首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The benzophenanthridine alkaloid sanguinarine has antimicrobial and possibly anticancer properties but it is not clear to what extent these activities involve DNA damage. Thus, we studied its ability to cause DNA single and double strand breaks, as well as increased levels of 8-oxodeoxyguanosine, in human colon cancer cells and found DNA damage consistent with oxidation. Since the tumor suppressor p53 is frequently involved in inducing apoptosis following DNA damage we investigated the effect of sanguinarine in wild type, p53-mutant and p53-null colon cancer cell lines. We found them to be equally sensitive to this plant compound, indicating that cell death is not mediated by p53 in this case. In addition, our observation that apoptosis induced by sanguinarine is initiated very rapidly raised the question whether there is enough time for cellular signaling in response to DNA damage. Moreover, the abundance of double strand breaks is not consistent with only oxidative damage to DNA. We conclude that the majority of DNA double strand breaks in sanguinarine-treated cells are likely the result, rather than the cause, of apoptotic cell death and that apoptosis induced by sanguinarine is independent of p53 and most likely independent of DNA damage.  相似文献   

3.

Background

Ovarian cancer is the leading cause of death among gynecological cancers. Cisplatin is one of the most effective anticancer drugs used in the treatment of ovarian cancer. Development of resistance to cisplatin limits its therapeutic use. Most of the anticancer drugs, including cisplatin, are believed to kill cancer cells by inducing apoptosis and a defect in apoptotic signaling can contribute to drug resistance. The tumor suppressor protein p53 plays a critical role in DNA damage-induced apoptosis. During a yeast-based drug screening, NSC109268 was identified to enhance cellular sensitivity to cisplatin. The objective of the present study is to determine if p53 is responsible for cisplatin sensitization by NSC109268.

Results

NSC109268 enhanced sensitivity of ovarian cancer 2008 cells and its cisplatin resistant counterpart 2008/C13* cells which express wild-type p53. The potentiation of cisplatin sensitivity by NSC109268 was greater in 2008/C13* cells compared to 2008 cells. Cisplatin caused a concentration-dependent increase in p53 in 2008 and 2008/C13* cells, and the induction of p53 correlated with cisplatin-induced apoptosis as determined by the cleavage of PARP. NSC109268 alone had no effect on p53 but it enhanced p53 level in response to cisplatin. Knockdown of p53 by siRNA, however, did not attenuate cell death in response to cisplatin or combination of NSC109268 and cisplatin.

Conclusions

These results demonstrate that NSC109268 enhances sensitivity of ovarian cancer 2008 cells to cisplatin independent of p53.  相似文献   

4.
p53-dependent and -independent pathways of apoptotic cell death in sepsis   总被引:4,自引:0,他引:4  
Sepsis induces extensive apoptosis of lymphocytes, which may be responsible for the profound immune suppression of the disorder. Two potential pathways of sepsis-induced lymphocyte apoptosis, Fas and p53, were investigated. Lymphocyte apoptosis was evaluated 20-22 h after sepsis by annexin V or DNA nick-end labeling. Fas receptor-deficient mice had no protection against sepsis-induced apoptosis in thymocytes or splenocytes. p53 knockout mice (p53-/-) had complete protection against thymocyte apoptosis but, surprisingly, had no protection in splenocytes. p53-/- mice had no improvement in sepsis survival compared with appropriately matched control mice with sepsis. We conclude that both p53-dependent and p53-independent pathways of cell death exist in sepsis. This differential apoptotic response of thymocytes vs splenocytes in p53-/- mice suggests that either the cellular response or the death-inducing signal is cell-type specific in sepsis. The fact that p53-/- lymphocytes of an identical subtype (CD8-CD4+) were protected in thymi but not in spleens indicates that cell susceptibility to apoptosis differs depending upon other unidentified factors.  相似文献   

5.
Various DNA-targeting agents may initiate p53-dependent as well as p53-independent response and subsequent apoptosis via alternative cellular systems which include for instance p73, caspase-2 or Bcl-2 family proteins. The scope of involvement of individual molecules in this process and the mechanisms governing their potential interplay are still not entirely understood, in particular in highly aggressive cancers such as in malignant melanoma. In this work we investigated the role and involvement of both p53-dependent and -independent mechanisms in selected melanoma cell lines with differing status of p53 using a model DNA topoisomerase I inhibitor camptothecin (CPT). Here we report that CPT induced in Bowes melanoma cells apoptosis which is essentially p53 and mitochondria-dependent but with some involvement of caspase-2 and p73. Conversely, in mutant p53 melanoma cells overall levels of CPT-induced apoptosis are significantly lower, with p73 and caspase-2 signaling playing important roles. In addition, in these cells the expression of micro RNAs family 34 (miR-34) were low compared to wild-type p53 cells. The ectopic expression of wild type p53 than restored apoptotic response of cells to CPT despite the fact that the expression of miR-34 and miR-155 were not influenced. These results suggest that CPT induces multivariate cellular stress responses including activation of DNA-damage response-p53 pathway as well as p53-independent signaling and their mutual crosstalk play the decisive role in the efficient triggering of apoptosis in melanoma cells.  相似文献   

6.
The chemotherapeutic drug 5-FU is widely used in the treatment of a range of cancers, but resistance to the drug remains a major clinical problem. Since defects in the mediators of apoptosis may account for chemo-resistance, the identification of new targets involved in 5-FU-induced apoptosis is of main clinical interest. We have identified the ds-RNA-dependent protein kinase (PKR) as a key molecular target of 5-FU involved in apoptosis induction in human colon and breast cancer cell lines. PKR distribution and activation, apoptosis induction and cytotoxic effects were analyzed during 5-FU and 5-FU/IFNα treatment in several colon and breast cancer cell lines with different p53 status. PKR protein was activated by 5-FU treatment in a p53-independent manner, inducing phosphorylation of the protein synthesis translation initiation factor eIF-2α and cell death by apoptosis. Furthermore, PKR interference promoted a decreased response to 5-FU treatment and those cells were not affected by the synergistic antitumor activity of 5-FU/IFNα combination. These results, taken together, provide evidence that PKR is a key molecular target of 5-FU with potential relevance in the clinical use of this drug.  相似文献   

7.
BACKGROUND: The MDM2 oncogene is amplified or overexpressed in many human cancers and MDM2 levels are associated with poor prognosis. MDM2 not only serves as a negative regulator of p53 but also has p53-independent activities. This study investigates the functions of the MDM2 oncogene in colon cancer growth and the potential value of MDM2 as a drug target for cancer therapy, by inhibiting MDM2 expression with an antisense anti-human-MDM2 oligonucleotide. MATERIALS AND METHODS: The selected antisense mixed-backbone oligonucleotide was evaluated for its in vitro and in vivo antitumor activity in human colon cancer models: LS174T cell line containing wild-type p53 and DLD-1 cell line containing mutant p53. The levels of MDM2, p53 and p21 proteins were quantified by Western blot analysis. RESULTS: In vitro antitumor activity was found in both cell lines, resulting from specific inhibition of MDM2 expression. In vivo antitumor activity of the oligonucleotide occurred in a dose-dependent manner in both models and synergistically or additive therapeutic effects of MDM2 inhibition and the cancer chemotherapeutic agents 10-hydroxycamptothecin and 5-fluorouracil were also observed. CONCLUSIONS: These results suggest that MDM2 have a role in tumor growth through both p53-dependent and p53- independent mechanisms. We speculate that MDM2 inhibitors have a broad spectrum of antitumor activities in human cancers regardless of p53 status. This study should provide a basis for future development of anti-MDM2 antisense oligonucleotides as cancer therapeutic agents used alone or in combination with conventional chemotherapeutics.  相似文献   

8.
《Phytomedicine》2015,22(5):536-544
BackgroundMultidrug resistance (MDR) develops in nearly all patients with colon cancer. The reversal of MDR plays an important role in the success of colon cancer chemotherapy. One of the commonest mechanisms conferring MDR is the suppression of apoptosis in cancer cells.PurposeThis study investigated the sensitivity of cryptotanshinone (CTS) and dihydrotanshinone (DTS), two lipophilic tanshinones from a traditional Chinese medicine Salvia miltiorrhiza, in apoptosis-resistant colon cancer cells.MethodsCell viability was measured by MTT assay. Cell cycle distribution and apoptosis were determined by flow cytometry. Protein levels were analyzed by western blot analysis. The formation of acidic vesicular organelles was visualized by acridine orange staining.ResultsExperimental results showed that multidrug-resistant colon cancer cells SW620 Ad300 were sensitive to both CTS and DTS in terms of cell death, but with less induction of apoptosis when compared with the parental cells SW620, suggesting that other types of cell death such as autophagy could occur. Indeed, the two tanshinones induced more LC3B-II accumulation in SW620 Ad300 cells with increased autophagic flux. More importantly, cell viability was increased after autophagy inhibition, indicating that autophagy induced by the two tanshinones was pro-cell death. Besides, the cytotoxic actions of the two tanshinones were p53-independent, which could be useful in inhibiting the growth of apoptosis-resistant cancer cells with p53 defects.ConclusionThe current findings strongly indicate that both CTS and DTS could inhibit the growth of apoptosis-resistant colon cancer cells through induction of autophagic cell death and p53-independent cytotoxicity. They are promising candidates to be further developed as therapeutic agents in the adjuvant therapy for colon cancer, especially for the apoptosis-resistant cancer types.  相似文献   

9.
Our previous studies have shown that cells conditionally deficient in Tsg101 arrested at the G(1)/S cell cycle checkpoint and died. We created a series of Tsg101 conditional knock-out cell lines that lack p53, p21(Cip1), or p19(Arf) to determine the involvement of the Mdm2-p53 circuit as a regulator for G(1)/S progression and cell death. In this new report we show that the cell cycle arrest in Tsg101-deficient cells is p53-dependent, but a null mutation of the p53 gene is unable to maintain cell survival. The deletion of the Cdkn1a gene in Tsg101 conditional knock-out cells resulted in G(1)/S progression, suggesting that the p53-dependent G(1) arrest in the Tsg101 knock-out is mediated by p21(Cip1). The Cre-mediated excision of Tsg101 in immortalized fibroblasts that lack p19(Arf) seemed not to alter the ability of Mdm2 to sequester p53, and the p21-mediated G(1) arrest was not restored. Based on these findings, we propose that the p21-dependent cell cycle arrest in Tsg101-deficient cells is an indirect consequence of cellular stress and not caused by a direct effect of Tsg101 on Mdm2 function as previously suggested. Finally, the deletion of Tsg101 from primary tumor cells that express mutant p53 and that lack p21(Cip1) expression results in cell death, suggesting that additional transforming mutations during tumorigenesis do not affect the important role of Tsg101 for cell survival.  相似文献   

10.
Alcohol abuse is a major risk factor for cancer of the upper alimentary tract, the upper respiratory tract, and liver. Chromosome damage is used as early effect biomarker in the surveillance of human exposure to genotoxic carcinogens. In the present study, two genetic markers, namely chromosome aberrations (CAs) and micronuclei (MN), were used to evaluate genetic damage in peripheral lymphocytes from 20 alcoholics, 20 abstinent alcoholics, and 20 controls. Composition of the three groups was fairly similar as regards sex, age and smoking habits. A highly significant increase was observed in the frequencies of CA and MN in lymphocytes of alcoholics as compared both with controls and abstinent alcoholics. However, no correlation was found between the length of alcohol abuse and the frequencies of either biomarkers in alcoholics. CA and MN frequencies in abstinent alcoholics were similar than those in controls.Our data indicate that CA and MN can be two useful biomarkers to assess genetic damage associated with alcohol abuse. They could be included in programs for cancer prevention in alcoholics. Abstinence appears to normalize the frequency of both MN and CA. This could offer therapists another tool to help alcoholics change their lifestyle.  相似文献   

11.
Choudhuri T  Pal S  Agwarwal ML  Das T  Sa G 《FEBS letters》2002,512(1-3):334-340
The aim of this study was to determine the mechanisms of curcumin-induced human breast cancer cell apoptosis. From quantitative image analysis data showing an increase in the percentage of cells with a sub-G0/G1 DNA content, we demonstrated curcumin-induced apoptosis in the breast cancer cell line MCF-7, in which expression of wild-type p53 could be induced. Apoptosis was accompanied by an increase in p53 level as well as its DNA-binding activity followed by Bax expression at the protein level. Further experiments using p53-null MDAH041 cell as well as low and high p53-expressing TR9-7 cell, in which p53 expression is under tight control of tetracycline, established that curcumin induced apoptosis in tumor cells via a p53-dependent pathway in which Bax is the downstream effector of p53. This property of curcumin suggests that this molecule could have a possible therapeutic potential in breast cancer patients.  相似文献   

12.
Diets rich in fat result in higher concentrations of secondary bile acids or their salts in the colon, which may adversely affect cells of the colonic epithelium. Because secondary bile acids are thought to be genotoxic, exposing colon epithelial cells to secondary bile acids may induce DNA damage that might lead to apoptosis. The requirement for the p53 tumor suppressor gene in such events is unknown. In particular, the effects of secondary bile acids on colon epithelial cells having different p53 tumor suppressor gene status have not been examined. Therefore, HCT-116 and HCT-15 human colon adenocarcinoma cells, which express the wild-type and mutant p53 genes, respectively, were exposed to physiological concentrations of deoxycholate. The cells were then analyzed for evidence of DNA damage and apoptosis. After 2 h of incubation with 300 microM deoxycholate, both cell lines had greater levels of single-strand breaks in DNA as assessed by the comet assay. After 6 h of exposure to deoxycholate, HCT-116 and HCT-15 cells showed morphological signs of apoptosis, i.e., membrane blebbing and the presence of apoptotic bodies. Chromatin condensation and fragmentation were also seen after staining DNA with 4',6-diamidino-2-phenylindole. Other apoptotic assays revealed greater binding of annexin V-fluorescein isothiocyanate, as well as greater post-enzymatic labeling with dUTP-fluorescein isothiocyanate, by both cell lines exposed to deoxycholate. These data suggest that deoxycholate caused DNA damage in colon epithelial cells that was sufficient to trigger apoptosis in a p53-independent manner.  相似文献   

13.
Cadmium induces p53-dependent apoptosis in human prostate epithelial cells   总被引:1,自引:0,他引:1  
Cadmium, a widespread toxic pollutant of occupational and environmental concern, is a known human carcinogen. The prostate is a potential target for cadmium carcinogenesis, although the underlying mechanisms are still unclear. Furthermore, cadmium may induce cell death by apoptosis in various cell types, and it has been hypothesized that a key factor in cadmium-induced malignant transformation is acquisition of apoptotic resistance. We investigated the in vitro effects produced by cadmium exposure in normal or tumor cells derived from human prostate epithelium, including RWPE-1 and its cadmium-transformed derivative CTPE, the primary adenocarcinoma 22Rv1 and CWR-R1 cells and LNCaP, PC-3 and DU145 metastatic cancer cell lines. Cells were treated for 24 hours with different concentrations of CdCl(2) and apoptosis, cell cycle distribution and expression of tumor suppressor proteins were analyzed. Subsequently, cellular response to cadmium was evaluated after siRNA-mediated p53 silencing in wild type p53-expressing RWPE-1 and LNCaP cells, and after adenoviral p53 overexpression in p53-deficient DU145 and PC-3 cell lines. The cell lines exhibited different sensitivity to cadmium, and 24-hour exposure to different CdCl(2) concentrations induced dose- and cell type-dependent apoptotic response and inhibition of cell proliferation that correlated with accumulation of functional p53 and overexpression of p21 in wild type p53-expressing cell lines. On the other hand, p53 silencing was able to suppress cadmium-induced apoptosis. Our results demonstrate that cadmium can induce p53-dependent apoptosis in human prostate epithelial cells and suggest p53 mutation as a possible contributing factor for the acquisition of apoptotic resistance in cadmium prostatic carcinogenesis.  相似文献   

14.
15.
p53-dependent cell death signaling in neurons   总被引:15,自引:0,他引:15  
  相似文献   

16.
The mechanisms of sodium selenite-induced cell death in cervical carcinoma cells were studied during 24 h of exposure in the HeLa Hep-2 cell line. Selenite at the employed concentrations of 5 and 50 μmol/L produced time- and dose-dependent suppression of DNA synthesis and induced DNA damage which resulted in phosphorylation of histone H2A.X. These effects were influenced by pretreatment of cells with the SOD/catalase mimetic MnTMPyP or glutathione-depleting buthionine sulfoximine, suggesting the significant role of selenite-generated oxidative stress. Following the DNA damage, selenite activated p53-dependent pathway as evidenced by the appearance of phosphorylated p53 and accumulation of p21 in the treated cells. Concomitantly, selenite activated p38 pathway but its effect on JNK was very weak. p53- and p38-dependent signaling led to the accumulation of Bax protein, which was preventable by specific inhibitors of p38 (SB 203580) and p53 (Pifithrin-α). Mitochondria in selenite-treated cells changed their dynamics (shape and localization) and released AIF and Smac/Diablo, which initiated caspase-independent apoptosis as confirmed by the caspase-3 activity assay and the low effect of caspase inhibitors z-DEVD-fmk and z-VAD-fmk on cell death. We conclude that selenite induces caspase-independent apoptosis in cervical carcinoma cells mostly by oxidative stress-mediated activation of p53 and p38 pathways, but other selenite-mediated effects, in particular mitochondria-specific ones, are also involved.  相似文献   

17.
18.
c-Jun N-terminal kinase (JNK) plays a critical role in coordinating the cellular response to stress and has been implicated in regulating cell growth and transformation. To investigate the growth-regulatory functions of JNK1 and JNK2, we used specific antisense oligonucleotides (AS) to inhibit their expression. A survey of several human tumor cell lines revealed that JNKAS treatment markedly inhibited the growth of cells with mutant p53 status but not that of cells with normal p53 function. To further examine the influence of p53 on cell sensitivity to JNKAS treatment, we compared the responsiveness of RKO, MCF-7, and HCT116 cells with normal p53 function to that of RKO E6, MCF-7 E6, and HCT116 p53(-/-), which were rendered p53 deficient by different methods. Inhibition of JNK2 (and to a lesser extent JNK1) expression dramatically reduced the growth of p53-deficient cells but not that of their normal counterparts. JNK2AS-induced growth inhibition was correlated with significant apoptosis. JNK2AS treatment induced the expression of the cyclin-dependent kinase inhibitor p21(Cip1/Waf1) in parental MCF-7, RKO, and HCT116 cells but not in the p53-deficient derivatives. That p21(Cip1/Waf1) expression contributes to the survival of JNK2AS-treated cells was supported by additional experiments demonstrating that p21(Cip1/Waf1) deficiency in HCT116 cells also results in heightened sensitivity to JNKAS treatment. Our results indicate that perturbation of JNK2 expression adversely affects the growth of otherwise nonstressed cells. p53 and its downstream effector p21(Cip1/Waf1) are important in counteracting these detrimental effects and promoting cell survival.  相似文献   

19.
Several studies have shown that expression of exogenous wild-type p53 is detrimental to the growth of cell lines with absent or mutant p53. In this study, wild-type p53 cDNA expression plasmids were transfected into A549 lung carcinoma cells which had previously been shown by sequencing to contain wild-type p53. When a constitutively expressed wild-type p53 plasmid containing the neomycin resistance gene was transfected into these cells, no G418-resistant colonies contained the exogenous p53 cDNA even though the neomycin resistance gene was integrated. When cells were transfected with a dexamethasone-inducible wild-type p53 cDNA expression plasmid, induction of p53 expression resulted in a decreased growth rate and a decreased proportion of S-phase cells. Continuous treatment with dexamethasone resulted in continued p53 expression for 16 days, but beyond that time expression ceased and could not be reinduced. These data indicated that although the A549 cell line could proliferate in the presence of endogenous wild-type p53 there was a strong selection pressure against continued expression of additional exogenous wild-type p53.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号