共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
How do uncoupling proteins uncouple? 总被引:8,自引:0,他引:8
According to the proton buffering model, introduced by Klingenberg, UCP1 conducts protons through a hydrophilic pathway lined with fatty acid head groups that buffer the protons as they move across the membrane. According to the fatty acid protonophore model, introduced by Garlid, UCPs do not conduct protons at all. Rather, like all members of this gene family, they are anion carriers. A variety of anions are transported, but the physiological substrates are fatty acid (FA) anions. Because the carboxylate head group is translocated by UCP, and because the protonated FA rapidly diffuses across the membrane, this mechanism permits FA to behave as regulated cycling protonophores. Favoring the latter mechanism is the fact that the head group of long-chain alkylsulfonates, strong acid analogues of FA, is also translocated by UCP. 相似文献
3.
Aggregation is an ancient threat that must be overcome by proteins from all organisms to maintain their native functional states. This is essential for the maintenance of metabolic flux and viability of their cellular machineries. Here, we compare the aggregation-resistance strategies adapted by the thermophilic proteins and their mesophilic homologs using a dataset of 373 protein families. Like their mesophilic homologs, the thermophilic protein sequences also contain potential aggregation prone regions (APRs), capable of forming cross-β motif and amyloid-like fibrils. Tetrapeptide and hexapeptide amyloid-like fibril forming sequence patterns and experimentally proven amyloid-like fibril forming peptide sequences were also detected in the thermophilic proteins. Both the thermophilic and the mesophilic proteins use similar strategies to resist aggregation. However, the thermophilic proteins show superior utilization of these strategies. The thermophilic protein monomers show greater ability to "stow away" the APRs in the hydrophobic cores to protect them from solvent exposure. The thermophilic proteins are also better at gatekeeping the APRs by surrounding them with charged residues (Asp, Glu, Lys, and Arg) and Pro to a greater extent. While thermophilic and mesophilic proteins in our dataset are highly homologous and show strong overall sequence conservation, the APRs are not conserved between the homologs. These findings indicate that evolution is working to avoid amyloidogenic regions in proteins. Our results are also consistent with the observation that thermophilic cells often accumulate small molecule osmolytes capable of stabilizing their proteins and other macromolecules. This study has important implications for rational design and formulation of therapeutic proteins and antibodies. 相似文献
4.
A study of the contributions of different mechanisms of domain gain in animal proteins suggests that gene fusion is likely to be most frequent. 相似文献
5.
6.
How do membrane proteins sense water stress? 总被引:8,自引:0,他引:8
Poolman B Blount P Folgering JH Friesen RH Moe PC van der Heide T 《Molecular microbiology》2002,44(4):889-902
Maintenance of cell turgor is a prerequisite for almost any form of life as it provides a mechanical force for the expansion of the cell envelope. As changes in extracellular osmolality will have similar physicochemical effects on cells from all biological kingdoms, the responses to osmotic stress may be alike in all organisms. The primary response of bacteria to osmotic upshifts involves the activation of transporters, to effect the rapid accumulation of osmoprotectants, and sensor kinases, to increase the transport and/or biosynthetic capacity for these solutes. Upon osmotic downshift, the excess of cytoplasmic solutes is released via mechanosensitive channel proteins. A number of breakthroughs in the last one or two years have led to tremendous advances in our understanding of the molecular mechanisms of osmosensing in bacteria. The possible mechanisms of osmosensing, and the actual evidence for a particular mechanism, are presented for well studied, osmoregulated transport systems, sensor kinases and mechanosensitive channel proteins. The emerging picture is that intracellular ionic solutes (or ionic strength) serve as a signal for the activation of the upshift-activated transporters and sensor kinases. For at least one system, there is strong evidence that the signal is transduced to the protein complex via alterations in the protein-lipid interactions rather than direct sensing of ion concentration or ionic strength by the proteins. The osmotic downshift-activated mechanosensitive channels, on the other hand, sense tension in the membrane but other factors such as hydration state of the protein may affect the equilibrium between open and closed states of the proteins. 相似文献
7.
How do site-specific DNA-binding proteins find their targets? 总被引:11,自引:6,他引:11
Essentially all the biological functions of DNA depend on site-specific DNA-binding proteins finding their targets, and therefore ‘searching’ through megabases of non-target DNA. In this article, we review current understanding of how this sequence searching is done. We review how simple diffusion through solution may be unable to account for the rapid rates of association observed in experiments on some model systems, primarily the Lac repressor. We then present a simplified version of the ‘facilitated diffusion’ model of Berg, Winter and von Hippel, showing how non-specific DNA–protein interactions may account for accelerated targeting, by permitting the protein to sample many binding sites per DNA encounter. We discuss the 1-dimensional ‘sliding’ motion of protein along non-specific DNA, often proposed to be the mechanism of this multiple site sampling, and we discuss the role of short-range diffusive ‘hopping’ motions. We then derive the optimal range of sliding for a few physical situations, including simple models of chromosomes in vivo, showing that a sliding range of ~100 bp before dissociation optimizes targeting in vivo. Going beyond first-order binding kinetics, we discuss how processivity, the interaction of a protein with two or more targets on the same DNA, can reveal the extent of sliding and we review recent experiments studying processivity using the restriction enzyme EcoRV. Finally, we discuss how single molecule techniques might be used to study the dynamics of DNA site-specific targeting of proteins. 相似文献
8.
How do Rab proteins function in membrane traffic? 总被引:4,自引:0,他引:4
Armstrong J 《The international journal of biochemistry & cell biology》2000,32(3):303-307
The Rabs are a group of GTP-binding proteins implicated for some time in the targeting of different transport vesicles within the cell, but it has been unclear how they function, or how they relate to a second group of targeting proteins, the SNAREs. Recent work, discussed in this review, has used biophysical, biochemical and genetic approaches to begin to answer these questions for Rab3, Rab5 and the yeast protein Sec4p. However, the results from these three Rabs lead to a surprising conclusion: the different Rabs seem to function via highly diverse target proteins. 相似文献
9.
The vast majority of theoretical and experimental folding studies have shown that as a protein folds, it attempts to adopt a conformation that occurs at its lowest free energy minimum. However, studies on a small number of proteins have now shown that this is a generality. In this review we discuss recent data on how two proteins, -lytic protease and 1-antitrypsin, successfully fold to their metastable native states, whilst avoiding more stable but inactive conformations. 相似文献
10.
11.
How old is your fold? 总被引:1,自引:0,他引:1
12.
The mitochondrial pathway of apoptosis proceeds when molecules sequestered between the outer and inner mitochondrial membranes are released to the cytosol by mitochondrial outer membrane permeabilization (MOMP). This process is controlled by the BCL-2 family, which is composed of both pro- and anti-apoptotic proteins. Although there is no disagreement that BCL-2 proteins regulate apoptosis, the mechanism leading to MOMP remains controversial. Current debate focuses on what interactions within the family are crucial to initiate MOMP. Specifically, do the BH3-only proteins directly engage BAX and/or BAK activation or do these proteins solely promote apoptosis by neutralization of anti-apoptotic BCL-2 proteins? We describe these models and contend that BH3-only proteins must perform both functions to efficiently engage MOMP and apoptosis. 相似文献
13.
Theoretical and experimental studies of protein folding have suggested that the topology of the native state may be the most important factor determining the folding pathway of a protein, independent of its specific amino acid sequence. To test this concept, many experimental studies have been carried out with the aim of comparing the folding pathways of proteins that possess similar tertiary structures, but divergent sequences. Many of these studies focus on quantitative comparisons of folding transition state structures, as determined by Phi(f) value analysis of folding kinetic data. In some of these studies, folding transition state structures are found to be highly conserved, whereas in others they are not. We conclude that folds displaying more conserved transition state structures may have the most restricted number of possible folding pathways and that folds displaying low transition state structural conservation possess many potential pathways for reaching the native state. 相似文献
14.
How do proteins recognize specific RNA sites? New clues from autogenously regulated ribosomal proteins 总被引:16,自引:0,他引:16
D E Draper 《Trends in biochemical sciences》1989,14(8):335-338
Some ribosomal proteins which bind specifically to ribosomal RNA also act as translational repressors and recognize their encoding messenger RNAs. The messenger- and ribosomal-RNA binding sites for four of these proteins are now well defined, and striking similarities in primary and secondary structure are apparent in most cases. These 'consensus' structures are useful clues to the features proteins use to recognize specific RNAs. 相似文献
15.
16.
A Cornish-Bowden 《Journal of theoretical biology》1979,76(4):369-386
A method for comparing amino acid compositions of proteins (Cornish-Bowden, 1977) has been extended to allow proteins of unequal lengths to be compared. The method has been tested by applying it to proteins of known sequence. It tends to exaggerate the amount of difference between unrelated proteins. It is therefore a reliable guide to possible sequence similarities, in that it does not suggest that sequences are similar when they are not, though it sometimes fails to detect genuine similarities. When applied to related proteins the method gives results in good agreement with those predicted. A phylogenetic tree for 37 snake venom toxins has been constructed from their compositions and is similar in most important respects to one constructed from the corresponding sequences. 相似文献
17.
18.
We present the first single-molecule atomic force microscopy study on the effect of chemical denaturants on the mechanical folding/unfolding kinetics of a small protein GB1 (the B1 immunoglobulin-binding domain of protein G from Streptococcus). Upon increasing the concentration of the chemical denaturant guanidinium chloride (GdmCl), we observed a systematic decrease in the mechanical stability of GB1, indicating the softening effect of the chemical denaturant on the mechanical stability of proteins. This mechanical softening effect originates from the reduced free-energy barrier between the folded state and the unfolding transition state, which decreases linearly as a function of the denaturant concentration. Chemical denaturants, however, do not alter the mechanical unfolding pathway or shift the position of the transition state for mechanical unfolding. We also found that the folding rate constant of GB1 is slowed down by GdmCl in mechanical folding experiments. By combining the mechanical folding/unfolding kinetics of GB1 in GdmCl solution, we developed the “mechanical chevron plot” as a general tool to understand how chemical denaturants influence the mechanical folding/unfolding kinetics and free-energy diagram in a quantitative fashion. This study demonstrates great potential in combining chemical denaturation with single-molecule atomic force microscopy techniques to reveal invaluable information on the energy landscape underlying protein folding/unfolding reactions. 相似文献
19.
Protein turnover is fundamental both for development and cellular homeostasis. The mechanisms responsible for the turnover of integral membrane proteins in plant cells are however still largely unknown. Recently, considerable attention has been devoted to the degradation of plasma membrane proteins. We have now studied the turnover of a tonoplast protein, the potassium channel TPK1, in fully differentiated Arabidopsis leaf cells and showed that its degradation occurs upon internalization into the vacuole. Here, we discuss the possible mechanisms and triggering events involved. 相似文献
20.
《TARGETS》2003,2(6):237-244
The subcellular localization of a protein can be very informative in identifying its function and in understanding the regulatory mechanisms by which it is controlled. Past efforts to define protein localization have typically entailed methods of immunological and fluorescence-based detection applied to a limited number of gene products. Several current studies are shifting this paradigm – utilizing traditional and novel approaches in molecular biology, proteomics, histochemistry and bioinformatics to define protein localization on a proteome-wide scale. Selected studies highlighting each of these approaches are presented here as an overview of the diverse avenues by which protein localization may be investigated for the identification of new drug targets. 相似文献