首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of short-term NaCl-salinity on nodules of soybean ( Glycine max L. cv. Kingsoy) were studied on hydroponically-grown plants. Both acetylene reducing activity (ARA) and nodule respiration (O2 uptake and CO2 evolution) were immediately inhibited, and the stimulation of them by rising the external partial pressure of O2 (pO2) was diminished by the application of 0.1 M NaCl in the nutrient solution. The permeability of the nodule to O2 diffusion, estimated by O2 consumption or CO2 evolution, was significantly lower in the stressed nodules than in the cootrol ones. The respiratory quotient of intact nodules and the ethanol production of excised nodules were increased by low pO2 and by salt stress. These data confirm that in salt-stressed soybean nodules, O2 availability is reduced and fermentative pathways are stimulated.  相似文献   

2.
Nitrogenase (N2ase; EC 1.18.6.1) activity (H2 evolution) and root respiration (CO2 evolution) were measured under either N2:O2 or Ar:O2 gas mixtures in intact nodulated roots from white clover ( Trifolium repens L.) plants grown either as spaced or as dense stands. The short-term nitrate (5 m M ) inhibition of N2-fixation was promoted by competition for light between clover shoots, which reduced CO2 net assimilation rate. Oxygen-diffusion permeability of the nodule declined during nitrate treatment but after nitrate removal from the liquid medium its recovery parallelled that of nitrogenase activity. Rhizosphere pO2 was increased from 20 to 80 kPa under N2:O2. A simple mono-exponential model, fitted to the nodule permeability response to pO2, indicated NO3 induced changes in minimum and maximum nodule O2-diffusion permeability. Peak H2 production rates at 80 kPa O2 and in Ar:O2 were close to the pre-decline rates at 20 kPa O2. At the end of the nitrate treatment, this O2-induced recovery in nitrogenase activity reached 71 and 82%; for clover plants from spaced and dense stands, respectively. The respective roles of oxygen diffusion and phloem supply for the short-term inhibition of nitrogenase activity in nitrate-treated clovers are discussed.  相似文献   

3.
Occurrence and activity of the hydrogen uptake enzyme were studied in root nodule homogenates made from plants of Alnus incana (L.) Moench collected from field sites in the northern part of Sweden. Nitrogenase (EC 1.7.99.2) activity (estimated by acetylene reduction) and hydrogen evolution were studied in excised nodules. All Frankia sources showed acetylene reduction activity, and possessed a hydrogen uptake system. Hydrogen uptake in nodule homogenates from the Frankia sources measured at 23.8 μM H2 ranged from 0.04 to 5.0 μmol H2 (g fresh weight nodule)−1 h−1. The H2 uptake capacity of nodule homogenates from one of the Frankia sources was almost 8 times higher than the hydrogen evolution from nitrogenase, both expressed on a nodule fresh weight basis. Frankia sources from field sites 6 and 11 showed Km for H2 of 13.0 and 23.6 μM H2, respectively. This indicates similarities in the hydrogen uptake enzymes in the two Frankia sources. It is concluded that hydrogen uptake is a common characteristic in Frankia.  相似文献   

4.
Recent research has shown that nodule nitrogen fixation is limited under a wide range of environmental constraints by lowered carbon flux within the nodule due to down-regulation of sucrose synthase activity. The aim of this work was to elucidate whether an increase in both carbon flux and activity of enzymes of carbon metabolism in nodules may lead to an increased nitrogen fixation. We report the effects caused by a continuous exposure to atmospheric CO2 enrichment in nodulated pea plants. CO2 enrichment led to an enhanced whole-plant growth and increased nodule biomass. Moreover, nodules of plants grown at increased CO2 showed a higher sugar content as well as enhancement of some activities related to nodule carbon metabolism, such as sucrose synthase, UDP glucose pyrophosphorylase and phosphoenolpyruvate carboxylase. Indeed, acetylene reduction activity, measured by the classical technique, was increased more than four times. However, when specific nitrogen fixation was determined as hydrogen evolution, no significant differences were detected, consistent with the lack of changes of enzymes involved in nitrogen metabolism such as glutamate synthase and aspartate aminotransferase. These results are discussed in the context of the regulation of nitrogen fixation and nodule metabolism.  相似文献   

5.
Actinorhizal nodules do not usually evolve H2 due to the action of an uptake hydrogenase. We have found that nodules of several Frankia symbioses evolved large amounts of H2 gas when returned to air following exposure to 10 kPa C2HT2 during an acetylene reduction assay. Increased H2 evolution in air persisted for several days when intact root systems of Alnus incana (L.) Moench (inoculated with Frankia UGL 011101) were treated with 10 kPa C.H2 for 1 h. Full recovery of uptake hydrogenase activity required 4 to 8 days. Studies with crude homogenates of nodules of the same plants showed that hydrogenase (measured amperometrically with phenazine metho-sulfate as electron acceptor) was directly affected, since activity in treated nodules was only 10% of that in untreated nodules. A survey of actinorhizal symbioses revealed variation in the effect of an acetylene reduction assay on hydrogen metabolism. Nodules of three species, including Alnus rubra Bong, inoculated with Frankia HFPArD. showed complete inactivation of hydrogenase. H2 evolution in air was 25% of the C2H2 reduction rate and H, evolution in Ar/O2 was equal to the QH2 reduction rate. Two symbioses, Ceanothus americanus L. (soil inoculant) and Batista glomerata Baill. (soil inoculant) showed no change following an acetylene reduction assay. A third group of symbioses showed an intermediate response.  相似文献   

6.
The effect of genetic factors in Rhizobium on host plant biomass production and on the carbon costs of N2 fixation in pea root nodules was studied. Nine strains of Rhizobium leguminosarum were constructed, each containing one of three symbiotic plasmids in combination with one of three different genomic backgrounds. The resulting strains were tested in symbiosis with plants of Pisum sativum using a flow-through apparatus in which nodule nitrogenase activity and respiration were measured simultaneously under steady state conditions. Nodules formed by strains containing the background of JI6015 had the lowest carbon costs of N2 fixation (7.10–8.10 μmol C/μmol N2), but shoot dry weight of those plants was also smaller than that of plants nodulated by strains with the background of B151 or JI8400. Nodules formed by these two strain types had carbon costs of N2 fixation varying between 11.26 and 13.95 μmol C/μmol N2. The effect of symbiotic plasmids on the carbon costs was relatively small. A time-course experiment demonstrated that nodules formed by a strain derived from JI6015 were delayed in the onset of nitrogenase activity and had a lower rate of activity compared to nodules induced by a strain with the background of B151. The relationship between nitrogenase activity, carbon costs of N2 fixation and host plant biomass production is discussed.  相似文献   

7.
Soybean [ Glycine max (L.) Merr. cv. Hobbit] plants nodulated by Bradyhizobium japonicum strain USDA 110 were grown in pot cultures in severely P- and N-deficient soil and either colonized by the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus mosseae (Nicol. & Gerd.) Gerd. and Trappe or fertilized with a high (HP) or low (LP) level of KH2PO4 (0.6 or 0.3 m M , respectively), After 7 weeks of growth, nodule and chloroplast activities (C2H2 reduction and CO2 exchange rate) were determined. Photosynthetic P-use efficiency of CO2 fixation was significantly higher in VAM than in HP plants, while that of nitrogenase activity was lower. The LP plants were intermediate in both respects. The ratio of nodule to chloroplast activity [mol C2H2 reduced (mol CO2 fixed)−1] was highest in HP and lowest in VAM plants. Root colonization by the VAM fungus significantly increased nodule number and dry weight and reduced nodule specific mass and activity in comparison to HP plants. In spite of lower nodule activity, VAM plants were significantly larger and had higher N concentrations than the HP plants. The results suggest nonnutritional. VAM-elicited and host-mediated effects on the symbiotic functions of the legume association.  相似文献   

8.
Changes in nodule growth and activity and in the concentrations of soluble N compounds in nodules, leaves and xylem sap under conditions of altered N nutrition in the actinorhizal plant Myrica gale L. are reported. Altering the N nutrition of symbiotic plants may alter the internal regulation of combined N which in turn may regulate nodule growth and activity. Flushing nodules daily with 100% O2 caused a decline in amide concentration and an increase in nodule growth although plants had recovered some nitrogenase activity within 4 h of exposure to O2. Samples of nodules, leaves and xylem sap were derivatized and amino acids identified and quantified using either reverse phase high performance liquid chromatography or gas chromatography-mass spectrometry in single ion monitoring mode. The ratio of asparagine in the nodules to that in the xylem was much higher in plants fed N (6.7 for NH+4-fed and 8.3 for NO3-fed plants) than for N2-fixing plants (2.5). Significant amounts of 15N added as 15NH+4 or 15NO3 accumulated in nodules following accumulation in the shoot which is consistent with the translocation of N to the nodules via the phloem. The uptake of 15NH+4 led to the synthesis and subsequent translocation of glutamine in the xylem sap. These results are discussed in terms of the feedback mechanisms that may regulate nitrogen fixation in Myrica root nodules.  相似文献   

9.
Expression of Bradyrhizobium japonicum wild-type strain USDA110 nirK , norC and nosZ denitrification genes in soybean root nodules was studied by in situ histochemical detection of β -galactosidase activity. Similarly, PnirK- lacZ , PnorC- lacZ , and PnosZ- lacZ fusions were also expressed in bacteroids isolated from root nodules. Levels of β -galactosidase activity were similar in both bacteroids and nodule sections from plants that were solely N2-dependent or grown in the presence of 4 m M KNO3. These findings suggest that oxygen, and not nitrate, is the main factor controlling expression of denitrification genes in soybean nodules. In plants not amended with nitrate, B. japonicum mutant strains GRK308, GRC131, and GRZ25, that were altered in the structural nirK , norC and nosZ genes, respectively, showed a wild-type phenotype with regard to nodule number and nodule dry weight as well as plant dry weight and nitrogen content. In the presence of 4 m M KNO3, plants inoculated with either GRK308 or GRC131 showed less nodules, and lower plant dry weight and nitrogen content, relative to those of strains USDA110 and GRZ25. Taken together, the present results revealed that although not essential for nitrogen fixation, mutation of either the structural nirK or norC genes encoding respiratory nitrite reductase and nitric oxide reductase, respectively, confers B. japonicum reduced ability for nodulation in soybean plants grown with nitrate. Furthermore, because nodules formed by each the parental and mutant strains exhibited nitrogenase activity, it is possible that denitrification enzymes play a role in nodule formation rather than in nodule function.  相似文献   

10.
Numerous biochemical and physiological studies have demonstrated the importance of ascorbate (ASC) as a reducing agent and antioxidant in higher plant metabolism. Of special note is the capacity of ASC to eliminate damaging activated oxygen species (AOS) including O2· and H2O2. N2-fixing legume nodules are especially vulnerable to oxidative damage because they contain large amounts of leghaemoglobin which produces AOS through spontaneous autoxidation; thus, ASC and other components of the ascorbate–reduced glutathione (ASC–GSH) pathway are critical antioxidants in nodules. In order to establish a meaningful correlation between concentrations of ASC and capacity for N2 fixation in legume root nodules, soybean ( Glycine max ) plants were treated with excess ASC via exogenous irrigation or continuous intravascular infusion through needles inserted directly into plant stems. Treatment with ASC led to striking increases in nitrogenase activity (acetylene reduction), nodule leghaemoglobin content, and activity of ASC peroxidase, a key antioxidant enzyme. The concentration of lipid peroxides, which are indicators of oxidative damage and onset of senescence, was decreased in ASC-treated nodules. These results support the conclusion that ASC is critical for N2 fixation and that elevated ASC allows nodules to maintain a greater capacity to fix N2 over longer periods.  相似文献   

11.
Medicago ciliaris (L.) All., a salt-tolerant legume, was not nodulated by Rhizobium meliloti (2011), a strain commonly used for field inoculation of alfalfas. A strain of Rhizobium meliloti (ABS7) was isolated from saline Algerian soils. It is generally more salt-resistant than strain 2011, exhibits a higher rate of growth and induces the formation of nodules on M. ciliaris . C2H2 reduction activity of M. ciliaris nodules was inhibited by 50% in the presence of 200 m M NaCl in the culture medium. whereas 100 m M NaCl was sufficient to inhibit the activity of nodules of M. sativa (L. cv. Europe). C2H2 reduction by bacteroids, isolated from nodules of the two species of alfalfa, was directly inhibited by the presence of NaCl in the incubation medium. In both cases, glucose could support bacteroid nitrogen fixation, but only in a narrow range of O2 tensions. Bacteriods from M. ciliaris were more tolerant to salt than M. sativa ones. The salt resistance of bacteroids from nodules of plants watered with NaCl solutions was not improved in either species. Salt directly added to the incubation mixture of bacteroids or to the culture medium of plants inhibited O2 uptake of bacteroids isolated from nodules of both M. ciliaris and M. sativa . The depressive effect of NaCl on bacteroid C2H2 reduction could be directly related to the drop in bacteroid respiration. The nitrogen fixation capacity of the M. ciliaris-Rhizobium meliloti (ABS7) symbiosis under saline conditions leads us to recommend the introduction of this association in salt-troubled areas.  相似文献   

12.
An open flow-through gas system was used to determine the effect of C2H2 and elevated O2 on acetylene reduction activity (ARA) and respiration of the intact, potted root system of Alnus incana (L.) Moench in symbiosis with Frankia Avcll or with a local source of Frankia . Both symbiotic systems responded to C2H2 by an immediate plateau range in ARA. The Plateau in ARA was in some cases followed by a decline of less extent than reported for many legumes. A concurrent decline in net respiration of the root system was on average 8% of the CO2 efflux prior to C2H2 introduction.
Respiration of the root systems in both symbioses responded to elevated oxygen levels in the 10 kPa C2H2 atmosphere by an increase of up to 17% of the net respiration prior to C2H2 introduction in 21 kPa O2. In contrast, the elevated oxygen levels resulted in an immediate drop in ARA followed by a minor increase to a stable level lower than that at the preceding, lower oxygen tension. The symbiosis with the local Frankia had lost all ARA when the partial pressure of O2 exceeded 50 kPa, whereas the symbiosis with Avcll still had some activity at 80 kPa O2. This difference in tolerance of elevated O2 clearly shows that the oxygen exclusion mechanisms may be controlled by the microsymbiont in Alnus-Frankia symbioses. The symbiotic systems recovered ARA to a similar extent when returned from elevated O2 levels to 21 kPa O2.  相似文献   

13.
The use of nitrogen-fixing trees such as black alder (Alnus glutinosa L. Gaertn.) as forest silvicultural tools has recently been recognized. The potential benefit of black alder in silvicultural practices may be reduced by nitrate fertilization. Fifteen-month-old, nodulated, black alder rooted cuttings were fertilized for 6 days with 0, 7.5 or 15 mM NO3 to determine the influence of nitrate on acetylene reduction, nodule respiration and net photosynthesis. Acetylene reduction, net photosynthesis and nodule respiration were measured on the second, fourth and sixth days of nitrate application. Nitrate treatment significantly reduced acetylene reduction and nodule respiration by day 4. Acetylene reduction was 75% lower and nodule respiration 36% lower for the 15 mM NO3 treatment when compared to that of the control treatment. By day 6, net photosynthesis and nodule respiration were significantly reduced by 29 and 59%, respectively, for seedlings treated with 15 mM NO3. This study suggests that nitrate fertilization has a profound influence on nitrogenase activity and that nitrogen-fixing tree species may respond to nitrate fertilization by shifting photosynthetic rates.  相似文献   

14.
There is a coupled decrease in respiration and nitrogenase activityof nodules of many legume symbioses induced by exposure to acetylenein the presence of 21% O2. The respiratory costs of nitrogenaseactivity can be determined directly and distinguished from respiratorycosts for growth and maintenance of roots and nodules, usingthe linear regression of respiration on nitrogenase activity.The regression gradient represents the carbon costs for thetransfer of one pair of electrons by nitrogenase in terms ofmoles CO2 released per mole of ethylene produced. The interceptof the regression is the growth and maintenance respirationof nodules or nodulated roots. Exposure to acetylene at decreasedor increased oxygen concentrations in the range from 10% to70% resulted in a wider range of values for CO2 production andnitrogenase activity that fell on the same regression line asvalues obtained during the acetylene-induced decline at 21%oxygen. Oxygen concentrations below 10% increased significantlythe proportion of anaerobic respiration and produced changesin nitrogenase activity not correlated with CO2 production.Provided that these limits are not exceeded, oxygen-inducedchanges in nodule activity in the presence of acetylene canbe used to measure the efficiency of those symbioses which donot exhibit an acetylene-induced decline at a fixed oxygen concentration. Respiratory cost (moles CO2/mole ethylene) remained relativelyconstant with plant age for detached pea nodules (2.8), attachednodulated roots of lucerne (2.5) and detached nodulated rootsof field bean (4.2). However, for lucerne and field beans theproportion of total root respiration coupled to nitrogenasedeclined with time. A survey of 13 legume species gave values from 2 to 5 molesCO2/mole C2H4 Rhizobium strain and host-dependent variationsin efficiency were found. Key words: Nitrogenase, Legume root nodules, Respiration, Oxygen  相似文献   

15.
Applying silicon in the form of metasilicic acid (H4SiO3) or silicic acid (H4SiO3) to Bradyrhizobium -infected, hydroponically grown cowpea seedlings resulted in a significant ( P 0.05) increase in the number of nodules, nodule dry matter, and nitrogen fixed on a per plant basis. Total dry matter of plants increased with silicon supply, and the differences were significant ( P 0.05) at the higher silicon concentrations. Cowpea plants cultured in sand were also assessed for their response to silicic acid. Nodule number and nodule mass increased with silicon supply to sand cultured plants, though nitrogen fixation was unaltered. Although silicon is not essential for growth of cowpea, it is important for nodule formation and nodule functioning in hydroponically grown plants. Consequently, data collected and conclusions drawn from earlier glasshouse experiments, which have excluded silicon from nutrient solutions, may be flawed. Future studies on nodulation and nitrogen fixation using legumes in liquid culture must therefore include silicon as a nutrient element.  相似文献   

16.
Hydrogen metabolism was studied in three Casuarina species, C, equisetifolia Forst., C. glauca Sieb. ex. Spreng. and C. obesa Miq., either inoculated with the pure Frankia culture HFP CcI3 or inoculated with a crushed nodule inoculum made from C. glauca nodules. Nitrogenase (EC 1.7.99.2) activity and hydrogen evolution was measured on intact plants, while hydrogen uptake was measured on excised nodules and in nodule homogenates.
Nitrogenase activity was highest in C. glauca inoculated with C. glauca nodules, while no hydrogen evolution was detected. Hydrogen evolution was highest in the symbiosis between C. equisetifolia and HFP CcI3, but the nitrogenase activity showed intermediate values compared to the other symbioses. Measured at a concentration of 93 μ M H2, H2 uptake was highest in C. glauca inoculated with the C. glauca inoculum. H2 uptake activity in homogenates was 83% of the intact nodule rate. With phenazinemethosulfate as the electron acceptor, H2 uptake by nodule homogenates showed typical Michaelis-Menten kinetics with a Km of 21.3 μ M for H2.
The data presented here indicate a host plant effect on the endobiont which alters the hydrogen metabolism.  相似文献   

17.
The influence of P on N2 fixation and dry matter production of young pea ( Pisum sativum L. cv. Bodil) plants grown in a soil-sand mixture was investigated in growth cabinet experiments. Nodule dry weight, specific C2H2 reduction and P concentration in shoots responded to P addition before any growth response could be observed. The P concentration in nodules responded only slightly to P addition. A supply of P to P-deficient plants increased both the nodule dry weight, specific C2H2 reduction and P concentration in shoots relatively faster than it increased shoot dry weight and P concentration in nodules. Combined N applied to plants when N2 fixation had commenced, increased shoot dry weight only at the highest P levels. This indicates that the smaller plant growth at the low P levels did not result from N deficiency. The reduced nodulation and N2 fixation in P-deficient plants seem to be caused by impaired shoot metabolism and not by a direct effect of P deficiency of the nodules.  相似文献   

18.
Abstract: Long-term (14 days) carbon costs of N2 fixation were studied in pot trials. For this purpose the CO2 release from the root space of nodulated and non-nodulated (urea nourished) Vicia faba L. and Pisum sativum L. plants was compared and related to the amount of fixed or assimilated N. Additional measurements of shoot CO2 exchange and dry matter increment were carried out in order to calculate the overall carbon balance. The carbon costs for N2 fixation in Vicia faba 1. (2.87 mg C/mg NfiX) were higher than in Pisum sativum L. (2.03 mg C/mg Nfix). However, the better carbon efficiency in Pisum sativum 1. did not lead to a better growth performance compared to Vicia faba L. Vicia faba L. compensated for the carbon and energy expenditure by more intensive photosynthesis in the N2-fixing treatment. This was not the case with Pisum sativum L., where the carbon balance indicates that the carbon costs of N2 fixation restricted root growth. It is proposed that low carbon costs for N2 fixation indicate an adaptation to a critical carbon supply of roots and nodules, e.g., during the pod-filling of grain legumes.  相似文献   

19.
The competition between combined nitrogen and nitrogen fixation in legumes was studied after a 24 h exposure of nodulated French-beans to nitrate. Acetylene reduction by bacteroids was significantly inhibited and even nitrogenase extracted from nitrate-treated plant nodules showed reduced activity. Sensitivity to nitrate was directly related to nodule age and also increased with increasing oxygen tensions in the bacteroid incubations with or without a gas phase; it was particularly marked when glucose was used in place of succinate as energy-yielding substrate. Bacteroid respiration was also depressed by nitrate-treatment of the plants, leading to diminished acetylene reduction and this effect increased with increasing oxygen concentrations. Added oxyleghemoglobin partly restored oxygen consumption and acetylene reduction by bacteroid suspensions.  相似文献   

20.
When excised root nodules ofCoriaria arborea are assayed for nitrogenase activity at various pO2 they show a broad optimum between 20 and 40 kPa O2, with some evidence for adaptation. Continuous flow assays of nodulated root systems of intact plants indicate that Coriaria shows an acetylene induced decline in nitrogenase activity. When root systems were subject to step changes in pO2 nitrogenase activity responded with a steep decline followed by a slower rise in activity both at lower and higher than ambient pO2. Thus Coriaria nodules are able to adapt rapidly to oxygen levels well above and well below ambient. Measurement of nodule diffusion resistance showed that the adaptation is accompanied by rapid increase in resistance at above ambient pO2 and decrease in resistance at below ambient pO2. Plants grown with root systems at pO2 from 5–40 kPa O2 did not differ in growth or nodulation. The anatomy of Coriaria nodules shows they have a dense periderm which encircles the nodule and also closely invests the infected zone. The periderm is both thicker and more heavily suberised in nodules grown at high pO2 than at low pO2. Vacuum infiltration of India ink indicates that oxygen diffusion is entirely through the lenticel and via a small gap adjacent to the stele.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号