首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It was previously found that transgenic mice that overexpress the calpain inhibitor calpastatin (CsTg) have an approximately 3-fold increase in GLUT4 protein in their skeletal muscles. Despite the increase in GLUT4, which appears to be due to inhibition of its proteolysis by calpain, insulin-stimulated glucose transport is not increased in CsTg muscles. PKB (Akt) protein level is reduced approximately 60% in CsTg muscles, suggesting a possible mechanism for the relative insulin resistance. Muscle contractions stimulate glucose transport by a mechanism that is independent of insulin signaling. The purpose of this study was to test the hypothesis that the threefold increase in GLUT4 in CsTg would result in a large increase in contraction-stimulated glucose transport. CAMKII and AMPK mediate steps in the contraction-stimulated pathway. The protein levels of AMPK and CAMKII were increased three- to fourfold in CsTg muscles, suggesting that these proteins are also calpain substrates. Despite the large increases in GLUT4, AMPK, and CAMKII, contraction-stimulated GLUT4 translocation and glucose transport were not increased above wild-type values. These findings suggest that inhibition of calpain results in impairment of a step in the GLUT4 translocation process downstream of the insulin- and contraction-signaling pathways. They also provide evidence that CAMKII and AMPK are calpain substrates.  相似文献   

2.
Contraction and insulin promote glucose uptake in skeletal muscle through GLUT4 translocation to cell surface membranes. Although the signaling mechanisms leading to GLUT4 translocation have been extensively studied in muscle, the cellular transport machinery is poorly understood. Myo1c is an actin-based motor protein implicated in GLUT4 translocation in adipocytes; however, the expression profile and role of Myo1c in skeletal muscle have not been investigated. Myo1c protein abundance was higher in more oxidative skeletal muscles and heart. Voluntary wheel exercise (4 weeks, 8.2 ± 0.8 km/day), which increased the oxidative profile of the triceps muscle, significantly increased Myo1c protein levels by ~2-fold versus sedentary controls. In contrast, high fat feeding (9 weeks, 60% fat) significantly reduced Myo1c by 17% in tibialis anterior muscle. To study Myo1c regulation of glucose uptake, we expressed wild-type Myo1c or Myo1c mutated at the ATPase catalytic site (K111A-Myo1c) in mouse tibialis anterior muscles in vivo and assessed glucose uptake in vivo in the basal state, in response to 15 min of in situ contraction, and 15 min following maximal insulin injection (16.6 units/kg of body weight). Expression of wild-type Myo1c or K111A-Myo1c had no effect on basal glucose uptake. However, expression of wild-type Myo1c significantly increased contraction- and insulin-stimulated glucose uptake, whereas expression of K111A-Myo1c decreased both contraction-stimulated and insulin-stimulated glucose uptake. Neither wild-type nor K111A-Myo1c expression altered GLUT4 expression, and neither affected contraction- or insulin-stimulated signaling proteins. Myo1c is a novel mediator of both insulin-stimulated and contraction-stimulated glucose uptake in skeletal muscle.  相似文献   

3.
Skeletal muscle insulin resistance is a hallmark feature of Type 2 diabetes. Physical exercise/muscle contraction elicits an insulin-independent increase in glucose transport and perturbation of this pathway may bypass defective insulin signaling. To date, the exercise-responsive signaling molecules governing glucose metabolism in skeletal muscle are largely unknown. AMP-activated protein kinase (AMPK) has been suggested as one of the exercise-responsive signaling molecules involved in glucose homeostasis and consequently it has been heavily explored as a pharmacological target for the treatment of Type 2 diabetes. AMPK exists in heterotrimeric complexes composed of a catalytic alpha-subunit and regulatory beta- and gamma-subunits. The gamma3-isoform of AMPK is expressed specifically in skeletal muscle of humans and rodents and this tissue specific expression pattern offers selectivity in AMPK action. Furthermore, mutations in the AMPK gamma3-isoform may provide protection from diet-induced insulin resistance by increasing lipid oxidation in the presence of increased lipid supply. This review highlights the current understanding of the role of the regulatory AMPK gamma3-isoform in the control of skeletal muscle metabolism.  相似文献   

4.
Insulin increases glucose transport by stimulating the trafficking of intracellular GLUT4 to the cell surface, a process known as GLUT4 translocation. A key protein in signaling this process is AS160, a Rab GTPase-activating protein (GAP) whose activity appears to be suppressed by Akt phosphorylation. Tbc1d1 is a Rab GAP with a sequence highly similar to that of AS160 and with the same Rab specificity as that of AS160. The role of Tbc1d1 in regulating GLUT4 trafficking has been unclear. Our previous study showed that overexpressed Tbc1d1 inhibited insulin-stimulated GLUT4 translocation in 3T3-L1 adipocytes, even though insulin caused phosphorylation on its single canonical Akt motif. In the present study, we show in 3T3-L1 adipocytes that Tbc1d1 is only 1/20 as abundant as AS160, that knockdown of Tbc1d1 has no effect on insulin-stimulated GLUT4 translocation, and that overexpressed Tbc1d1 also inhibits GLUT4 translocation elicited by activated Akt expression. These results indicate that endogenous Tbc1d1 does not participate in insulin-regulated GLUT4 translocation in adipocytes and suggest that the GAP activity of Tbc1d1 is not suppressed by Akt phosphorylation. In addition, we discovered that Tbc1d1 is much more highly expressed in skeletal muscle than fat and that the AMP-activated protein kinase (AMPK) activator 5'-aminoimidazole-4-carboxamide ribonucleoside partially reversed the inhibition of insulin-stimulated GLUT4 translocation by overexpressed Tbc1d1 in 3T3-L1 adipocytes. 5'-Aminoimidazole-4-carboxamide ribonucleoside activation of the kinase AMPK is known to cause GLUT4 translocation in muscle. The above findings strongly suggest that Tbc1d1 is a component in the signal transduction pathway leading to AMPK-stimulated GLUT4 translocation in muscle.  相似文献   

5.
6.
7.
Muscle contractions and insulin stimulate glucose transport into muscle by separate pathways. The contraction-mediated increase in glucose transport is mediated by two mechanisms, one involves the activation of 5'-AMP-activated protein kinase (AMPK) and the other involves the activation of calcium/calmodulin-dependent protein kinase II (CAMKII). The steps leading from the activation of AMPK and CAMKII to the translocation of GLUT4 to the cell surface have not been identified. Studies with the use of the tyrosine kinase inhibitor genistein suggest that one or more tyrosine kinases could be involved in contraction-stimulated glucose transport. The purpose of the present study was to determine the involvement of tyrosine kinases in contraction-stimulated glucose transport in rat soleus and epitrochlearis muscles. Contraction-stimulated glucose transport was completely prevented by pretreatment with genistein (100 microM) and the related compound butein (100 microM). However, the structurally distinct tyrosine kinase inhibitors 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyridine and herbimycin did not reduce contraction-stimulated glucose transport. Furthermore, genistein and butein inhibited glucose transport even when muscles were exposed to these compounds after being stimulated to contract. Muscle contractions did not result in increases in tyrosine phosphorylation of proteins such as proline-rich tyrosine kinase and SRC. These results provide evidence that tyrosine kinases do not mediate contraction-stimulated glucose transport and that the inhibitory effects of genistein on glucose transport result from direct inhibition of the glucose transporters at the cell surface.  相似文献   

8.
Studies in which GLUT4 has been overexpressed in transgenic mice provide definitive evidence that glucose transport is rate limiting for muscle glucose disposal. Transgenic overexpression of GLUT4 selectively in skeletal muscle results in increased whole body glucose uptake and improves glucose homeostasis. These studies strengthen the hypothesis that the level of muscle GLUT4 affects the rate of whole body glucose disposal, and underscore the importance of GLUT4 in skeletal muscle for maintaining whole body glucose homeostasis. Studies in which GLUT4 has been ablated or 'knocked-out' provide proof that GLUT4 is the primary effector for mediating glucose transport in skeletal muscle and adipose tissue. Genetic ablation of GLUT4 results in impaired insulin tolerance and defects in glucose metabolism in skeletal muscle and adipose tissue. Because impaired muscle glucose transport leads to reduced whole body glucose uptake and hyperglycaemia, understanding the molecular regulation of glucose transport in skeletal muscle is important to develop effective strategies to prevent or reduce the incidence of Type II diabetes mellitus. In patients with Type II diabetes mellitus, reduced glucose transport in skeletal muscle is a major factor responsible for reduced whole body glucose uptake. Overexpression of GLUT4 in skeletal muscle improves glucose homeostasis in animal models of diabetes mellitus and protects against the development of diabetes mellitus. Thus, GLUT4 is an attractive target for pharmacological intervention strategies to control glucose homeostasis. This review will focus on the current understanding of the role of GLUT4 in regulating cellular glucose uptake and whole body glucose homeostasis.  相似文献   

9.
Studies in which GLUT4 has been overexpressed in transgenic mice provide definitive evidence that glucose transport is rate limiting for muscle glucose disposal. Transgenic overexpression of GLUT4 selectively in skeletal muscle results in increased whole body glucose uptake and improves glucose homeostasis. These studies strengthen the hypothesis that the level of muscle GLUT4 affects the rate of whole body glucose disposal, and underscore the importance of GLUT4 in skeletal muscle for maintaining whole body glucose homeostasis. Studies in which GLUT4 has been ablated or 'knocked-out' provide proof that GLUT4 is the primary effector for mediating glucose transport in skeletal muscle and adipose tissue. Genetic ablation of GLUT4 results in impaired insulin tolerance and defects in glucose metabolism in skeletal muscle and adipose tissue. Because impaired muscle glucose transport leads to reduced whole body glucose uptake and hyperglycaemia, understanding the molecular regulation of glucose transport in skeletal muscle is important to develop effective strategies to prevent or reduce the incidence of Type II diabetes mellitus. In patients with Type II diabetes mellitus, reduced glucose transport in skeletal muscle is a major factor responsible for reduced whole body glucose uptake. Overexpression of GLUT4 in skeletal muscle improves glucose homeostasis in animal models of diabetes mellitus and protects against the development of diabetes mellitus. Thus, GLUT4 is an attractive target for pharmacological intervention strategies to control glucose homeostasis. This review will focus on the current understanding of the role of GLUT4 in regulating cellular glucose uptake and whole body glucose homeostasis.  相似文献   

10.
The major glucose transporter protein expressed in skeletal muscle is GLUT4. Both muscle contraction and insulin induce translocation of GLUT4 from the intracellular pool to the plasma membrane. The intracellular pathways that lead to contraction- and insulin-stimulated GLUT4 translocation seem to be different, allowing the attainment of a maximal effect when acting together. Insulin utilizes a phosphatidylinositol 3-kinase-dependent mechanism, whereas the exercise signal may be initiated by calcium release from the sarcoplasmic reticulum or from autocrine- or paracrine-mediated activation of glucose transport. During exercise skeletal muscle utilizes more glucose than when at rest. However, endurance training leads to decreased glucose utilization during sub-maximal exercise, in spite of a large increase in the total GLUT4 content associated with training. The mechanisms involved in this reduction have not been totally elucidated, but appear to cause the decrease of the amount of GLUT4 translocated to the plasma membrane by altering the exercise-induced enhancement of glucose transport capacity. On the other hand, the effect of resistance training is controversial. Recent studies, however, demonstrated the improvement in insulin sensitivity correlated with increasing muscle mass. New studies should be designed to define the molecular basis for these important adaptations to skeletal muscle. Since during exercise the muscle may utilize insulin-independent mechanisms to increase glucose uptake, the mechanisms involved should provide important knowledge to the understanding and managing peripheral insulin resistance.  相似文献   

11.
Insulin activates certain protein kinase C (PKC) isoforms that are involved in insulin-induced glucose transport. In this study, we investigated the possibility that activation of PKCdelta by insulin participates in the mediation of insulin effects on glucose transport in skeletal muscle. Studies were performed on primary cultures of rat skeletal myotubes. The role of PKCdelta in insulin-induced glucose uptake was evaluated both by selective pharmacological blockade and by over-expression of wild-type and point-mutated inactive PKCdelta isoforms in skeletal myotubes. We found that insulin induces tyrosine phosphorylation and translocation of PKCdelta to the plasma membrane and increases the activity of this isoform. Insulin-induced effects on translocation and phosphorylation of PKCdelta were blocked by a low concentration of rottlerin, whereas the effects of insulin on other PKC isoforms were not. This selective blockade of PKCdelta by rottlerin also inhibited insulin-induced translocation of glucose transporter 4 (GLUT4), but not glucose transporter 3 (GLUT3), and significantly reduced the stimulation of glucose uptake by insulin. When overexpressed in skeletal muscle, PKCdelta and PKCdelta were both active. Overexpression of PKCdelta induced the translocation of GLUT4 to the plasma membrane and increased basal glucose uptake to levels attained by insulin. Moreover, insulin did not increase glucose uptake further in cells overexpressing PKCdelta. Overexpression of PKCdelta did not affect basal glucose uptake or GLUT4 location. Stimulation of glucose uptake by insulin in cells overexpressing PKCdelta was similar to that in untransfected cells. Transfection of skeletal myotubes with dominant negative mutant PKCdelta did not alter basal glucose uptake but blocked insulin-induced GLUT4 translocation and glucose transport. These results demonstrate that insulin activates PKCdelta and that activated PKCdelta is a major signaling molecule in insulin-induced glucose transport.  相似文献   

12.
Trivalent chromium (Cr3+) is known to improve glucose homeostasis. Cr3+ has been shown to improve plasma membrane-based aspects of glucose transporter GLUT4 regulation and increase activity of the cellular energy sensor 5’ AMP-activated protein kinase (AMPK). However, the mechanism(s) by which Cr3+ improves insulin responsiveness and whether AMPK mediates this action is not known. In this study we tested if Cr3+ protected against physiological hyperinsulinemia-induced plasma membrane cholesterol accumulation, cortical filamentous actin (F-actin) loss and insulin resistance in L6 skeletal muscle myotubes. In addition, we performed mechanistic studies to test our hypothesis that AMPK mediates the effects of Cr3+ on GLUT4 and glucose transport regulation. Hyperinsulinemia-induced insulin-resistant L6 myotubes displayed excess membrane cholesterol and diminished cortical F-actin essential for effective glucose transport regulation. These membrane and cytoskeletal abnormalities were associated with defects in insulin-stimulated GLUT4 translocation and glucose transport. Supplementing the culture medium with pharmacologically relevant doses of Cr3+ in the picolinate form (CrPic) protected against membrane cholesterol accumulation, F-actin loss, GLUT4 dysregulation and glucose transport dysfunction. Insulin signaling was neither impaired by hyperinsulinemic conditions nor enhanced by CrPic, whereas CrPic increased AMPK signaling. Mechanistically, siRNA-mediated depletion of AMPK abolished the protective effects of CrPic against GLUT4 and glucose transport dysregulation. Together these findings suggest that the micronutrient Cr3+, via increasing AMPK activity, positively impacts skeletal muscle cell insulin sensitivity and glucose transport regulation.  相似文献   

13.
Insulin stimulates glucose uptake into skeletal muscle tissue mainly through the translocation of glucose transporter 4 (GLUT4) to the plasma membrane. The precise mechanism involved in this process is presently unknown. In the cascade of events leading to insulin-induced glucose transport, insulin activates specific protein kinase C (PKC) isoforms. In this study we investigated the roles of PKC zeta in insulin-stimulated glucose uptake and GLUT4 translocation in primary cultures of rat skeletal muscle. We found that insulin initially caused PKC zeta to associate specifically with the GLUT4 compartments and that PKC zeta together with the GLUT4 compartments were then translocated to the plasma membrane as a complex. PKC zeta and GLUT4 recycled independently of one another. To further establish the importance of PKC zeta in glucose transport, we used adenovirus constructs containing wild-type or kinase-inactive, dominant-negative PKC zeta (DNPKC zeta) cDNA to overexpress this isoform in skeletal muscle myotube cultures. We found that overexpression of PKC zeta was associated with a marked increase in the activity of this isoform. The overexpressed, active PKC zeta coprecipitated with the GLUT4 compartments. Moreover, overexpression of PKC zeta caused GLUT4 translocation to the plasma membrane and increased glucose uptake in the absence of insulin. Finally, either insulin or overexpression of PKC zeta induced serine phosphorylation of the GLUT4-compartment-associated vesicle-associated membrane protein 2. Furthermore, DNPKC zeta disrupted the GLUT4 compartment integrity and abrogated insulin-induced GLUT4 translocation and glucose uptake. These results demonstrate that PKC zeta regulates insulin-stimulated GLUT4 translocation and glucose transport through the unique colocalization of this isoform with the GLUT4 compartments.  相似文献   

14.
15.
Cardiac glucose utilization is regulated by reversible translocation of the glucose transporter GLUT4 from intracellular stores to the plasma membrane. During the onset of diet-induced insulin resistance, elevated lipid levels in the circulation interfere with insulin-stimulated GLUT4 translocation, leading to impaired glucose utilization. Recently, we identified vesicle-associated membrane protein (VAMP) 2 and 3 to be required for insulin- and contraction-stimulated GLUT4 translocation, respectively, in cardiomyocytes. Here, we investigated whether overexpression of VAMP2 and/or VAMP3 could protect insulin-stimulated GLUT4 translocation under conditions of insulin resistance. HL-1 atrial cardiomyocytes transiently overexpressing either VAMP2 or VAMP3 were cultured for 16 h with elevated concentrations of palmitate and insulin. Upon subsequent acute stimulation with insulin, we measured GLUT4 translocation, plasmalemmal presence of the fatty acid transporter CD36, and myocellular lipid accumulation. Overexpression of VAMP3, but not VAMP2, completely prevented lipid-induced inhibition of insulin-stimulated GLUT4 translocation. Furthermore, the plasmalemmal presence of CD36 and intracellular lipid levels remained normal in cells overexpressing VAMP3. However, insulin signaling was not retained, indicating an effect of VAMP3 overexpression downstream of PKB/Akt. Furthermore, we revealed that endogenous VAMP3 is bound by the contraction-activated protein kinase D (PKD), and contraction and VAMP3 overexpression protect insulin-stimulated GLUT4 translocation via a common mechanism. These observations indicate that PKD activates GLUT4 translocation via a VAMP3-dependent trafficking step, which pathway might be valuable to rescue constrained glucose utilization in the insulin-resistant heart.  相似文献   

16.
The signaling mechanisms mediating myocardial glucose transport are not fully understood. Sucrose nonfermenting AMP-activated protein kinase (AMPK)-related kinase (SNARK) is an AMPK-related protein kinase that is expressed in the heart and has been implicated in contraction-stimulated glucose transport in mouse skeletal muscle. We first determined if SNARK is phosphorylated on Thr208, a site critical for SNARK activity. Mice were treated with exercise, ischemia, submaximal insulin, or maximal insulin. Treadmill exercise slightly, but significantly increased SNARK Thr208 phosphorylation. Ischemia also increased SNARK Thr208 phosphorylation, but there was no effect of submaximal or maximal insulin. HL1 cardiomyocytes were used to overexpress wild-type (WT) SNARK and to knockdown endogenous SNARK. Overexpression of WT SNARK had no effect on ischemia-stimulated glucose transport; however, SNARK knockdown significantly decreased ischemia-stimulated glucose transport. SNARK overexpression or knockdown did not alter insulin-stimulated glucose transport or glycogen concentrations. To study SNARK function in vivo, SNARK heterozygous knockout mice (SNARK+/−) and WT littermates performed treadmill exercise. Exercise-stimulated glucose transport was decreased by ~50% in hearts from SNARK+/− mice. In summary, exercise and ischemia increase SNARK Thr208 phosphorylation in the heart and SNARK regulates exercise-stimulated and ischemia-stimulated glucose transport. SNARK is a novel mediator of insulin-independent glucose transport in the heart.  相似文献   

17.
The AMP-activated protein kinase (AMPK) functions as a metabolic sensor that monitors cellular AMP and ATP levels. Platelet-activating factor (PAF) activates endogeneous AMPKalpha1 in Chinese hamster ovary cells expressing the PAF receptor coupled with both G(i) and G(q), but its activity was not inhibited after treatment with islet-activating protein. Norepinephrine and bradykinin also activated AMPKalpha1 in cells expressing the G(q)-coupled alpha(1b)-adrenergic receptor and bradykinin receptor, respectively. Stimulations of the G(i)-coupled alpha(2A)-adrenergic receptor, fMet-Leu-Phe receptor, prostaglandin EP3alpha receptor, and G(s)-coupled beta(2)-adrenergic receptor did not activate AMPKalpha1. AMPKalpha1 thus is activated specifically by stimulation of G(q)-coupled receptors. G(q)-coupled receptors transmit the signal for GLUT4 translocation and glucose uptake through an insulin-independent pathway. However, direct activation of AMPKalpha1 with treatment of 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside did not trigger GLUT4 translocation nor stimulate glucose uptake in our cells. Thus, activation of AMPKalpha1 via G(q) is not sufficient to trigger GLUT4 translocation or stimulate glucose uptake.  相似文献   

18.
Insulin and muscle contractions stimulate glucose transport in skeletal muscle through a translocation of intracellular GLUT4 glucose transporters to the cell surface. Judged by immunofluorescence microscopy, part of the GLUT4 storage sites is associated with the extensive microtubule cytoskeleton found in all muscle fibers. Here, we test whether microtubules are required mediators of the effect of insulin and contractions. In three different incubated rat muscles with distinct fiber type composition, depolymerization of microtubules with colchicine for < or =8 h did not inhibit insulin- or contraction-stimulated 2-deoxyglucose transport or force production. On the contrary, colchicine at least partially prevented the approximately 30% decrease in insulin-stimulated transport that specifically developed during 8 h of incubation in soleus muscle but not in flexor digitorum brevis or epitrochlearis muscles. In contrast, nocodazole, another microtubule-disrupting drug, rapidly and dose dependently blocked insulin- and contraction-stimulated glucose transport. A similar discrepancy between colchicine and nocodazole was also found in their ability to block glucose transport in muscle giant "ghost" vesicles. This suggests that the ability of insulin and contractions to stimulate glucose transport in muscle does not require an intact microtubule network and that nocodazole inhibits glucose transport independently of its microtubule-disrupting effect.  相似文献   

19.
Increased contraction enhances substrate uptake into cardiomyocytes via translocation of the glucose transporter GLUT4 and the long chain fatty acid (LCFA) transporter CD36 from intracellular stores to the sarcolemma. Additionally, contraction activates the signaling enzymes AMP-activated protein kinase (AMPK) and protein kinase D1 (PKD1). Although AMPK has been implicated in contraction-induced GLUT4 and CD36 translocation in cardiomyocytes, the precise role of PKD1 in these processes is not known. To study this, we triggered contractions in cardiomyocytes by electric field stimulation (EFS). First, the role of PKD1 in GLUT4 and CD36 translocation was defined. In PKD1 siRNA-treated cardiomyocytes as well as cardiomyocytes from PKD1 knock-out mice, EFS-induced translocation of GLUT4, but not CD36, was abolished. In AMPK siRNA-treated cardiomyocytes and cardiomyocytes from AMPKα2 knock-out mice, both GLUT4 and CD36 translocation were abrogated. Hence, unlike AMPK, PKD1 is selectively involved in glucose uptake. Second, we analyzed upstream factors in PKD1 activation. Cardiomyocyte contractions enhanced reactive oxygen species (ROS) production. Using ROS scavengers, we found that PKD1 signaling and glucose uptake are more sensitive to changes in intracellular ROS than AMPK signaling or LCFA uptake. Furthermore, silencing of death-activated protein kinase (DAPK) abrogated EFS-induced GLUT4 but not CD36 translocation. Finally, possible links between PKD1 and AMPK signaling were investigated. PKD1 silencing did not affect AMPK activation. Reciprocally, AMPK silencing did not alter PKD1 activation. In conclusion, we present a novel contraction-induced ROS-DAPK-PKD1 pathway in cardiomyocytes. This pathway is activated separately from AMPK and mediates GLUT4 translocation/glucose uptake, but not CD36 translocation/LCFA uptake.  相似文献   

20.
AMP-activated protein kinase (AMPK) is a serine-threonine kinase that regulates cellular metabolism and has an essential role in activating glucose transport during hypoxia and ischemia. The mechanisms responsible for AMPK stimulation of glucose transport are uncertain, but may involve interaction with other signaling pathways or direct effects on GLUT vesicular trafficking. One potential downstream mediator of AMPK signaling is the nitric oxide pathway. The aim of this study was to examine the extent to which AMPK mediates glucose transport through activation of the nitric oxide (NO)-signaling pathway in isolated heart muscles. Incubation with 1 mM 5-amino-4-imidazole-1-beta-carboxamide ribofuranoside (AICAR) activated AMPK (P < 0.01) and stimulated glucose uptake (P < 0.05) and translocation of the cardiomyocyte glucose transporter GLUT4 to the cell surface (P < 0.05). AICAR treatment increased phosphorylation of endothelial NO synthase (eNOS) approximately 1.8-fold (P < 0.05). eNOS, but not neuronal NOS, coimmunoprecipitated with both the alpha(2) and alpha(1) AMPK catalytic subunits in heart muscle. NO donors also increased glucose uptake and GLUT4 translocation (P < 0.05). Inhibition of NOS with N(omega)-nitro-l-arginine and N(omega)-methyl-l-arginine reduced AICAR-stimulated glucose uptake by 21 +/- 3% (P < 0.05) and 25 +/- 4% (P < 0.05), respectively. Inhibition of guanylate cyclase with ODQ and LY-83583 reduced AICAR-stimulated glucose uptake by 31 +/- 4% (P < 0.05) and 22 +/- 3% (P < 0.05), respectively, as well as GLUT4 translocation to the cell surface (P < 0.05). Taken together, these results indicate that activation of the NO-guanylate cyclase pathway contributes to, but is not the sole mediator of, AMPK stimulation of glucose uptake and GLUT4 translocation in heart muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号