possible to stimulate vigorous immune responses to specific epitopes of an outer membrane protein ofNeisseria gonorrhoeae. The MtrC AP1 sequence from the invariant mtrC gonococcal lipoprotein was genetically fused to maltose binding protein. The resultant fusion protein was used as the primary immunogen to stimulate MtrC AP1-specific antiserum. To enhance antibody production specific to MtrC AP1, boosting immunizations were performed with synthetic MtrC AP1 sequence contained in a multiple antigenic peptide system immunogen. The MtrC AP1-specific antiserum strongly recognized the MtrC protein on Western blots and appeared to bind native MtrC proteinin situ. The generation of antibody in this fashion provides the technology to produce antibody to defined epitopes of any protein, including those found in the gonococcal outer membrane. The ability of those antibodies to inhibit bacterial growth or to activate complement protein can then be tested.  相似文献   

16.
    
The infectivity of high‐titer, cell‐free HIV in culture media and human milk is rapidly reduced upon exposure to polyethylene slides painted with the linear hydrophobic polycation N,N‐dodecyl,methyl‐polyethylenimine (DMPEI). Accompanying viral p24 protein and free viral RNA analysis of solutions exposed to DMPEI‐coated surfaces suggests that virion attachment to the polycationic surface and its subsequent inactivation are the likely mechanism of this phenomenon. Biotechnol. Bioeng. 2013; 110: 2058–2062. © 2013 Wiley Periodicals, Inc.  相似文献   

17.
In the development of sugar-linked synthetic polymers as biodegradable polymers, it is imperative to know the variety of polymer structures formed by the reaction of a multi-functional sugar molecule with the functionalized synthetic polymer on which the sugar is to be anchored. Enzymes produced by the microorganisms causing the polymer to biodegrade can be sensitive to the particular type of sugar hydroxyl utilized (such as anomeric, primary, or secondary hydroxyl group) for getting anchored to the polymer. In this paper, we present synthesis of regio-specific ester derivatives of glucose with anhydride, functionalized polymers, i.e., ester formation specifically with the anomeric, primary or secondary hydroxyls of glucose. Characterization of these different esters groups was done using FTIR spectroscopy; each ester peak was further deconvoluted to yield its different components. For this purpose, we studied the reactions of d-glucose, 6-O-trityl glucose, methyl glucoside, 1,2-5,6-diisopropylidene-d-glucose, and 1,2,3,4-tetraacetyl-d-glucose with maleic anhydride functionalized polystyrene (PSMAH). In this study, the primary hydroxyl of glucose was found to be even more reactive than the anomeric hydroxyl. The peaks at 1716, 1725, and 1729–1737 cm−1 were assigned to the ester carbonyl of the anomeric, primary, and secondary hydroxyls of glucose (C2, C3, and C4), respectively. An attempt was made to quantify the extent to which the different polymer structures are formed in a particular reaction by taking ratios of non-variable reference peaks (polystyrene peak at 1493 cm−1) and variable peaks caused by the reaction (the residual anhydride carbonyl at 1780 cm−1).  相似文献   

18.
Generation and physicochemical properties of complexes formed by high-molecular thymus DNA and plasmid DNA with synthetic polymers of (dimethyl amino)ethyl methacrylate, (diethyl amino)ethyl methacrylate, and poly(vinyl amine) were studied in solutions of different ionic strength using low-gradient viscometry, electrophoresis, circular dichroism, spectrophotometry, and dynamic light scattering. The complexes were tested for toxicity with T98G cell cultures. Condensation of DNA was shown to occur when the ratio of charged groups in the polycations and DNA exceeded unity. This condensation manifested itself as an increase in the optical density of DNA solutions. Condensation-associated changes in the dimensions of DNA molecules were determined, and phase diagrams of DNA-polycation systems were analyzed in the presence of NaCl. MTT analysis revealed no toxicity of these complexes.  相似文献   

19.
    
A simple method was developed to prepare polymeric microbeads with antibacterial and antifungal properties. The microbeads of approximately spherical shape and narrow size distribution were prepared from a mixture of poly (4-vinyl pyridine) (P4VP) and poly (vinylidene fluoride) (PVDF) by a phase inversion technique and subsequently derivatized with alkyl bromides having 4-10 carbon atoms. The quaternization of the pyridine groups into pyridinium groups confers the surface with highly effective and long-lasting antibacterial and antifungal properties, as shown by the effect on Escherichia coli and Aspergillus niger. Upon contact with the N-alkylated beads, the bacteria and fungal spores are lysed and intracellular constituents leach out into the medium. The efficacy of the alkyl chains in disrupting the cell membrane was investigated. The stability of the functional group and microbiocidal effectiveness of the microbeads in repeated applications was also assessed.  相似文献   

20.
Bacterial cell surface layers (S-layers) which show a crystalline structure, defined pores, and a regular arrangement of functioal groups can be used for production of isoporous ultrafiltration membranes and as a matrix for immobilization of macromolecules. S-layer-carrying cell wall fragments from thermophilic Bacillaceae possess an extremely thin peptidoglycan-containing layer with pores larger than those in the S-layer lattice. Thus, they can directly be used for biotechnological applications, when an S-layer protein pool is stored in the rigid cell wall layer which is released during cell wall preparation, forming an inner S-layer. In the present study, a synthetic medium for Bacillus stearothermophilus PV 72 was developed by applying the pulse and shift technique with the aim to produce cell wall fragments with before-mentioned properties by varying the growth conditions in condtinuous culture. The organism was grown at 57 degrees C in a bioreactor with 1 L working volume equipped with exhaust gas analysis and connected to a PC-based process control system. Biomass concentration was 2.2 g/L out of 8 g/L glucose at a dilution rate of 0.3 h(-1), giving a biomass productivity of 0.66 g/L h. Although the organism was grown under different conditions, no change in peptidoglycan composition, extent of peptidoglycan crosslinking, and content of secondary cell wall polymers was observed. The amount of S-layer protein pool stored in the rigid cell wall layer and the autolytic activity depended mainly on the specific growth rate. Cell wall fragments with properties required for ultrafiltration membrane production could be produced by parameter settings in continuous culture. (c) 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号