首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amino acid biosynthesis: new architectures in allosteric enzymes.   总被引:1,自引:0,他引:1  
This review focuses on the allosteric controls in the Aspartate-derived and the branched-chain amino acid biosynthetic pathways examined both from kinetic and structural points of view. The objective is to show the differences that exist among the plant and microbial worlds concerning the allosteric regulation of these pathways and to unveil the structural bases of this diversity. Indeed, crystallographic structures of enzymes from these pathways have been determined in bacteria, fungi and plants, providing a wonderful opportunity to obtain insight into the acquisition and modulation of allosteric controls in the course of evolution. This will be examined using two enzymes, threonine synthase and the ACT domain containing enzyme aspartate kinase. In a last part, as many enzymes in these pathways display regulatory domains containing the conserved ACT module, the organization of ACT domains in this kind of allosteric enzymes will be reviewed, providing explanations for the variety of allosteric effectors and type of controls observed.  相似文献   

2.
High sequence divergence, evolutionary mobility, and superfold topology characterize the ACT domain. Frequently found in multidomain proteins, these domains induce allosteric effects by binding a regulatory ligand usually to an ACT domain dimer interface. In mammalian phenylalanine hydroxylase (PAH), no contacts are formed between ACT domains, and the domain promotes an allosteric effect despite the apparent lack of ligand binding. The increased functional scenario of this abundant domain encouraged us to search for distant homologs, aiming to enhance the understanding of the ACT domain in general and the ACT domain of PAH in particular. The PDB was searched using the FATCAT server with the ACT domain of PAH as a query. The hits that were confirmed by the SSAP algorithm were divided into known ACT domains (KADs) and potential ACT domains (PADs). The FATCAT/SSAP procedure recognized most of the established KADs, as well 18 so far unrecognized non-redundant PADs with extremely low sequence identities and high divergence in functionality and oligomerization. However, analysis of the structural similarity provides remarkable clustering of the proteins according to similarities in ligand binding. Despite enormous sequence divergence and high functional variability, there is a common regulatory theme among these domains. The results reveal the close relationships of the ACT domain of PAH with amino acid binding and metallobinding ACT domains and with acylphosphatase.  相似文献   

3.
The Lrp family of transcriptional regulators   总被引:1,自引:0,他引:1  
  相似文献   

4.
Summary. An important sequence motif identified by sequence analysis is shared by the ACT domain family, which has been found in a number of diverse proteins. Most of the proteins containing the ACT domain seem to be involved in amino acid and purine synthesis and are in many cases allosteric enzymes with complex regulation enforced by the binding of ligands. Here we explore the current understanding of the ACT domain function including its role as an allosteric module in a selected group of enzymes. We will further describe in more detail three of the proteins where some understanding is available on function and structure: i) the archetypical ACT domain protein E. coli 3PGDH, which catalyzes the first step in the biosynthesis of L-Ser, ii) the bifunctional chorismate mutase/prephenate dehydratase (P-protein) from E. coli, which catalyzes the first two steps in the biosynthesis of L-Phe, and iii) the mammalian aromatic amino acid hydroxylases, with special emphasis on phenylalanine hydroxylase, which catalyzes the first step in the catabolic degradation of L-phenylalanine (L-Phe). The ACT domain is commonly involved in the binding of a small regulatory molecule, such as the amino acids L-Ser and L-Phe in the case of 3PGDH and P-protein, respectively. On the other hand, for PAH, and probably for other enzymes, this domain appears to have been incorporated as a handy, flexible small module with the potential to provide allosteric regulation via transmission of finely tuned conformational changes, not necessarily initiated by regulatory ligand binding at the domain itself.Current address: Protein Biophysics & Delivery, Novo Nordisk A/S, Novo Allé, 2880 Bagsværd, Denmark.  相似文献   

5.
Hsieh MH  Goodman HM 《Plant physiology》2002,130(4):1797-1806
In bacteria, the regulatory ACT domains serve as amino acid-binding sites in some feedback-regulated amino acid metabolic enzymes. We have identified a novel type of ACT domain-containing protein family in Arabidopsis whose members contain ACT domain repeats (the "ACR" protein family). There are at least eight ACR genes located on each of the five chromosomes in the Arabidopsis genome. Gene structure comparisons indicate that the ACR gene family may have arisen by gene duplications. Northern-blot analysis indicates that each member of the ACR gene family has a distinct expression pattern in various organs from 6-week-old Arabidopsis. Moreover, analyses of an ACR3 promoter-beta-glucuronidase (GUS) fusion in transgenic Arabidopsis revealed that the GUS activity formed a gradient in the developing leaves and sepals, whereas low or no GUS activity was detected in the basal regions. In 2-week-old Arabidopsis seedlings grown in tissue culture, the expression of the ACR gene family is differentially regulated by plant hormones, salt stress, cold stress, and light/dark treatment. The steady-state levels of ACR8 mRNA are dramatically increased by treatment with abscisic acid or salt. Levels of ACR3 and ACR4 mRNA are increased by treatment with benzyladenine. The amino acid sequences of Arabidopsis ACR proteins are most similar in the ACT domains to the bacterial sensor protein GlnD. The ACR proteins may function as novel regulatory or sensor proteins in plants.  相似文献   

6.
ACT domains (amino acid-binding domains) are linked to a wide range of metabolic enzymes that are regulated by amino acid concentration. Seventy proteins with ACT-GCN5-related N-acetyltransferase (GNAT) domain organization were found in actinomycetales. In this study, we investigate the ACT-containing GNAT acetyltransferase, Micau_1670 (MaKat), from Micromonospora aurantiaca ATCC 27029. Arginine and cysteine were identified as ligands by monitoring the conformational changes that occur upon amino acids binding to the ACT domain in the MaKat protein using FRET assay. It was found that MaKat is an amino acid-regulated protein acetyltransferase, whereas arginine and cysteine stimulated the activity of MaKat with regard to acetylation of acetyl-CoA synthetase (Micau_0428). Our research reveals the biochemical characterization of a protein acetyltransferase that contains a fusion of a GNAT domain with an ACT domain and provides a novel signaling pathway for regulating cellular protein acetylation. These findings indicate that acetylation of proteins and acetyltransferase activity may be tightly linked to cellular concentrations of some amino acids in actinomycetales.  相似文献   

7.
8.
9.
TTHA0829 from Thermus thermophilus HB8 has a molecular mass of 22,754 Da and is composed of 210 amino acid residues. The expression of TTHA0829 is remarkably elevated in the latter half of logarithmic growth phase. TTHA0829 can form either a tetrameric or dimeric structure, and main-chain folding provides an N-terminal cystathionine-β-synthase (CBS) domain and a C-terminal aspartate-kinase chorismate-mutase tyrA (ACT) domain. Both CBS and ACT are regulatory domains to which a small ligand molecule can bind. The CBS domain is found in proteins from organisms belonging to all kingdoms and is observed frequently as two or four tandem copies. This domain is considered as a small intracellular module with a regulatory function and is typically found adjacent to the active (or functional) site of several enzymes and integral membrane proteins. The ACT domain comprises four β-strands and two α-helices in a βαββαβ motif typical of intracellular small molecule binding domains that help control metabolism, solute transport and signal transduction. We discuss the possible role of TTHA0829 based on its structure and expression pattern. The results imply that TTHA0829 acts as a cell-stress sensor or a metabolite acceptor.  相似文献   

10.
Asp kinase catalyzes the first step of the Asp-derived essential amino acid pathway in plants and microorganisms. Depending on the source organism, this enzyme contains up to four regulatory ACT domains and exhibits several isoforms under the control of a great variety of allosteric effectors. We report here the dimeric structure of a Lys and S-adenosylmethionine-sensitive Asp kinase isoform from Arabidopsis thaliana in complex with its two inhibitors. This work reveals the structure of an Asp kinase and an enzyme containing two ACT domains cocrystallized with its effectors. Only one ACT domain (ACT1) is implicated in effector binding. A loop involved in the binding of Lys and S-adenosylmethionine provides an explanation for the synergistic inhibition by these effectors. The presence of S-adenosylmethionine in the regulatory domain indicates that ACT domains are also able to bind nucleotides. The organization of ACT domains in the present structure is different from that observed in Thr deaminase and in the regulatory subunit of acetohydroxyacid synthase III.  相似文献   

11.
James CL  Viola RE 《Biochemistry》2002,41(11):3720-3725
The bifunctional enzyme aspartokinase-homoserine dehydrogenase I from Escherichia coli catalyzes non-consecutive reactions in the aspartate pathway of amino acid biosynthesis. Both catalytic activities are subject to allosteric regulation by the end product amino acid L-threonine. To examine the kinetics and regulation of the enzymes in this pathway, each of these catalytic domains were separately expressed and purified. The separated catalytic domains remain active, with each of their catalytic activities enhanced in comparison to the native enzyme. The allosteric regulation of the kinase activity is lost, and regulation of the dehydrogenase activity is dramatically decreased in these separate domains. To create a new bifunctional enzyme that can catalyze consecutive metabolic reactions, the aspartokinase I domain was fused to the enzyme that catalyzes the intervening reaction in the pathway, aspartate semialdehyde dehydrogenase. A hybrid bifunctional enzyme was also created between the native monofunctional aspartokinase III, an allosteric enzyme regulated by lysine, and the catalytic domain of homoserine dehydrogenase I with its regulatory interface domain still attached. In this hybrid the kinase activity remains sensitive to lysine, while the dehydrogenase activity is now regulated by both threonine and lysine. The dehydrogenase domain is less thermally stable than the kinase domain and becomes further destabilized upon removal of the regulatory domain. The more stable aspartokinase III is further stabilized against thermal denaturation in the hybrid bifunctional enzyme and was found to retain some catalytic activity even at temperatures approaching 100 degrees C.  相似文献   

12.
13.
Aspartokinase III (AKIII) from Escherichia coli catalyzes an initial commitment step of the aspartate pathway, giving biosynthesis of certain amino acids including lysine. We report crystal structures of AKIII in the inactive T-state with bound feedback allosteric inhibitor lysine and in the R-state with aspartate and ADP. The structures reveal an unusual configuration for the regulatory ACT domains, in which ACT2 is inserted into ACT1 rather than the expected tandem repeat. Comparison of R- and T-state AKIII indicates that binding of lysine to the regulatory ACT1 domain in R-state AKIII instigates a series of changes that release a "latch", the beta15-alphaK loop, from the catalytic domain, which in turn undergoes large rotational rearrangements, promoting tetramer formation and completion of the transition to the T-state. Lysine-induced allosteric transition in AKIII involves both destabilizing the R-state and stabilizing the T-state tetramer. Rearrangement of the catalytic domain blocks the ATP-binding site, which is therefore the structural basis for allosteric inhibition of AKIII by lysine.  相似文献   

14.
15.
A novel ligand-binding domain, named the 'ACT domain', was recently identified by a PSI-BLAST search. The archetypical ACT domain is the C-terminal regulatory domain of 3-phosphoglycerate dehydrogenase (3PGDH), which folds with a ferredoxin-like betaalphabetabetaalphabeta topology. A pair of ACT domains form an eight-stranded antiparallel sheet with two molecules of the allosteric inhibitor serine bound in the interface. The ACT domain is found in a variety of contexts and is proposed to be a conserved regulatory ligand binding fold. Rat phenylalanine hydroxylase has a regulatory domain with a similar fold, but different ligand-binding mode. Putative ACT domains in some proteins of unknown structure (e.g. acetohydroxyacid synthase regulatory subunits) may also fold like the 3PGDH regulatory domain. The regulatory domain of threonine deaminase, although not a member of the ACT sequence family, is similar in structure to the paired 3PGDH regulatory domains. Repeats of ACT-like domains can create nonequivalent ligand-binding sites with the potential for complex regulatory patterns. The structures and mechanisms of such systems have only begun to be examined.  相似文献   

16.
Amino acid metabolic enzymes often contain a regulatory ACT domain, named for aspartate kinase, chorismate mutase, and TyrA (prephenate dehydrogenase). Arabidopsis encodes 12 putative amino acid sensor ACT repeat (ACR) proteins, all containing ACT repeats but no identifiable catalytic domain. Arabidopsis ACRs comprise three groups based on domain composition and sequence: group I and II ACRs contain four ACTs each, and group III ACRs contain two ACTs. Previously, all three groups had been documented only in Arabidopsis. Here, we extended this to algae and land plants, showing that all three groups of ACRs are present in most, if not all, land plants, whereas among algal ACRs, although quite diverse, only group III is conserved. The appearance of canonical group I and II ACRs thus accompanied the evolution of plants from living in water to living on land. Alignment of ACTs from plant ACRs revealed a conserved motif, DRPGLL, at the putative ligand-binding site. Notably, the unique features of the DRPGLL motifs in each ACT domain are conserved in ACRs from algae to land plants. The conservation of plant ACRs is reminiscent of that of human cellular arginine sensor for mTORC1 (CASTOR1), a member of a small protein family highly conserved in animals. CASTOR proteins also have four ACT domains, although the sequence identities between ACRs and CASTORs are very low. Thus, plant ACRs and animal CASTORs may have adapted the regulatory ACT domains from a more ancient metabolic enzyme, and then evolved independently.  相似文献   

17.
The manipulation of modular regulatory domains from allosteric enzymes represents a possible mechanism to engineer allostery into non-allosteric systems. Currently, there is insufficient understanding of the structure/function relationships in modular regulatory domains to rationally implement this methodology. The LeuA dimer regulatory domain represents a well-conserved, novel fold responsible for the regulation of two enzymes involved in branched chain amino acid biosynthesis, α-isopropylmalate synthase and citramalate synthase. The LeuA dimer regulatory domain is responsible for the feedback inhibition of these enzymes by their respective downstream products. Both enzymes display multidomain architecture with a conserved N-terminal TIM barrel catalytic domain and a C-terminal (βββα)2 LeuA dimer domain joined by a flexible linker region. Due to the similarity of three-dimensional structure and catalytic mechanism combined with low sequence similarity, we propose these enzymes can be classified as members of the LeuA dimer superfamily. Despite their similarity, members of the LeuA dimer superfamily display diversity in their allosteric mechanisms. In this review, structural aspects of the LeuA dimer superfamily are discussed followed by three examples highlighting the diversity of allosteric mechanisms in the LeuA dimer superfamily.  相似文献   

18.
Modular protein assembly has been widely reported as a mechanism for constructing allosteric machinery. Recently, a distinctive allosteric system has been identified in a bienzyme assembly comprising a 3-deoxy-d-arabino heptulosonate-7-phosphate synthase (DAH7PS) and chorismate mutase (CM). These enzymes catalyze the first and branch point reactions of aromatic amino acid biosynthesis in the bacterium Prevotella nigrescens (PniDAH7PS), respectively. The interactions between these two distinct catalytic domains support functional interreliance within this bifunctional enzyme. The binding of prephenate, the product of CM-catalyzed reaction, to the CM domain is associated with a striking rearrangement of overall protein conformation that alters the interdomain interactions and allosterically inhibits the DAH7PS activity. Here, we have further investigated the complex allosteric communication demonstrated by this bifunctional enzyme. We observed allosteric activation of CM activity in the presence of all DAH7PS substrates. Using small-angle X-ray scattering (SAXS) experiments, we show that changes in overall protein conformations and dynamics are associated with the presence of different DAH7PS substrates and the allosteric inhibitor prephenate. Furthermore, we have identified an extended interhelix loop located in CM domain, loopC320-F333, as a crucial segment for the interdomain structural and catalytic communications. Our results suggest that the dual-function enzyme PniDAH7PS contains a reciprocal allosteric system between the two enzymatic moieties as a result of this bidirectional interdomain communication. This arrangement allows for a complex feedback and feedforward system for control of pathway flux by connecting the initiation and branch point of aromatic amino acid biosynthesis.  相似文献   

19.
Prephenate dehydratase (PDT) is a key regulatory enzyme in l-phenylalanine biosynthesis. In Mycobacterium tuberculosis, expression of pheA, the gene encoding PDT, has been earlier reported to be iron-dependent (1, 2). We report that M. tuberculosis pheA is also regulated at the protein level by aromatic amino acids. All of the three aromatic amino acids (phenylalanine, tyrosine, and tryptophan) are potent allosteric activators of M. tuberculosis PDT. We also provide in vitro evidence that M. tuberculosis PDT does not possess any chorismate mutase activity, which suggests that, unlike many other enteric bacteria (where PDT exists as a fusion protein with chorismate mutase), M. tuberculosis PDT is a monofunctional and a non-fusion protein. Finally, the biochemical and biophysical properties of the catalytic and regulatory domains (ACT domain) of M. tuberculosis PDT were studied to observe that, in the absence of the ACT domain, the enzyme not only loses its regulatory activity but also its catalytic activity. These novel results provide evidence for a monofunctional prephenate dehydratase enzyme from a pathogenic bacterium that exhibits extensive allosteric activation by aromatic amino acids and is absolutely dependent upon the presence of catalytic as well as the regulatory domains for optimum enzyme activity.  相似文献   

20.
D-3-Phosphoglycerate dehydrogenases (PGDH) exist with at least three different structural motifs and the enzymes from different species display distinctly different mechanisms. In many species, particularly bacteria, the catalytic activity is regulated allosterically through binding of l-serine to a distinct structural domain, termed the ACT domain. Some species, such as Mycobacterium tuberculosis, contain an additional domain, called the "allosteric substrate binding" or ASB domain, that functions as a co-domain in the regulation of catalytic activity. That is, both substrate and effector function synergistically in the regulation of activity to give the enzyme some interesting properties that may have physiological relevance for the persistent state of tuberculosis. Both enzymes function through a V-type regulatory mechanism and, in the Escherichia coli enzyme, it has been demonstrated that this results from a dead-end complex that decreases the concentration of active species rather than a decrease in the velocity of the active species. This review compares and contrasts what we know about these enzymes and provides additional insight into their mechanism of allosteric regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号