首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cellular membranes can assume a number of highly dynamic shapes. Many cellular processes also require transient membrane deformations. Membrane shape is determined by the complex interactions of proteins and lipids. A number of families of proteins that directly bend membranes have been identified. Most associate transiently with membranes and deform them. These proteins work by one or more of three types of mechanisms. First, some bend membranes by inserting amphipathic domains into one of the leaflets of the bilayer; increasing the area of only one leaflet causes the membrane to bend. Second, some proteins form a rigid scaffold that deforms the underlying membrane or stabilizes an already bent membrane. Third, some proteins may deform membranes by clustering lipids or by affecting lipid ordering in membranes. Still other proteins may use novel but poorly understood mechanisms. In this review, we summarize what is known about how different families of proteins bend membranes.  相似文献   

2.
A wide spectrum of intracellular processes is dependent on the ability of cells to dynamically regulate membrane shape. Membrane bending by proteins is necessary for the generation of intracellular transport carriers and for the maintenance of otherwise intrinsically unstable regions of high membrane curvature in cell organelles. Understanding the mechanisms by which proteins curve membranes is therefore of primary importance. Here we suggest, for the first time to our knowledge, a quantitative mechanism of lipid membrane bending by hydrophobic or amphipathic rodlike inclusions which simulate amphipathic α-helices—structures shown to sculpt membranes. Considering the lipid monolayer matrix as an anisotropic elastic material, we compute the intramembrane stresses and strains generated by the embedded inclusions, determine the resulting membrane shapes, and the accumulated elastic energy. We characterize the ability of an inclusion to bend membranes by an effective spontaneous curvature, and show that shallow rodlike inclusions are more effective in membrane shaping than are lipids having a high propensity for curvature. Our computations provide experimentally testable predictions on the protein amounts needed to generate intracellular membrane shapes for various insertion depths and membrane thicknesses. We also predict that the ability of N-BAR domains to produce membrane tubules in vivo can be ascribed solely to insertion of their amphipathic helices.  相似文献   

3.
对外加脉冲电场处理的人红血球冷冻断裂和蚀刻的复型观察中发现在强电场(3KV/cm)作用下,细胞周围有颗粒状和纤维状结构。结合SDS电泳分析证明了它们是由于在电场作用下,红血球膜的带3蛋白和膜骨架蛋白(血影蛋白)脱出的结果。在强电场作用下,由于膜蛋白和膜骨架蛋白的脱出造成了对细胞膜的损伤,使细胞膜稳定性降低,细胞易变形和形成伪足。由于膜蛋白的脱出,多余的自由脂质进入细胞质内而形成泡状结构。外电场改变了蛋白-蛋白以及蛋白-脂分子间的作用可能是电穿孔的主要机理。本文还对当前公认的冷冻断裂中所观察到的膜中间颗粒的来源提出了疑问,并提出了它们还可能与冰晶有关。而冰晶的形成又与膜的亲水与疏水性有关。  相似文献   

4.
We used a continuum model based on the Helfrich free energy to investigate the binding dynamics of a lipid bilayer to a BAR domain surface of a crescent-like shape of positive (e.g. I-BAR shape) or negative (e.g. F-BAR shape) intrinsic curvature. According to structural data, it has been suggested that negatively charged membrane lipids are bound to positively charged amino acids at the binding interface of BAR proteins, contributing a negative binding energy to the system free energy. In addition, the cone-like shape of negatively charged lipids on the inner side of a cell membrane might contribute a positive intrinsic curvature, facilitating the initial bending towards the crescent-like shape of the BAR domain. In the present study, we hypothesize that in the limit of a rigid BAR domain shape, the negative binding energy and the coupling between the intrinsic curvature of negatively charged lipids and the membrane curvature drive the bending of the membrane. To estimate the binding energy, the electric potential at the charged surface of a BAR domain was calculated using the Langevin-Bikerman equation. Results of numerical simulations reveal that the binding energy is important for the initial instability (i.e. bending of a membrane), while the coupling between the intrinsic shapes of lipids and membrane curvature could be crucial for the curvature-dependent aggregation of negatively charged lipids near the surface of the BAR domain. In the discussion, we suggest novel experiments using patch clamp techniques to analyze the binding dynamics of BAR proteins, as well as the possible role of BAR proteins in the fusion pore stability of exovesicles.  相似文献   

5.
Although cell membranes are packed with proteins mingling with lipids, remarkably little is known about how proteins interact with lipids to carry out their function. Novel analytical tools are revealing the astounding diversity of lipids in membranes. The issue is now to understand the cellular functions of this complexity. In this Perspective, we focus on the interface of integral transmembrane proteins and membrane lipids in eukaryotic cells. Clarifying how proteins and lipids interact with each other will be important for unraveling membrane protein structure and function. Progress toward this goal will be promoted by increasing overlap between different fields that have so far operated without much crosstalk.  相似文献   

6.
This review describes: (i) perturbations of the membrane lipids that are induced by integral membrane proteins, and reciprocally, (ii) the effects that the lipids may have on the function of membrane-associated proteins. Topics of the first category that are covered include: stoichiometry and selectivity of the first shell of lipids associated at the intramembranous perimeter of transmembrane proteins; the chain configuration and exchange rates of the first-shell lipids; the effects of transmembrane peptides on transbilayer movement of lipids (flip-flop); the effects of membrane proteins on lipid polymorphism and formation of non-lamellar phases; and the effects of hydrophobic mismatch on lipid chain configuration, phase stability and selectivity of lipid-protein association. Topics of the second category are: the influence of lipid selectivity on conformational changes in the protein; the effects of elastic fluctuations of the lipid bilayer on protein insertion and orientation in membranes; the effects of hydrophobic matching on intramembrane protein-protein association; and the effects of intrinsic lipid curvature on membrane integration, oligomer formation and activity of membrane proteins.  相似文献   

7.
John K  Bär M 《Physical biology》2005,2(2):123-132
Cell membranes are composed of a mixture of lipids. Many biological processes require the formation of spatial domains in the lipid distribution of the plasma membrane. We have developed a mathematical model that describes the dynamic spatial distribution of acidic lipids in response to the presence of GMC proteins and regulating enzymes. The model encompasses diffusion of lipids and GMC proteins, electrostatic attraction between acidic lipids and GMC proteins as well as the kinetics of membrane attachment/detachment of GMC proteins. If the lipid-protein interaction is strong enough, phase separation occurs in the membrane as a result of free energy minimization and protein/lipid domains are formed. The picture is changed if a constant activity of enzymes is included into the model. We chose the myristoyl-electrostatic switch as a regulatory module. It consists of a protein kinase C that phosphorylates and removes the GMC proteins from the membrane and a phosphatase that dephosphorylates the proteins and enables them to rebind to the membrane. For sufficiently high enzymatic activity, the phase separation is replaced by travelling domains of acidic lipids and proteins. The latter active process is typical for nonequilibrium systems. It allows for a faster restructuring and polarization of the membrane since it acts on a larger length scale than the passive phase separation. The travelling domains can be pinned by spatial gradients in the activity; thus the membrane is able to detect spatial clues and can adapt its polarity dynamically to changes in the environment.  相似文献   

8.
Synaptotagmin-like mitochondrial-lipid-binding (SMP) domain proteins are evolutionarily conserved family of proteins in eukaryotes that localize between the endoplasmic reticulum (ER) and either the plasma membrane (PM) or other organelles. They are involved in tethering of these membrane contact sites through interaction with other proteins and membrane lipids. Recent structural and biochemical studies have demonstrated that SMP domain proteins transport a wide variety of lipid species by the ability of the SMP domain to harbor lipids through its unique hydrophobic cavity. Growing evidence suggests that SMP domain proteins play critical roles in cell physiology by their actions at membrane contact sites. In this review, we summarize the functions of SMP domain proteins and their direct roles in lipid transport across different membrane compartments. We also discuss their physiological functions in organisms as well as “bypass” pathways that act in parallel with SMP domain proteins at membrane contact sites.  相似文献   

9.
The folding and function of membrane proteins is controlled not only by specific but also by unspecific interactions with the constituent lipids. In this review, we focus on the influence of the spontaneous lipid curvature on the folding and insertion of peptides and proteins in membranes. Amphiphilic α-helical peptides, as represented by various antimicrobial sequences, are compared with β-barrel proteins, which are found in the outer membrane of Gram-negative bacteria. It has been shown that cationic amphiphilic peptides are always surface-bound in lipids with a negative spontaneous curvature like POPC, i.e. they are oriented parallel to the membrane plane. On the other hand, in lipids like DMPC with a positive curvature, these peptides can get tilted or completely inserted in a transmembrane state. Remarkably, the folding and spontaneous membrane insertion of β-barrel outer membrane proteins also proceeds more easily in lipids with a positive intrinsic curvature, while it is hampered by negative curvature. We therefore propose that a positive spontaneous curvature of the lipids promotes the ability of a surface-bound molecule to insert more deeply into the bilayer core, irrespective of the conformation, size, or shape of the peptide, protein, or folding intermediate. This article is part of a Special Issue entitled: Lipid-protein interactions.  相似文献   

10.
Proteins and lipids make sense in rational approaches to the design of systems for the study of membrane proteins. Lipids surround integral membrane proteins in their natural environment. Although lipids have always formed part of investigations into membrane proteins, it has generally been the proteins themselves that have taken the limelight. As knowledge of membrane proteins has increased, so has that of their interactions with lipids. This increased understanding of the interplay of proteins and lipids, together with existing knowledge of lipid properties, is enabling new approaches to be introduced for membrane protein study. The lipids can be used to control protein behaviour and as novel probes of protein motion.  相似文献   

11.
Intrinsic membrane proteins are solvated by a shell of lipid molecules interacting with the membrane-penetrating surface of the protein; these lipid molecules are referred to as annular lipids. Lipid molecules are also found bound between transmembrane α-helices; these are referred to as non-annular lipids. Annular lipid binding constants depend on fatty acyl chain length, but the dependence is less than expected from models based on distortion of the lipid bilayer alone. This suggests that hydrophobic matching between a membrane protein and the surrounding lipid bilayer involves some distortion of the transmembrane α-helical bundle found in most membrane proteins, explaining the importance of bilayer thickness for membrane protein function. Annular lipid binding constants also depend on the structure of the polar headgroup region of the lipid, and hotspots for binding anionic lipids have been detected on some membrane proteins; binding of anionic lipid molecules to these hotspots can be functionally important. Binding of anionic lipids to non-annular sites on membrane proteins such as the potassium channel KcsA can also be important for function. It is argued that the packing preferences of the membrane-spanning α-helices in a membrane protein result in a structure that matches nicely with that of the surrounding lipid bilayer, so that lipid and protein can meet without either having to change very much.  相似文献   

12.
Intracellular organelles, including endosomes, show differences not only in protein but also in lipid composition. It is becoming clear from the work of many laboratories that the mechanisms necessary to achieve such lipid segregation can operate at very different levels, including the membrane biophysical properties, the interactions with other lipids and proteins, and the turnover rates or distribution of metabolic enzymes. In turn, lipids can directly influence the organelle membrane properties by changing biophysical parameters and by recruiting partner effector proteins involved in protein sorting and membrane dynamics. In this review, we will discuss how lipids are sorted in endosomal membranes and how they impact on endosome functions.It is now well established that membranes along the endocytic and secretory pathway show differences not only in protein but also in lipid composition. For example, lipid gradients exist along the biosynthetic pathway with increasing density of cholesterol and sphingolipids from the endoplasmic reticulum (ER) to the plasma membrane (Maxfield and van Meer 2010). Also, phosphoinositides show distributions restricted to relatively well-characterized membrane territories (Di Paolo and De Camilli 2006). Given the facts that lipids are small and contain little structural information when compared with proteins, that they can diffuse rapidly within membranes, and that membranes are connected by membrane flow during transport, it is not always obvious how different lipids are segregated from each other.In this article, we will evoke different mechanisms that may contribute to the heterogeneous lipid composition of endocytic membranes, including physicochemical properties of the membrane, interactions with other proteins or lipids, and synthesis or degradation. In addition, it has also become apparent that peripheral membrane proteins often interact with membranes via diverse lipid-binding motifs, and thus that lipids directly contribute to the distribution of many peripheral membrane proteins. For example, phosphatidylinositol 3-phosphate (PI(3)P) is detected predominantly on early endosomes, where most characterized PI(3)P-binding proteins encoded by the human genome are found as well (Raiborg et al. 2013). We will also discuss how some lipids may regulate protein sorting and membrane transport within the endosomal system.  相似文献   

13.
A method for membrane reconstitution from cholate-solubilized microsomal proteins and lipids by a removal of the detergent on a column with charcoal has been developed. A comparative study showed that the membranes reconstituted by a dialysis or absorption do not differ from each other in terms of membrane proteins incorporation into lipid vesicles and cytochrome P-450 reconversion into cytochrome P-450. A possibility of biomembrane reconstitution from membrane proteins and lipids solubilized by a non-ionic detergent Triton X-100 was shown. A removal of the detergent results in a formation of membranes, which are chemically close to the original ones but ultrastructurally very different from the latter. On the other hand, absorption or dialysis of cholate-solubilized proteins and lipids results in reconstituted membranes with asymmetrically arranged intramembrane particles located on the hydrophobic surfaces of the membrane halves. The number and size of these particles are similar to those of the original microsomal membranes.  相似文献   

14.
The association of hemagglutinin (HA) with lipid rafts in the plasma membrane is an important feature of the assembly process of influenza virus A. Lipid rafts are thought to be small, fluctuating patches of membrane enriched in saturated phospholipids, sphingolipids, cholesterol and certain types of protein. However, raft-associating transmembrane (TM) proteins generally partition into Ld domains in model membranes, which are enriched in unsaturated lipids and depleted in saturated lipids and cholesterol. The reason for this apparent disparity in behavior is unclear, but model membranes differ from the plasma membrane in a number of ways. In particular, the higher protein concentration in the plasma membrane may influence the partitioning of membrane proteins for rafts. To investigate the effect of high local protein concentration, we have conducted coarse-grained molecular dynamics (CG MD) simulations of HA clusters in domain-forming bilayers. During the simulations, we observed a continuous increase in the proportion of raft-type lipids (saturated phospholipids and cholesterol) within the area of membrane spanned by the protein cluster. Lateral diffusion of unsaturated lipids was significantly attenuated within the cluster, while saturated lipids were relatively unaffected. On this basis, we suggest a possible explanation for the change in lipid distribution, namely that steric crowding by the slow-diffusing proteins increases the chemical potential for unsaturated lipids within the cluster region. We therefore suggest that a local aggregation of HA can be sufficient to drive association of the protein with raft-type lipids. This may also represent a general mechanism for the targeting of TM proteins to rafts in the plasma membrane, which is of functional importance in a wide range of cellular processes.  相似文献   

15.
Regardless of the nature of the protein constituents of membranes, the molecular arrangement of lipids interacting with them must satisfy hydrophobic, ionic, and steric requirements. Biological membranes have a great diversity of lipid constituents, and this diversity might have functional roles. It has been proposed, for example, that the hydrophobic regions of membrane proteins are stabilized in the membrane through interactions with lipids able to adopt configurations other than the bilayer structure. Progress in understanding at the molecular level how lipid-protein interactions control the properties of membrane proteins has been hindered by the lack of information concerning the structure of the hydrophobic regions of membrane proteins. Nevertheless, there are many examples in the literature describing how changes in the lipid environment affect physical and biochemical properties of membrane proteins. From these studies, discussed in this review, an overall picture of how lipids and proteins interact in membranes is beginning to emerge.  相似文献   

16.
Eukaryotic lipids in a bilayer are dominated by weak cooperative interactions. These interactions impart highly dynamic and pliable properties to the membrane. C2 domain-containing proteins in the membrane also interact weakly and cooperatively giving rise to a high degree of conformational plasticity. We propose that this feature of weak energetics and plasticity shared by lipids and C2 domain-containing proteins enhance a cell's ability to transduce information across the membrane. We explored this hypothesis using information theory to assess the information storage capacity of model and mast cell membranes, as well as differential scanning calorimetry, carboxyfluorescein release assays, and tryptophan fluorescence to assess protein and membrane stability. The distribution of lipids in mast cell membranes encoded 5.6–5.8 bits of information. More information resided in the acyl chains than the head groups and in the inner leaflet of the plasma membrane than the outer leaflet. When the lipid composition and information content of model membranes were varied, the associated C2 domains underwent large changes in stability and denaturation profile. The C2 domain-containing proteins are therefore acutely sensitive to the composition and information content of their associated lipids. Together, these findings suggest that the maximum flow of signaling information through the membrane and into the cell is optimized by the cooperation of near-random distributions of membrane lipids and proteins. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.  相似文献   

17.
During apoptosis, Bax-type proteins permeabilize the outer mitochondrial membrane to release intermembrane apoptogenic factors into the cytosol via a poorly understood mechanism. We have proposed that Bax and DeltaN76Bcl-x(L) (the Bax-like cleavage fragment of Bcl-x(L)) function by forming pores that are at least partially composed of lipids (lipidic pore formation). Since the membrane monolayer must bend during lipidic pore formation, we here explore the effect of intrinsic membrane monolayer curvature on pore formation. Nonlamellar lipids with positive intrinsic curvature such as lysophospholipids promoted membrane permeabilization, whereas nonlamellar lipids with negative intrinsic curvature such as diacylglycerol and phosphatidylethanolamine inhibited membrane permeabilization. The differential effects of nonlamellar lipids on membrane permeabilization were not correlated with lipid-induced changes in membrane binding or insertion of Bax or DeltaN76Bcl-x(L). Altogether, these results are consistent with a model whereby Bax-type proteins change the bending propensity of the membrane to form pores comprised at least in part of lipids in a structure of net positive monolayer curvature.  相似文献   

18.
The adsorption free energy of charged proteins on mixed membranes, containing varying amounts of (oppositely) charged lipids, is calculated based on a mean-field free energy expression that accounts explicitly for the ability of the lipids to demix locally, and for lateral interactions between the adsorbed proteins. Minimization of this free energy functional yields the familiar nonlinear Poisson-Boltzmann equation and the boundary condition at the membrane surface that allows for lipid charge rearrangement. These two self-consistent equations are solved simultaneously. The proteins are modeled as uniformly charged spheres and the (bare) membrane as an ideal two-dimensional binary mixture of charged and neutral lipids. Substantial variations in the lipid charge density profiles are found when highly charged proteins adsorb on weakly charged membranes; the lipids, at a certain demixing entropy penalty, adjust their concentration in the vicinity of the adsorbed protein to achieve optimal charge matching. Lateral repulsive interactions between the adsorbed proteins affect the lipid modulation profile and, at high densities, result in substantial lowering of the binding energy. Adsorption isotherms demonstrating the importance of lipid mobility and protein-protein interactions are calculated using an adsorption equation with a coverage-dependent binding constant. Typically, at bulk-surface equilibrium (i.e., when the membrane surface is "saturated" by adsorbed proteins), the membrane charges are "overcompensated" by the protein charges, because only about half of the protein charges (those on the hemispheres facing the membrane) are involved in charge neutralization. Finally, it is argued that the formation of lipid-protein domains may be enhanced by electrostatic adsorption of proteins, but its origin (e.g., elastic deformations associated with lipid demixing) is not purely electrostatic.  相似文献   

19.
The structure of the vacuolar membrane (tonoplast) was studied in red beet roots by IR spectroscopy. The vacuolar membrane was shown to be composed of highly ordered lipids which form regions of free liquid lipid bilayer loosely bound to integral proteins. The prevalence of polar lipids in the tonoplast is responsible for the high elasticity and fluidity of the membrane. The presence of alpha-tocopherol in the tonoplast membrane accounts for a high antioxidant activity of the membrane. Integral proteins are immersed into the liquid matrix of the lipid bilayer to a different extent. Examination of the temperature effect on the kinetics of the hydrogen-deuterium exchange in integral membrane proteins showed that the efficient energy of the hydrogen exchange activation was 24 +/- 4 kcal/mol at 19-40 degrees C and increased to 54 kcal/mol at 40-50 degrees C because of the thermal denaturation of proteins. The secondary structure of integral membrane proteins is characterized by a high content of alpha-helices (53%) which decreased to 8% after the extraction of lipids.  相似文献   

20.
Peripheral proteins can trigger the formation of domains in mixed fluid-like lipid membranes. We analyze the mechanism underlying this process for proteins that bind electrostatically onto a flat two-component membrane, composed of charged and neutral lipid species. Of particular interest are membranes in which the hydrocarbon lipid tails tend to segregate owing to nonideal chain mixing, but the (protein-free) lipid membrane is nevertheless stable due to the electrostatic repulsion between the charged lipid headgroups. The adsorption of charged, say basic, proteins onto a membrane containing anionic lipids induces local lipid demixing, whereby charged lipids migrate toward (or away from) the adsorption site, so as to minimize the electrostatic binding free energy. Apart from reducing lipid headgroup repulsion, this process creates a gradient in lipid composition around the adsorption zone, and hence a line energy whose magnitude depends on the protein's size and charge and the extent of lipid chain nonideality. Above a certain critical lipid nonideality, the line energy is large enough to induce domain formation, i.e., protein aggregation and, concomitantly, macroscopic lipid phase separation. We quantitatively analyze the thermodynamic stability of the dressed membrane based on nonlinear Poisson-Boltzmann theory, accounting for both the microscopic characteristics of the proteins and lipid composition modulations at and around the adsorption zone. Spinodal surfaces and critical points of the dressed membranes are calculated for several different model proteins of spherical and disk-like shapes. Among the models studied we find the most substantial protein-induced membrane destabilization for disk-like proteins whose charges are concentrated in the membrane-facing surface. If additional charges reside on the side faces of the proteins, direct protein-protein repulsion diminishes considerably the propensity for domain formation. Generally, a highly charged flat face of a macroion appears most efficient in inducing large compositional gradients, hence a large and unfavorable line energy and consequently lateral macroion aggregation and, concomitantly, macroscopic lipid phase separation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号