首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetic analyses have suggested that the pyrimidine moiety of thiamine can be synthesized independently of the first enzyme of de novo purine synthesis, phosphoribosylpyrophosphate amidotransferase (PurF), in Salmonella typhimurium. To obtain biochemical evidence for and to further define this proposed synthesis, stable isotope labeling experiments were performed with two compounds, [2-13C]glycine and [13C]formate. These compounds are normally incorporated into thiamine pyrophosphate (TPP) via steps in the purine pathway subsequent to PurF. Gas chromatography-mass spectrometry analyses indicated that both of these compounds were incorporated into the pyrimidine moiety of TPP in a purF mutant. This result clearly demonstrated that the pyrimidine moiety of thiamine was being synthesized in the absence of the PurF enzyme and strongly suggested that this synthesis utilized subsequent enzymes of the purine pathway. These results were consistent with an alternative route to TPP that bypassed only the first enzyme in the purine pathway. Experiments quantitating cellular thiamine monophosphate (TMP) and TPP levels suggested that the alternative route to TPP did not function at the same capacity as the characterized pathway and determined that levels of TMP and TPP in the wild-type strain were significantly altered by the presence of purines in the medium.  相似文献   

2.
de Jong L  Meng Y  Dent J  Hekimi S 《Genetics》2004,168(2):845-854
Thiamine (vitamin B1) is required in the diet of animals, and thiamine deficiency leads to diseases such as beri-beri and the Wernicke-Korsakoff syndrome. Dietary thiamine (vitamin B1) consists mainly of thiamine pyrophosphate (TPP), which is transformed into thiamine by gastrointestinal phosphatases before absorption. It is believed that TPP itself cannot be transported across plasma membranes in significant amounts. We have identified a partial loss-of-function mutation in the Caenorhabditis elegans gene (tpk-1) that encodes thiamine pyrophosphokinase, which forms TPP from thiamine at the expense of ATP inside cells. The mutation slows physiological rhythms and the phenotype it produces can be rescued by TPP but not thiamine supplementation. tpk-1 functions cell nonautonomously, as the expression of wild-type tpk-1 in one tissue can rescue the function of other tissues that express only mutant tpk-1. These observations indicate that, in contrast to expectation from previous evidence, TPP can be transported across cell membranes. We also find that thiamine supplementation partially rescues the phenotype of partial loss-of-function mutants of the Na/K ATPase, providing genetic evidence that thiamine absorption, and/or redistribution from the absorbing cells, requires the full activity of this enzyme.  相似文献   

3.
4.
H Sanemori  Y Egi    T Kawasaki 《Journal of bacteriology》1976,126(3):1030-1036
The pathway of thiamine pyrophosphate (TPP) biosynthesis, which is formed either from exogeneously added thiamine or from the pyrimidine and thiazole moieties of thiamine, in Micrococcus denitrificans was investigated. The following indirect evidence shows that thiamine pyrophosphokinase (EC 2.7.6.2) catalyzes the synthesis of TPP from thiamine: (i) [35S]thiamine incubated with cells of this microorganism was detected in the form of [35S]thiamine; (ii) thiamine gave a much faster rate of TPP synthesis than thiamine monophosphate (TMP) when determined with the extracts; and (iii) a partially purified preparation of the extracts can use thiamine, but not TMP, as the substrate. The activities of the four enzymes involved in TMP synthesis from pyrimidine and thiazole moieties of thiamine were detected in the extracts of M. denitrificans. The extracts contained a high activity of the phosphatase, probably specific for TMP. After M. denitrificans cells were grown on a minimal medium containing 3 mM adenosine, which causes derepression of de novo thiamine biosynthesis in Escherichia coli, the activities of the four enzymes involved with TMP synthesis, the TMP phosphatase, and the thiamine pyrophosphokinase were enhanced two- to threefold. These results indicate that TPP is synthesized directly from thiamine without forming TMP as an intermediate and that de novo synthesis of TPP from the pyrimidine and thiazole moieties involves the formation of TMP, followed by hydrolysis to thiamine, which is then converted to TPP directly. Thus, the pathway of TPP synthesis from TMP synthesized de novo in M. denitrificans is different from that found in E. coli, in which TMP synthesized de novo is converted directly to TPP without producing thiamine.  相似文献   

5.
Thiamine pyrophosphate is an essential cofactor that is synthesized de novo in Salmonella enterica serovar Typhimurium and other bacteria. In addition to genes encoding enzymes in the biosynthetic pathway, mutations in other metabolic loci have been shown to prevent thiamine synthesis. The latter loci identify the integration of the thiamine biosynthetic pathway with other metabolic processes and can be uncovered when thiamine biosynthesis is challenged. Mutations in gshA, encoding gamma-L-glutamyl-L-cysteine synthetase, prevent the synthesis of glutathione, the major free thiol in the cell, and are shown here to result in a thiamine auxotrophy in some of the strains tested, including S. enterica LT2. Phenotypic characterization of the gshA mutants indicated they were similar enough to apbC and apbE mutants to warrant the definition of a class of mutants unified by (i) a requirement for both the hydroxymethyl pyrimidine (HMP) and thiazole (THZ) moiety of thiamine, (ii) the ability of L-tryosine to satisfy the THZ requirement, (iii) suppression of the thiamine requirement by anaerobic growth, and (iv) suppression by a second-site mutation at a single locus. Genetic data indicated that a defective ThiH generates the THZ requirement in these strains, and we suggest this defect is due to a reduced ability to repair a critical [Fe-S] cluster.  相似文献   

6.
In Salmonella enterica serovar Typhimurium, purine nucleotides and thiamine are synthesized by a branched pathway. The last known common intermediate, aminoimidazole ribonucleotide (AIR), is formed from formylglycinamidine ribonucleotide (FGAM) and ATP by AIR synthetase, encoded by the purI gene in S. enterica. Reduced flux through the first five steps of de novo purine synthesis results in a requirement for purines but not necessarily thiamine. To examine the relationship between the purine and thiamine biosynthetic pathways, purI mutants were made (J. L. Zilles and D. M. Downs, Genetics 143:37-44, 1996). Unexpectedly, some mutant purI alleles (R35C/E57G and K31N/A50G/L218R) allowed growth on minimal medium but resulted in thiamine auxotrophy when exogenous purines were supplied. To explain the biochemical basis for this phenotype, the R35C/E57G mutant PurI protein was purified and characterized kinetically. The K(m) of the mutant enzyme for FGAM was unchanged relative to the wild-type enzyme, but the V(max) was decreased 2.5-fold. The K(m) for ATP of the mutant enzyme was 13-fold increased. Genetic analysis determined that reduced flux through the purine pathway prevented PurI activity in the mutant strain, and purR null mutations suppressed this defect. The data are consistent with the hypothesis that an increased FGAM concentration has the ability to compensate for the lower affinity of the mutant PurI protein for ATP.  相似文献   

7.
Hypokalemic periodic paralysis (hypoKPP) is characterized by episodic flaccid paralysis of muscle and acute hypokalemia during attacks. Familial forms of hypoKPP are predominantly caused by mutations of either voltage-gated Ca(2+) or Na(+) channels. The pathogenic gene mutation in non-familial hypoKPP, consisting mainly of thyrotoxic periodic paralysis (TPP) and sporadic periodic paralysis (SPP), is largely unknown. Recently, mutations in KCNJ18, which encodes a skeletal muscle-specific inwardly rectifying K(+) channel Kir2.6, were reported in some TPP patients. Whether mutations of Kir2.6 occur in other patients with non-familial hypoKPP and how mutations of the channel predispose patients to paralysis are unknown. Here, we report one conserved heterozygous mutation in KCNJ18 in two TPP patients and two separate heterozygous mutations in two SPP patients. These mutations result in V168M, R43C, and A200P amino acid substitution of Kir2.6, respectively. Compared with the wild type channel, whole-cell currents of R43C and V168M mutants were reduced by ~78 and 43%, respectively. No current was detected for the A200P mutant. Single channel conductance and open probability were reduced for R43C and V168M, respectively. Biotinylation assays showed reduced cell surface abundance for R43C and A200P. All three mutants exerted dominant negative inhibition on wild type Kir2.6 as well as wild type Kir2.1, another Kir channel expressed in the skeletal muscle. Thus, mutations of Kir2.6 are associated with SPP as well as TPP. We suggest that decreased outward K(+) current from hypofunction of Kir2.6 predisposes the sarcolemma to hypokalemia-induced paradoxical depolarization during attacks, which in turn leads to Na(+) channel inactivation and inexcitability of muscles.  相似文献   

8.
In Salmonella typhimurium, the synthesis of the pyrimidine moiety of thiamine can occur by utilization of the first five steps in de novo purine biosynthesis or independently of the pur genes through the alternative pyrimidine biosynthetic, or APB, pathway (D. M. Downs, J. Bacteriol. 174:1515-1521, 1992). We have isolated the first mutations defective in the APB pathway. These mutations define the apbA locus and map at 10.5 min on the S. typhimurium chromosome. We have cloned and sequenced the apbA gene and found it to encode a 32-kDa polypeptide whose sequence predicts an NAD/flavin adenine dinucleotide-binding pocket in the protein. The phenotypes of apbA mutants suggest that, under some conditions, the APB pathway is the sole source of the pyrimidine moiety of thiamine in wild-type S. typhimurium, and furthermore, the pur genetic background of the strain influences whether this pathway can function under aerobic and/or anaerobic growth conditions.  相似文献   

9.
J. L. Zilles  D. M. Downs 《Genetics》1996,144(3):883-892
Thiamine is thought to be synthesized by two alternative pathways, one involving the first four enzymes of the purine pathway and a second that can function independently of the purine pathway. Insertion mutations in purG and purI prevent thiamine synthesis through the alternative pyrimidine biosynthetic (APB) pathway under aerobic but not anaerobic growth conditions. In contrast, point mutations in purG and purI caused one of three distinct phenotypes: Pur(-) Apb(-), Pur(-) Apb(+), or Pur(+) Apb(-). Analysis of these three mutant classes demonstrated two genetically separable functions for PurG and PurI in thiamine synthesis. In addition to their known enzymatic role in de novo purine synthesis, we propose that PurG and PurI play a novel, possibly nonenzymatic role in the APB pathway. Suppression analysis of Pur(-) Apb(-) mutants identified two new genetic loci involved in the APB pathway, apbB and apbD. We show here that mutations in apbB and apbD cause distinct, allele-specific suppression of the thiamine requirement of purG and purI mutants. Our results suggest that PurG and PurI and one or more components of the APB pathway may function as a complex needed for aerobic function of the APB pathway.  相似文献   

10.
We genetically characterized the Pseudomonas putida mutS gene and found that it encodes a smaller MutS protein than do the genes of other bacteria. This gene is able to function in the mutS mutants of Escherichia coli and Bacillus subtilis. A P. putida mutS mutant has a mutation frequency 1,000-fold greater than that of the wild-type strain.  相似文献   

11.
The disruption of ung, the unique uracil-DNA-glycosylase-encoding gene in Bacillus subtilis, slightly increased the spontaneous mutation frequency to rifampin resistance (Rif(r)), suggesting that additional repair pathways counteract the mutagenic effects of uracil in this microorganism. An alternative excision repair pathway is involved in this process, as the loss of YwqL, a putative endonuclease V homolog, significantly increased the mutation frequency of the ung null mutant, suggesting that Ung and YwqL both reduce the mutagenic effects of base deamination. Consistent with this notion, sodium bisulfite (SB) increased the Rif(r) mutation frequency of the single ung and double ung ywqL strains, and the absence of Ung and/or YwqL decreased the ability of B. subtilis to eliminate uracil from DNA. Interestingly, the Rif(r) mutation frequency of single ung and mutSL (mismatch repair [MMR] system) mutants was dramatically increased in a ung knockout strain that was also deficient in MutSL, suggesting that the MMR pathway also counteracts the mutagenic effects of uracil. Since the mutation frequency of the ung mutSL strain was significantly increased by SB, in addition to Ung, the mutagenic effects promoted by base deamination in growing B. subtilis cells are prevented not only by YwqL but also by MMR. Importantly, in nondividing cells of B. subtilis, the accumulations of mutations in three chromosomal alleles were significantly diminished following the disruption of ung and ywqL. Thus, under conditions of nutritional stress, the processing of deaminated bases in B. subtilis may normally occur in an error-prone manner to promote adaptive mutagenesis.  相似文献   

12.
B Weiss  L Wang 《Journal of bacteriology》1994,176(8):2194-2199
dcd (dCTP deaminase) mutants of Escherichia coli were reported not to require thymidine for growth even though most of the thymidylate that is synthesized de novo arises from cytosine nucleotides through a pathway involving dCTP deaminase. We found, however, that the fresh introduction of dcd mutations into many strains of E. coli produced a requirement for thymidine for optimum aerobic growth, but the mutants readily reverted to prototrophy via mutations in other genes. One such mutation was in deoA, the gene for deoxyuridine phosphorylase. However, a dcd deo mutant became thymidine dependent once again if a cdd mutation (affecting deoxycytidine deaminase) were introduced. The results indicate that dcd mutants utilize an alternative pathway of TMP synthesis in which deoxycytidine and deoxyuridine are intermediates. A cdd mutation blocks the pathway by preventing the conversion of deoxycytidine to deoxyuridine, whereas a deoA mutation enhances it by sparing deoxyuridine from catabolism. The deoxycytidine must arise from dCTP or dCDP via unknown steps. It is not known to what extent this pathway is utilized in wild-type cells, which, unlike the dcd mutants, do not accumulate dCTP.  相似文献   

13.
P. McGraw  S. A. Henry 《Genetics》1989,122(2):317-330
We report the isolation of two new opi3 mutants by EMS mutagenesis, and construction of an insertion allele in vitro using the cloned gene. We have demonstrated that the opi3 mutations cause a deficiency in the two terminal phospholipid N-methyltransferase (PLMT) activities required for the de novo synthesis of PC (phosphatidylcholine). The opi3 mutants, under certain growth conditions, produce membrane virtually devoid of PC although, surprisingly, none of the mutants displays a strict auxotrophic requirement for choline. Although the opi3 mutants grow without supplements, we have shown that the atypical membrane affects the ability of the mutant strains to initiate log phase growth and to sustain viability at stationary phase. The commencement of log phase growth is enhanced by addition of choline or to a lesser extent DME (dimethylethanolamine), and retarded by addition of MME (monomethylethanolamine). The mutant cells lose viability at the stationary phase of the cell cycle in the absence of DME or choline, and are also temperature sensitive for growth at 37 degrees especially in media containing MME. These growth defects have been correlated to the presence of specific phospholipids in the membrane. The opi3 growth defects are suppressed by an unusual mutation in the phospholipid methylation pathway that perturbs the N-methyltransferase (PEMT) activity immediately preceding the reactions affected by the opi3 lesion. We believe this mutation, cho2-S, alters the substrate specificity of the PEMT. A secondary effect of opi3 mutations is disruption of the cross pathway regulation of the synthesis of the PI (phosphatidylinositol) precursor inositol. Synthesis of inositol is controlled through regulation of the INO1 gene which encodes inositol-1-phosphate synthase. This highly regulated gene is expressed constitutively in opi3 mutants. We have used the opi3 strains to demonstrate that synthesis of either PC or PD (phosphatidyldimethylethanolamine) will restore normal regulation of the INO1 gene.  相似文献   

14.
The gram-negative, purple nonsulfur, facultative photosynthetic bacterium Rhodobacter capsulatus is a widely used model organism and has well-developed molecular genetics. In particular, interposon mutagenesis using selectable gene cartridges is frequently employed for construction of a variety of chromosomal knockout mutants. However, as the gene cartridges are often derived from antibiotic resistance-conferring genes, their numbers are limited, which restricts the construction of multiple knockout mutants. In this report, sacB-5-fluoroorotic acid (5FOA)--pyrE-based bidirectional selection that facilitates construction of unmarked chromosomal knockout mutations is described. The R. capsulatus pyrE gene encoding orotate phosphoribosyl transferase, a key enzyme of the de novo pyrimidine nucleotide biosynthesis pathway, was used as an interposon in a genetic background that is auxotrophic for uracil (Ura-) and hence resistant to 5FOA (5FOA(r)). Although Ura+ selection readily yielded chromosomal allele replacements via homologous recombination, selection for 5FOA(r) to replace pyrE with unmarked alleles was inefficient. To improve the latter step, 5FOA(r) selection was combined with sucrose tolerance selection using a suicide plasmid carrying the Bacillus subtilis sacB gene encoding levansucrase that induces lethality upon exposure to 5% (wt/vol) sucrose in the growth medium. Sucrose-tolerant, 5FOA(r) colonies that were obtained carried chromosomal unmarked mutant alleles of the target gene via double crossovers between the resident pyrE-marked and incoming unmarked alleles. The effectiveness of this double selection was proven by seeking insertion and deletion alleles of helC involved in R. capsulatus cytochrome c biogenesis, which illustrated the usefulness of this system as a genetic means for facile construction of R. capsulatus unmarked chromosomal mutants.  相似文献   

15.
The first five steps in de novo purine biosynthesis are involved in the formation of the 4-amino-5-hydroxymethyl-2-methyl pyrimidine (HMP) moiety of thiamine. We show here that the first enzyme in de novo purine biosynthesis, PurF, is required for thiamine synthesis during aerobic growth on some but not other carbon sources. We show that PurF-independent thiamine synthesis depends on the recently described alternative pyrimidine biosynthetic (APB) pathway. Null mutations in zwf (encoding glucose-6-P dehydogenase), gnd (encoding gluconate-6-P dehydrogenase), purE (encoding aminoimidazole ribo-nucleotide carboxylase), and purR (encoding a regulator of gene expression) were found to affect the function of the APB pathway. A model is presented to account for the involvement of these gene products in thiamine biosynthesis via the APB pathway. Results presented herein demonstrate that function of the APB pathway can be prevented either by blocking intermediate formation or by diverting intermediate(s) from the pathway. Strong genetic evidence supports the conclusion that aminoimidazole ribotide (AIR) is an intermediate in the APB pathway.  相似文献   

16.
The pathway for de novo vitamin B(6) biosynthesis has been characterized in Escherichia coli, however plants, fungi, archaebacteria, and most bacteria utilize an alternative pathway. Two unique genes of the alternative pathway, PDX1 and PDX2, have been described. PDX2 encodes a glutaminase, however the enzymatic function of the product encoded by PDX1 is not known. We conducted reciprocal transformation experiments to determine if there was functional homology between the E. coli pdxA and pdxJ genes and PDX1 of Cercospora nicotianae. Although expression of pdxJ and pdxA in C. nicotianae pdx1 mutants, either separately or together, failed to complement the pyridoxine mutation in this fungus, expression of PDX1 restored pyridoxine prototrophy to the E. coli pdxJ mutant. Expression of PDX1 in the E. coli pdxA mutant restored very limited ability to grow on medium lacking pyridoxine. We conclude that the PDX1 gene of the alternative B(6) pathway encodes a protein responsible for synthesis of the pyridoxine ring.  相似文献   

17.
The initiation of fermentation in the yeast Saccharomyces cerevisiae is associated with a rapid drop in stress resistance. This is disadvantageous for several biotechnological applications, e.g. the preparation of freeze doughs. We have isolated mutants in a laboratory strain which are deficient in fermentation-induced loss of stress resistance ('fil' mutants) using a heat shock selection protocol. We show that the fil1 mutant contains a mutation in the CYR1 gene which encodes adenylate cyclase. It causes a change at position 1682 of glutamate into lysine and results in a tenfold drop in adenylate cyclase activity. The fil1 mutant displays a reduction in the glucose-induced cAMP increase, trehalase activation and loss of heat resistance. Interestingly, the fil1 mutant shows the same growth and fermentation rate as the wild type strain, as opposed to other mutants with reduced activity of the cAMP pathway. Introduction of the fil1 mutation in the vigorous Y55 strain and cultivation of the mutant under pilot scale conditions resulted in a yeast that displayed a higher freeze and drought resistance during active fermentation compared to the wild type Y55 strain. These results show that high stress resistance and high fermentation activity are compatible biological properties. Isolation of fil-type mutations appears a promising avenue for development of industrial yeast strains with improved stress resistance during active fermentation.  相似文献   

18.
19.
20.
Genetic studies were undertaken on 14 pleiotropic negative sporulation mutants. These mutants (spoA) which are blocked early in the sporulation process were found to map near the terminus of the Bacillus subtilis chromosome in a region enriched in genes involved in spore formation. Two- and three-factor crosses by transduction and transformation led to the conclusion that the pleiotropic spoA mutations formed a linked cluster. The genetic distance across the cluster calculated from transformation data was compatible with the mutant sites defining a single gene. Suppressor studies revealed that either a nonsense or missense mutation in the spoA locus generated a pleiotropic negative phenotype. It was concluded that the locus codes for a protein, and the absence of this protein is responsible for the pleiotropic phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号