首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rice blast resistance (R) gene Pi-ta mediates gene-for-gene resistance against strains of the fungus Magnaporthe grisea that express avirulent alleles of AVR-Pita. Using a map-based cloning strategy, we cloned Pi-ta, which is linked to the centromere of chromosome 12. Pi-ta encodes a predicted 928-amino acid cytoplasmic receptor with a centrally localized nucleotide binding site. A single-copy gene, Pi-ta shows low constitutive expression in both resistant and susceptible rice. Susceptible rice varieties contain pi-ta(-) alleles encoding predicted proteins that share a single amino acid difference relative to the Pi-ta resistance protein: serine instead of alanine at position 918. Transient expression in rice cells of a Pi-ta(+) R gene together with AVR-Pita(+) induces a resistance response. No resistance response is induced in transient assays that use a naturally occurring pi-ta(-) allele differing only by the serine at position 918. Rice varieties reported to have the linked Pi-ta(2) gene contain Pi-ta plus at least one other R gene, potentially explaining the broadened resistance spectrum of Pi-ta(2) relative to Pi-ta. Molecular cloning of the AVR-Pita and Pi-ta genes will aid in deployment of R genes for effective genetic control of rice blast disease.  相似文献   

2.
Rice expressing the Pi-ta gene is resistant to strains of the rice blast fungus, Magnaporthe grisea, expressing AVR-Pita in a gene-for-gene relationship. Pi-ta encodes a putative cytoplasmic receptor with a centrally localized nucleotide-binding site and leucine-rich domain (LRD) at the C-terminus. AVR-Pita is predicted to encode a metalloprotease with an N-terminal secretory signal and pro-protein sequences. AVR-Pita(176) lacks the secretory and pro-protein sequences. We report here that transient expression of AVR-Pita(176) inside plant cells results in a Pi-ta-dependent resistance response. AVR-Pita(176) protein is shown to bind specifically to the LRD of the Pi-ta protein, both in the yeast two-hybrid system and in an in vitro binding assay. Single amino acid substitutions in the Pi-ta LRD or in the AVR-Pita(176) protease motif that result in loss of resistance in the plant also disrupt the physical interaction, both in yeast and in vitro. These data suggest that the AVR-Pita(176) protein binds directly to the Pi-ta LRD region inside the plant cell to initiate a Pi-ta-mediated defense response.  相似文献   

3.
Lee S  Jia Y  Jia M  Gealy DR  Olsen KM  Caicedo AL 《PloS one》2011,6(10):e26260
The Pi-ta gene in rice has been effectively used to control rice blast disease caused by Magnaporthe oryzae worldwide. Despite a number of studies that reported the Pi-ta gene in domesticated rice and wild species, little is known about how the Pi-ta gene has evolved in US weedy rice, a major weed of rice. To investigate the genome organization of the Pi-ta gene in weedy rice and its relationship to gene flow between cultivated and weedy rice in the US, we analyzed nucleotide sequence variation at the Pi-ta gene and its surrounding 2 Mb region in 156 weedy, domesticated and wild rice relatives. We found that the region at and around the Pi-ta gene shows very low genetic diversity in US weedy rice. The patterns of molecular diversity in weeds are more similar to cultivated rice (indica and aus), which have never been cultivated in the US, rather than the wild rice species, Oryza rufipogon. In addition, the resistant Pi-ta allele (Pi-ta) found in the majority of US weedy rice belongs to the weedy group strawhull awnless (SH), suggesting a single source of origin for Pi-ta. Weeds with Pi-ta were resistant to two M. oryzae races, IC17 and IB49, except for three accessions, suggesting that component(s) required for the Pi-ta mediated resistance may be missing in these accessions. Signatures of flanking sequences of the Pi-ta gene and SSR markers on chromosome 12 suggest that the susceptible pi-ta allele (pi-ta), not Pi-ta, has been introgressed from cultivated to weedy rice by out-crossing.  相似文献   

4.
5.
6.
7.
The molecular identification and characterization of the patched-related (ptr) gene and protein in Apis mellifera and Drosophila melanogaster are reported. Ptr proteins are closely related in predicted topology and domain organization to the protein encoded by the Drosophila segment polarity gene patched. Ptrs have 12 potential transmembrane domains arranged in two sets of 1+5 membrane-spanning segments containing a conserved sterol-sensing domain (SSD) and functional GxxxD and PPXY motifs. Phylogenetic analysis showed that Ptrs belong to a previously uncharacterized class of insect proteins that share a high level of sequence identity. Analysis using quantitative real-time polymerase chain reaction (qPCR) indicates that ptr gene is preferentially expressed during embryo stages of A. mellifera development; interestingly, this pattern of temporal expression was also observed for the D. melanogaster homologue, suggesting that these proteins might be involved in embryo morphogenesis. To understand Ptr function at the molecular level, we investigated the subcellular distribution of DmPtr. We have shown by biochemical analysis that DmPtr protein is tightly associated with membranes. Consistently, Ptr immunoreactivity appears to be localized at the sites of membrane furrow formation during cellularization of D. melanogaster embryos. These studies indicated that Ptrs belong to a previously uncharacterized class of insect transmembrane proteins that share a high level of sequence identity. Our analysis of ptr gene expression and protein localization suggest that Ptr might fulfil a developmental role by participating in processes that require growth and stabilization of plasma membrane.  相似文献   

8.
Mutations in SSY1 and PTR3 were identified in a genetic selection for components required for the proper uptake and compartmentalization of histidine in Saccharomyces cerevisiae. Ssy1p is a unique member of the amino acid permease gene family, and Ptr3p is predicted to be a hydrophilic protein that lacks known functional homologs. Both Ssy1p and Ptr3p have previously been implicated in relaying signals regarding the presence of extracellular amino acids. We have found that ssy1 and ptr3 mutants belong to the same epistasis group; single and ssy1 ptr3 double-mutant strains exhibit indistinguishable phenotypes. Mutations in these genes cause the nitrogen-regulated general amino acid permease gene (GAP1) to be abnormally expressed and block the nonspecific induction of arginase (CAR1) and the peptide transporter (PTR2). ssy1 and ptr3 mutations manifest identical differential effects on the functional expression of multiple specific amino acid transporters. ssy1 and ptr3 mutants have increased vacuolar pools of histidine and arginine and exhibit altered cell growth morphologies accompanied by exaggerated invasive growth. Subcellular fractionation experiments reveal that both Ssy1p and Ptr3p are localized to the plasma membrane (PM). Ssy1p requires the endoplasmic reticulum protein Shr3p, the amino acid permease-specific packaging chaperonin, to reach the PM, whereas Ptr3p does not. These findings suggest that Ssy1p and Ptr3p function in the PM as components of a sensor of extracellular amino acids.  相似文献   

9.
Fission yeast ptr1-1 is one of the mRNA transport mutants that accumulate poly(A)+ RNA in the nuclei at the nonpermissive temperature. We found that the ptr1+ gene encodes a homolog of Saccharomyces cerevisiae Tom1p, a hect type ubiquitin ligase. In ptr1-1, a conserved amino acid in the hect domain of Ptr1p is mutated. The ptr1+ gene is essential for growth and its mutation did not affect nuclear protein export. A ptr1-1 rae1-167 double mutant showed a synthetic effect on a growth defect, indicating that Ptr1p functionally interacts with an essential mRNA export factor Rae1p. We also isolated a multi-copy suppressor for ptr1-1 and found that it is the mpd2+ gene isolated as a multi-copy suppressor of cdc7-PD1.  相似文献   

10.
11.
The protozoan parasite Leishmania resists the antifolate methotrexate (MTX) by amplifying the R locus dihydrofolate reductase-thymidylate synthase ( dhfr-ts ) gene, the H locus ptr1 pterin reductase gene, and finally by mutation in a common folate/MTX transporter. Amplification of dhfr-ts has never been observed in Leishmania tarentolae MTX resistant mutants while ptr1 amplification is common. We have selected a L.tarentolae ptr1 null mutant for MTX resistance and observed dhfr-ts amplification in this mutant demonstrating that once a preferred resistance mechanism is unavailable, a second one will take over. By introducing the ptr1 gene at the R locus and the dhfr-ts gene at the H locus by gene targeting, we investigated the role of the resistance gene and the locus on the rate of gene amplification. Transfection studies indicated that ptr1 gave higher levels of MTX resistance than dhfr-ts. Consistent with this, when ptr1 was present as part of either the H locus or the R locus it was invariably amplified, while dhfr-ts was only amplified when ptr1 was inactivated. When dhfr-ts was present in a ptr1 null background on both the H locus and the R locus, amplification from the H locus was more frequent suggesting that both the gene and the locus are determining the frequency of gene amplification in Leishmania.  相似文献   

12.
耿显胜  杨明挚  黄兴奇  程在全  付坚  孙涛  李俊 《遗传》2008,30(1):109-114
用PCR法从景洪直立紫杆普通野生稻中克隆了抗稻瘟病基因Pi-ta+ 的4 672 bp序列, 该序列包含完整的编码框、内含子和终止密码子下游的331 bp。所克隆的直立型紫杆普通野生稻Pi-ta基因序列的编码区与已报道的日本栽培稻社糯(Yashiro-mochi)和元江普通野生稻相应序列间的同源性分别为99.86%和98.78%。与社糯的Pi-ta基因相比, 其编码区有4个核苷酸的差异并导致3个氨基酸残基的改变, 而内含子区域有6个核苷酸差异。对该序列进一步分析发现, 其推导的氨基酸残基的918位为丙氨酸, 属于稀有的抗稻瘟病的Pi-ta+ 等位基因。景洪直立型普通野生稻Pi-ta+ 基因因其编码序列和推导的氨基酸序列与社糯有所不同, 推测其抗病能力大小和抗菌谱可能与社糯的Pi-ta基因不同。直立型普通野生稻中Pi-ta+ 等位基因的克隆为进一步利用该基因改良栽培稻抗病能力提供了前期物质基础。  相似文献   

13.
The wheat tan spot fungus (Pyrenophora tritici-repentis) produces a well-characterized host-selective toxin (HST) known as Ptr ToxA, which induces necrosis in genotypes that harbor the Tsn1 gene on chromosome 5B. In previous work, we showed that the Stagonospora nodorum isolate Sn2000 produces at least 2 HSTs (SnTox1 and SnToxA). Sensitivity to SnTox1 is governed by the Snn1 gene on chromosome 1B in wheat. SnToxA is encoded by a gene with a high degree of similarity to the Ptr ToxA gene. Here, we evaluate toxin sensitivity and resistance to S. nodorum blotch (SNB) caused by Sn2000 in a recombinant inbred population that does not segregate for Snn1. Sensitivity to the Sn2000 toxin preparation cosegregated with sensitivity to Ptr ToxA at the Tsn1 locus. Tsn1-disrupted mutants were insensitive to both Ptr ToxA and SnToxA, suggesting that the 2 toxins are functionally similar, because they recognize the same locus in the host to induce necrosis. The locus harboring the tsn1 allele underlies a major quantitative trait locus (QTL) for resistance to SNB caused by Sn2000, and explains 62% of the phenotypic variation, indicating that the toxin is an important virulence factor for this fungus. The Tsn1 locus and several minor QTLs together explained 77% of the phenotypic variation. Therefore, the Tsn1-ToxA interaction in the wheat-S. nodorum pathosystem parallels that of the wheat-tan spot system, and the wheat Tsn1 gene serves as a major determinant for susceptibility to both SNB and tan spot.  相似文献   

14.
Nucleocytoplasmic transport of mRNA is essential for eukaryotic gene expression. However, how mRNA is exported from the nucleus is mostly unknown. To elucidate the mechanisms of mRNA transport, we took a genetic approach to identify genes, the products of which play a role in that process. From about 1000 temperature -sensitive (ts- or cs-) mutants, we identified five ts- mutants that are defective in poly(A)+ RNA transport by using a situ hybridization with an oligo(dT)50 as a probe. These mutants accumulate poly(A)+ RNA in the nuclei when shifted to a nonpermissive temperature. All five mutations are tightly linked to the ts- growth defects, are recessive, and fall into four different groups designated as ptr 1-4 (poly(A)+ RNA transport). Interestingly, each group of mutants has a differential localization pattern of poly(A)+ RNA in the nuclei at the nonpermissive temperature, suggesting that they have defects at different steps of the mRNA transport pathway. Localization of a nucleoplasmin-green fluorescent protein fusion suggests that ptr2 and ptr3 have defects also in nuclear protein import. Among the isolated mutants, only ptr2 showed a defect in pre-mRNA splicing. We cloned the ptr2+ and ptr3+ genes and found that they encode Schizosaccharomyces pombe homologues of the mammalian RCC1, a guanine nucleotide exchange factor for RAN/TC4, and the ubiquitin-activating enzyme E1 involved in ubiquitin conjugation, respectively. The ptr3+ gene is essential for cell viability, and Ptr3p tagged with green fluorescent protein was localized in both the nucleus and the cytoplasm. This is the first report suggesting that the ubiquitin system plays a role in mRNA export.  相似文献   

15.
Genetic mapping showed that the rice blast avirulence gene AVR-Pita is tightly linked to a telomere on chromosome 3 in the plant pathogenic fungus Magnaporthe grisea. AVR-Pita corresponds in gene-for-gene fashion to the disease resistance (R) gene Pi-ta. Analysis of spontaneous avr-pita(-) mutants indicated that the gene is located in a telomeric 6.5-kb BglII restriction fragment. Cloning and DNA sequencing led to the identification of a candidate gene with features typical of metalloproteases. This gene is located entirely within the most distal 1.5 kb of the chromosome. When introduced into virulent rice pathogens, the cloned gene specifically confers avirulence toward rice cultivars that contain Pi-ta. Frequent spontaneous loss of AVR-Pita appears to be the result of its telomeric location. Diverse mutations in AVR-Pita, including point mutations, insertions, and deletions, permit the fungus to avoid triggering resistance responses mediated by Pi-ta. A point mutation in the protease consensus sequence abolishes the AVR-Pita avirulence function.  相似文献   

16.
17.
Tan spot, caused by Pyrenophora tritici-repentis (Ptr), is a destructive foliar disease in all types of cultivated wheat worldwide. Genetics of tan spot resistance in wheat is complex, involving insensitivity to fungal-produced necrotrophic effectors (NEs), major resistance genes, and quantitative trait loci (QTL) conferring race-nonspecific and race-specific resistance. The Nebraska hard red winter wheat (HRWW) cultivar ‘Wesley’ is insensitive to Ptr ToxA and highly resistant to multiple Ptr races, but the genetics of resistance in this cultivar is unknown. In this study, we used a recombinant inbred line (RIL) population derived from a cross between Wesley and another Nebraska cultivar ‘Harry’ (Ptr ToxA sensitive and highly susceptible) to identify QTL associated with reaction to tan spot caused by multiple races/isolates. Sensitivity to Ptr ToxA conferred by the Tsn1 gene was mapped to chromosome 5B as expected. The Tsn1 locus was a major susceptibility QTL for the race 1 and race 2 isolates, but not for the race 2 isolate with the ToxA gene deleted. A second major susceptibility QTL was identified for all the Ptr ToxC-producing isolates and located to the distal end of the chromosome 1A, which likely corresponds to the Tsc1 locus. Three additional QTL with minor effects were identified on chromosomes 7A, 7B, and 7D. This work indicates that both Ptr ToxA-Tsn1 and Ptr ToxC-Tsc1 interactions are important for tan spot development in winter wheat, and Wesley is highly resistant largely due to the absence of the two tan spot sensitivity genes.  相似文献   

18.
The Ptr1 (Pseudomonas tomato race 1) locus in Solanum lycopersicoides confers resistance to strains of Pseudomonas syringae pv. tomato expressing AvrRpt2 and Ralstonia pseudosolanacearum expressing RipBN. Here we describe the identification and phylogenetic analysis of the Ptr1 gene. A single recombinant among 585 F2 plants segregating for the Ptr1 locus was discovered that narrowed the Ptr1 candidates to eight nucleotide‐binding leucine‐rich repeat protein (NLR)‐encoding genes. From analysis of the gene models in the S. lycopersicoides genome sequence and RNA‐Seq data, two of the eight genes emerged as the strongest candidates for Ptr1. One of these two candidates was found to encode Ptr1 based on its ability to mediate recognition of AvrRpt2 and RipBN when it was transiently expressed with these effectors in leaves of Nicotiana glutinosa. The ortholog of Ptr1 in tomato and in Solanum pennellii is a pseudogene. However, a functional Ptr1 ortholog exists in Nicotiana benthamiana and potato, and both mediate recognition of AvrRpt2 and RipBN. In apple and Arabidopsis, recognition of AvrRpt2 is mediated by the Mr5 and RPS2 proteins, respectively. Phylogenetic analysis places Ptr1 in a distinct clade compared with Mr5 and RPS2, and it therefore appears to have arisen by convergent evolution for recognition of AvrRpt2.  相似文献   

19.
Huang CL  Hwang SY  Chiang YC  Lin TP 《Genetics》2008,179(3):1527-1538
Rice blast disease resistance to the fungal pathogen Magnaporthe grisea is triggered by a physical interaction between the protein products of the host R (resistance) gene, Pi-ta, and the pathogen Avr (avirulence) gene, AVR-pita. The genotype variation and resistant/susceptible phenotype at the Pi-ta locus of wild rice (Oryza rufipogon), the ancestor of cultivated rice (O. sativa), was surveyed in 36 locations worldwide to study the molecular evolution and functional adaptation of the Pi-ta gene. The low nucleotide polymorphism of the Pi-ta gene of O. rufipogon was similar to that of O. sativa, but greatly differed from what has been reported for other O. rufipogon genes. The haplotypes can be subdivided into two divergent haplogroups named H1 and H2. H1 is derived from H2, with nearly no variation and at a low frequency. H2 is common and is the ancestral form. The leucine-rich repeat (LRR) domain has a high pi(non)/pi(syn) ratio, and the low polymorphism of the Pi-ta gene might have primarily been caused by recurrent selective sweep and constraint by other putative physiological functions. Meanwhile, we provide data to show that the amino acid Ala-918 of H1 in the LRR domain has a close relationship with the resistant phenotype. H1 might have recently arisen during rice domestication and may be associated with the scenario of a blast pathogen-host shift from Italian millet to rice.  相似文献   

20.
Rairdan GJ  Moffett P 《The Plant cell》2006,18(8):2082-2093
Plant nucleotide binding and leucine-rich repeat (NB-LRR) proteins contain a region of homology known as the ARC domain located between the NB and LRR domains. Structural modeling suggests that the ARC region can be subdivided into ARC1 and ARC2 domains. We have used the potato (Solanum tuberosum) Rx protein, which confers resistance to Potato virus X (PVX), to investigate the function of the ARC region. We demonstrate that the ARC1 domain is required for binding of the Rx N terminus to the LRR domain. Domain-swap experiments with Rx and a homologous disease resistance gene, Gpa2, showed that PVX recognition localized to the C-terminal half of the LRR domain. However, inappropriate pairings of LRR and ARC2 domains resulted in autoactive molecules. Thus, the ARC2 domain is required to condition an autoinhibited state in the absence of elicitor as well as for the subsequent elicitor-induced activation. Our data suggest that the ARC region, through its interaction with the LRR, translates elicitor-induced modulations of the C terminus into a signal initiation event. Furthermore, we demonstrate that physical disruption of the LRR-ARC interaction is not required for signal initiation. We propose instead that this activity can lead to multiple rounds of elicitor recognition, providing a means of signal amplification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号