首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The size and number of secretory granules in late larval salivary glands of Drosophila melanogaster have been related to interecdysial and early metamorphic development represented by well-known puffs in polytene chromosomes. Interecdysial period (puff stage 1 (PS1)) is characterized by presence of numerous small granules (11,000 per cell). The transition from PSI to early metamorphic phase (PS2 and upwards), induced by rapid elevation in endogenous steroid hormone ecdysone, is accompanied by continuous growth of granule diameter with concomitant reduction in their number per cell. In the PS4, just prior to secretion, approximately 3000 mature granules occur per cell. The mature state is associated with the change from hyperbolic to Gaussian distribution of granule number over their size range. Similar changes in secretory granule parameters were observed in interecdysial salivary glands explanted from 3rd instar larvae and cultured in vitro in medium containing 5x10(-6) m ecdysone.  相似文献   

2.
Summary The immunocytochemical peroxidase-antiperoxidase technique was used to identify prolactin- and growth hormone-producing cells in the porcine pituitary at the ultrastructural level. The growth hormone-producing cells contain round secretory granules (300 nm to 500 nm in diameter). The prolactin-producing cells can be identified by their distinct round and ovoid secretory granules which vary in size. Most of these cells contain large granules (450 nm to 750 nm in diameter), but some prolactin-producing cells display smaller secretory granules (250 nm to 500 nm). The two hormones were localized exclusively in the secretory granules. Staining for prolactin was observed in round and ovoid granules, as well as in small and polymorphic granules within the Golgi complex. This study confirmed (i) that the two hormones are located in different cells, and (ii) that under normal physiological conditions no one cell can synthesize and store both hormones simultaneously.  相似文献   

3.
The ultrastructure of clitellar epithelium of Metuphire posthuma revealed mainly three types of secretory cells. Most prominent among these are the large slender granular cells which contain a large number of secretory granules filling in the entire columncr region of the cell. The secretory granules are 2-4mu in diameter with a limiting membrane and containing numerous tiny vesicles in a matrix of varying electron density. Basolateral rough endoplasmic reticulum and extensive Golgi cisternae were seen interspersed with the secretory granules. The Golgi cisternae in these cells were quite prominent extending all around the secretory granules. The secretory granules of type 2 cells are spheroid bodies with motley appearance due to varying electron density of the matrix. The immature granules contain fibrillar material. Type 3 cells contained electron lucent membrane-bound mucous like secretory granules which are reticulated with filamentous materials. All the three cell types open to the exterior at the cuticular region which is characterised by the presence of numerous microvilli.  相似文献   

4.
The structural and ultrastructural modifications of the gonadotropic cells of goats were studied with an immunohistochemical method (peroxidase-antiperoxidase), in anoestrus, gestation and milk production. The cell type which predominates in anoestrus corresponds in its morphological characteristics to the classic FSH cells, and has two populations of homogeneous and electrodense secretory granules (141-244 nm and 244-400 nm in diameter), rough endoplasmic reticulum of flat cisternae and many large-sized lysosomes. During gestation secretory granules show a characteristic reduction in size and are less abundant; lysosomes are also more scarce and the endoplasmic reticulum shows a high development; dilated and intercommunicated cisternae show a slight electrodense content, characteristic of typical LH cells. During milk production the cells show an increase in the number of secretory granules which are still small, and an increase in the number of lysosomes which appear as in anoestrus.  相似文献   

5.
Summary Growth hormone (GH) secretory cells were identified by immunogold cytochemistry, and were classified on the basis of the size of secretory granules. Type I cells contained large secretory granules (250\2-350 nm in diameter). Type II cells contained the large secretory granules and small secretory granules (100\2-150 nm in diameter). Type III cells contained the small secretory granules. The percentages of each GH cell type changed with aging in male and female rats of the Wistar/Tw strain. Type I cells predominated throughout development; the proportion of type I cell was highest at 6 months of age, and decreased thereafter. The proportion of type II and type III cells decreased from 1 month to 6 months of age, but then increased at 12 and 18 months of age. The pituitary content of GH was highest at 6 months of age, and decreased thereafter. Estrogen and androgen, which are known to affect GH secretion, caused changes in the proportion of each GH cell type. The results suggest that when GH secretion is more active the proportion of type I GH cell increased, and when GH secretion is less active the proportion of type II and type III cells increased. The type III GH cell may therefore be an immature type of GH cell, and the type I cell the mature type of GH cell. Type II cells may be intermediate between type I and III cells.  相似文献   

6.
The detection of exocytotic fusion in patch-clamped secretory cells depends on measuring an increase in the cell membrane capacitance as new membrane is added to the plasma membrane. However, in the majority of secretory cells, secretory vesicles are too small (< 200 nm in diameter) to cause a detectable signal. We have found that incubations of normal mouse mast cells with the hydrophobic anion dipicrylamine (DPA), increases cell membrane capacitance by about three times. The large capacitive current induced by DPA was voltage-dependent, having a maximum value at -10 mV. The DPA-induced charge movement could be described by a single barrier model in which the DPA molecules move between two stable states in the bulk lipid matrix of the membrane. More importantly, the DPA treatment produced a sevenfold increase in the size of the capacitance steps observed upon the exocytotic fusion of single secretory granules. A similar amplification of DPA on the secretory vesicle capacitance was observed in a cell with larger (< or = 5 microns in diameter) or with smaller secretory granules (< 250 nm in diameter). Additionally, the increased granule membrane capacitance enlarged the transient capacitive discharge measured upon formation of a fusion pore in normal mast cell granules. Our results indicate that hydrophobic ions provide an important tool for high resolution studies of membrane capacitance.  相似文献   

7.
A pair of rosette glands (one of the tegumental glands in crustaceans) is present at the root of the dorsal spine of the thorax in mature embryos of the estuarine crab Sesarma haematocheir. Each rosette gland is spherical, 45-50 microm in diameter. This gland consists of three types of cells: 18-20 secretory cells, one central cell, and one canal cell. The secretory cells are further classified into two types on the basis of the morphology of secretory granules. There are 17-19 a cells, and only one b cell per rosette gland. An a cell contains spherical secretory granules of 2-3 microm in diameter. The granules are filled with highly electron-dense materials near the nucleus but have lower electron-density near the central cell. The secretory granules contained in the b cell have an irregular shape and are 1-1.5 microm in diameter. The density of the materials in the granules is uniform throughout the cytoplasm. The secretory granules contained in both the a and b cells are produced by the rough endoplasmic reticulum. Materials in the granules are exocytotically discharged into the secretory apparatus inside the secretory cell, sent to the extracellular channels in the central cell, and secreted through the canal cell. The rosette gland can be distinguished from the epidermal cells 2 weeks after egg-laying and the gland matures just before hatching. Materials produced by this gland are secreted after hatching and secretion continues through five stages of zoeal larvae. These rosette glands were never found in the megalopal larva. Rosette glands are found in the embryos of Sesarma spp. and Uca spp. In other crabs, tegumental glands are also found at the same position as in the embryo of S. haematocheir, but the fine structure of their glands is largely different from that of the rosette gland. On the basis of the morphology of secretory cells (a-g cell types), the tegumental glands of a variety of crab embryos can be classified into four types, including rosette glands (type I-IV). The function of these tegumental glands is not yet known, but different types of the gland seem to reflect the phylogeny of the crabs rather than differences of habitat.  相似文献   

8.
Prolactin (PRL) cells of the goat adenohypophysis have been identified by the IgG-gold procedure with anti-sheep PRL serum. The secretion of these cells show differences in size and labelling in the three reproductive stages under study. Cells containing PRL can be grouped into low secretory activity cells (PRL-I) and high secretory activity cells (PRL-II) regarding their ultrastructure and functional significance. PRL-I were the most frequent cells in animals at the anoestrus stage, presenting numerous secretory granules and scarce development of the rough endoplasmic reticulum (RER) and Golgi complex (GC). At anoestrus and pregnancy stages there are frequent granule fusions, and the hormonal content partially disappears, perhaps by digestion. PRL-II cells were the most numerous at the lactating stage, presenting a moderate number of secretory granules and well-developed GC and RER. Some PRL-II cells of lactating animals exhibiting scarce granules and numerous exocytosis suggesting a high secretory activity. In both anoestrus and pregnancy stages most granules range in diameter from 450 to 750 nm, in contrast to the lactating stage in which most granules range in diameter from 150 to 450 nm.  相似文献   

9.
In a human medullary carcinoma of thyroid gland containing calcitonin in light microscopic demonstration by the avidin biotin complex (ABC) method characteristic secretory granules were found electron microscopically in the cytoplasm of the tumour cells. They consisted in so-called type I granules (270 +/- 25 nm) and type II granules (135 +/- 17 nm). By the immuno gold staining (IGS) method the content of many secretory granules measuring 85-270 nm (152 +/- 18 nm) in diameter could be identified as calcitonin. These granules seemed to be predominantly of type II because of their nearly corresponding size and feature. The type I granules were less frequent in number and they showed no or little immunoreactivity. The results indicate that the IGS-method is practicable to demonstrate the ultrastructural localization of calcitonin and to identify clearly the nature of intracytoplasmic granules in electron microscopy.  相似文献   

10.
ECL cells are numerous in the rat stomach. They produce and store histamine and chromogranin-A (CGA)-derived peptides such as pancreastatin and respond to gastrin with secretion of these products. Numerous electron-lucent vesicles of varying size and a few small, dense-cored granules are found in the cytoplasm. Using confocal and electron microscopy, we examined these organelles and their metamorphosis as they underwent intracellular transport from the Golgi area to the cell periphery. ECL-cell histamine was found to occur in both cytosol and secretory vesicles. Histidine decarboxylase, the histamine-forming enzyme, was in the cytosol, while pancreastatin (and possibly other peptide products) was confined to the dense cores of granules and secretory vesicles. Dense-cored granules and small, clear microvesicles were more numerous in the Golgi area than in the docking zone, i.e. close to the plasma membrane. Secretory vesicles were numerous in both Golgi area and docking zone, where they were sometimes seen to be attached to the plasma membrane. Upon acute gastrin stimulation, histamine was mobilized and the compartment size (volume density) of secretory vesicles in the docking zone was decreased, while the compartment size of microvesicles was increased. Based on these findings, we propose the following life cycle of secretory organelles in ECL cells: small, electron-lucent microvesicles (pro-granules) bud off the trans Golgi network, carrying proteins and secretory peptide precursors (such as CGA and an anticipated prohormone). They are transformed into dense-cored granules (approximate profile diameter 100 nm) while still in the trans Golgi area. Pro-granules and granules accumulate histamine, which leads to their metamorphosis into dense-cored secretory vesicles. In the Golgi area the secretory vesicles have an approximate profile diameter of 150 nm. By the time they reach their destination in the docking zone, their profile diameter is between 200 and 500 nm. Exocytosis is coupled with endocytosis (membrane retrieval), and microvesicles in the docking zone are likely to represent membrane retrieval vesicles (endocytotic vesicles).  相似文献   

11.
The epithelium of the distal part of intestine of the lizard Lacerta vivipara has been studied by light and electron microscopy. The total number of endocrinocytes (argyrophilic cells) was found to increase from small bowel (57 +/- cell/mm2) to colon (9 +/- 69), and cloaca (99 +/- 8). Although the number of argentaffin cells increases from the small bowel to colon, cell decrease occurs from colon (42 +/- 6 cell/mm2) to cloaca (65 +/- 10 cell/mm2). On electronograms of the colon mucosal epithelium four types of endocrinocytes were identified. Type I--with secretory granules polymorphic for the size and form, with a high electron density core, and average size 206 +/- 31 nm. Type II--with secretory granules 265 +/- 20 nm in size, having spherical form and highly electronic dense contents. Type III--contains largest (350 +/- 12 nm), spherical, oval or irregularly-shaped secretory granules, with contents of various electronic density. Type IV--endocrine cells having small (176 +/- 5 nm) spherical or oval secretory granules with a highly electronic dense core. Besides, "mixed" cells were identified, whose cytoplasm contained simultaneously mucous and endocrinous granules.  相似文献   

12.
Y Iwama  F Sasaki 《Acta anatomica》1989,134(3):232-236
Somatotropes, lactotropes and corticotropes of adult male mice were identified with immunohistochemistry in the adenohypophysis fixed by OsO4 alone. Somatotropes were classified into type I somatotropes that contain large (350 nm in diameter) round secretory granules and type II somatotropes that contain small (100-200 nm in diameter) round secretory granules. Most somatotropes were type I somatotropes. Lactotropes were also classified into type I lactotropes that contain irregularly shaped secretory granules and type II lactotropes containing small (100-200 nm in diameter) round secretory granules. Corticotropes are irregular stellate or slender cells with little cytoplasm. They contain round solid secretory granules in various densities along the cell periphery. Most of these are low-density granules (200-300 nm in diameter) and a few are high-density granules (200-250 nm in diameter). These data were compared with the classical data of mouse adenohypophysial cells that were fixed in OsO4 alone and identified only by conventional electron microscopy.  相似文献   

13.
The GH3 rat pituitary cell line which secretes prolactin (PRL) is characterized by the paucity and small size of secretory granules. We looked for the presence, in these cells and in normal PRL cells, of two acidic tyrosine-sulfated proteins which are widely distributed in dense-core secretory granules of endocrine and neuronal cells, secretogranins I and II, using immunofluorescence and electron microscope immunoperoxidase techniques. Both secretogranins were detected in secretory granules of GH3 cells and of normal cells. Moreover, with our pre-embedding approach, secretogranins were localized within some RER cisternae and within all sacules of the Golgi stacks in both PRL cell models. A few small vesicles, large dilated vacuolar or multivesicular structures, and some lysosome-like structures were also immunoreactive. Double localization of secretogranins and PRL performed on GH3 cells by immunofluorescence indicated that all cells contained secretogranins I and II, whereas only 50-70% of the cells contained PRL. Moreover, in the case of hormone treatment known to increase the number of secretory granules, most if not all mature secretory granules were immunoreactive for secretogranins, whereas in certain cells some of the granules were apparently not immunoreactive for PRL. These immunocytochemical observations show that GH3 cells, which under normal conditions form only a small number of secretory granules, produce secretogranins and package them into these granules.  相似文献   

14.
Summary The dorsal and subventral esophageal glands and their secretory granules in the root-knot nematodeMeloidogyne incognita changed during parasitism of plants. The subventral esophageal glands shrank and the dorsal gland enlarged with the onset of parasitism. While secretory granules formed by both types of glands were spherical, membrane-bound, and Golgi derived, the granules differed in morphology and size between the two types of glands. Subventral gland extensions in preparasitic second-stage juveniles were packed with secretory granules which varied in diameter from 700–1,100 nm and had a finely granular matrix. Within the matrix of each subventral gland granule was an electron-transparent core that contained minute spherical vesicles. The size and position of the core varied within different granules. Few granules were present in the dorsal gland extension in preparasitic juveniles. The matrix of dorsal gland secretory granules formed during parasitism was homogeneous and more electron-dense than the matrix of subventral gland granules. Subventral gland secretory granules of parasitic juveniles and adult females appeared degenerate.  相似文献   

15.
Morphometric evidence derived from studies of mast cells, pancreatic acinar cells and other cell types supports a model in which the post-Golgi processes that generate mature secretory granules can be resolved into three steps: (1) fusion of small, Golgi-derived progranules to produce immature secretory granules which have a highly constrained volume; (2) transformation of such immature granules into mature secretory granules, a process often associated with a reduction in the maturing granule’s volume, as well as changes in the appearance of its content and (3) fusion of secretory granules of the smallest size, termed ‘unit granules’, forming granules whose volumes are multiples of the unit granule’s volume. Mutations which perturb this process can cause significant pathology. For example, Chediak–Higashi syndrome / lysosomal trafficking regulator (CHS)/(Lyst) mutations result in giant secretory granules in a number of cell types in human beings with the Chediak–Higashi syndrome and in ‘beige’ (Lystbg/Lystbg) mice. Analysis of the secretory granules of mast cells and pancreatic acinar cells in Lyst-deficient beige mice suggests that beige mouse secretory granules retain the ability to fuse randomly with other secretory granules no matter what the size of the fusion partners. By contrast, in normal mice, the pattern of granule–granule fusion occurs exclusively by the addition of unit granules, either to each other or to larger granules. The normal pattern of fusion is termed unit addition and the fusion evident in cells with CHS/Lyst mutations is called random addition. The proposed model of secretory granule formation has several implications. For example, in neurosecretory cells, the secretion of small amounts of cargo in granules constrained to a very narrow size increases the precision of the information conveyed by secretion. By contrast, in pancreatic acinar cells and mast cells, large granules composed of multiple unit granules permit the cells to store large amounts of material without requiring the amount of membrane necessary to package the same amount of cargo into small granules. In addition, the formation of mature secretory granules that are multimers of unit granules provides a mechanism for mixing in large granules the contents of unit granules which differ in their content of cargo.  相似文献   

16.
Summary The fine structure of each type of anterior pituitary cell in the male goat was studied through the application of a superimposition technique in which adjacent thick sections were used to identify individual cells beforehand by light-microscopic immunohistochemistry. A cone of the pars intermedia protrudes into the pars anterior, being surrounded by the narrow pituitary cleft; the immunohistochemical appearances of the cells forming the cone resemble those of the pars anterior. Several follicles appear in the pars anterior. Ultrastructurally GH cells resemble prolactin cells. The secretory granules of both types are spherical; the diameter of the former is about 340 nm, whereas that of the latter is about 440 nm. ACTH cells are polygonal in shape with secretory granules, about 180 nm in diameter, scattered throughout the cytoplasm. TSH cells, which are spherical in shape, contain the smallest secretory granules, 150 nm in diameter. The highly electron-dense LH cells contain numerous secretory granules about 210 nm in diameter. Their nuclei are irregular with incisures. Thus, the anterior pituitary cells of the goat are ultrastructurally characteristic and species-specific.  相似文献   

17.
The clonal analysis in the ultrastructure of tumor-lymphocyte interaction was carried out in order to investigate the precise mechanism responsible for CTL-mediated cytolysis of tumor cells. A glioma-derived cell line (GI-1) and autologous tumor-specific cytotoxic T lymphocyte (CTL) clones were established. The CTL lines were composed of the morphologically homogeneous lymphocytes with intracytoplasmic electron-dense secretory granules. After the stimulation by GI-1, the size of the CTLs increased, and the intracytoplasmic organellas were developed. It was noted that the intracytoplasmic secretory granules markedly increased in number and size, and many of them exhibited an "immature" appearance. On the other hand, the tumor cells underwent a progressive degeneration. In contrast, the stimulation by other antigens caused only small morphological changes in the CTLs. It is suggested, therefore, that the secretory function of tumor-specific CTLs is activated by the stimulation of the specific antigen, and that soluble factors in the secretory granules in the CTLs may be closely associated with the mechanism of target cell lysis.  相似文献   

18.
Summary In a human medullary carcinoma of thyroid gland containing calcitonin in light microscopic demonstration by the avidin biotin complex (ABC) method characteristic secretory granules were found electron microscopically in the cytoplasm of the tumour cells. They consisted in so-called type I granules (270±25 nm) and type II granules (135±17 nm). By the immuno gold staining (IGS) method the content of many secretory granules measuring 85–270 nm (152±18 nm) in diameter could be identified as calcitonin. These granules seemed to be predominantly of type II because of their nearly corresponding size and feature. The type I grnaules were less frequent in number and they showed no or little immunoreactivity. The results indicate that the IGS-method is practicable to demonstrate the ultrastructural localization of calcitonin and to identify clearly the nature of intracytoplasmic granules in electron microscopy.  相似文献   

19.
Morphological and functional changes of pituitary LH/FSH cells in the female rat were investigated using the parameters on the radioimmunoassay, immunohistochemistry and ultrastructure. Changes in immunostainability, populations of intensely immunostained LH and FSH cells and total volume of secretory granules were correlated with the changes in pituitary LH and FSH contents during the estrous cycle. The immunohistochemical feature of gonadotropin release is the transformation of intensely immunostained gonadotrophs into the weakly stained ones. Secretory granules of small diameter (less than 150 nm) were numerous just before LH and FSH surges then sharply declined along with LH and FSH surges. The number of secretory granules of large diameter (larger than 150 nm) also decreased when LH and FSH surges took place. Then the number increased progressively until 17.00 h on the day of diestrus, corresponding to the increase in pituitary LH and FSH contents. It is suggested that small secretory granules are a release pool while large ones are a reserve pool.  相似文献   

20.
Summary The pancreatic islets ofCarassius carassius have been studied by electron microscopy. 1. Besides A-, B- and D-cells, two new cell types, the fourth and the fifth, have been identified. The fourth cell type is numerous; it occurs interposed among the other types of islet cells or in small clusters. The secretory granules (90–280 mg in diameter) are round or oval and usually with much lower electron density than α- and δ-granules. The secretory granules of the fifth type of cell (approximately 140–240 mμ in diameter) contain finely granular material and an electron dense core that is round or often tetra- or hexagonal. 2. The islet cells with clear cytoplasmic matrix generally contain large numbers of fine, agranular and cored vesicles 400–680 ? in diameter. They appear, in bead-like chains, or randomly scattered throughout the cytoplasm, or often clustered in aggregates close to the secretory granules and show evidence of incorporation into the secretory granules. The two types of vesicles may be formed by constriction or pinching-off of the tubular smooth endoplasmic reticulum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号