首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Abstract. Are the dynamics of most ecological processes fundamentally increased in frequency or magnitude in fragmented habitats? Hyperdynamism could alter a wide range of population, community, and landscape phenomena, and appears to be evident in fragmented tropical, temperate, and boreal communities. I suggest some potential causes and consequences of hyperdynamism, and argue that the responses of many species and ecological processes to habitat fragmentation can be understood in this context.  相似文献   

3.
Extinction risk in fragmented habitats   总被引:4,自引:1,他引:4  
  相似文献   

4.
5.
Butterfly community structure in fragmented habitats   总被引:12,自引:0,他引:12  
We analysed effects of habitat fragmentation on the diversity, abundance, and life history traits of butterflies on 33 calcareous grasslands. Diversity of butterflies was positively correlated with habitat area (as was plant diversity), but not with habitat isolation. In contrast to expectations, butterfly densities of polyphagous and oligophagous species declined with habitat area whereas densities of monophagous species increased. The z -values, i.e. the slope of species–area relationships, increased with food plant specialization, from 0.07 in polyphagous, 0.11 in oligophagous, 0.16 in strongly oligophagous to 0.22 in monophagous species, and were 0.14 in plant species. Significant z -values were not only found for total species richness, based on a sample size adjusted to fragment area ( z  = 0.12), but also for the local density of butterfly species richness, based on equal sample size across all habitat fragments ( z  = 0.06). To our knowledge, this is the first study to show differential responses of monophagous, oligophagous and polyphagous species to area with respect to species richness and population density.  相似文献   

6.
Habitat fragmentation versus fragmented habitats   总被引:1,自引:0,他引:1  
Habitats often show similar present structuring, but contrasting histories: habitats occur naturally fragmented due to abiotic or biotic factors over long time periods, but may also have become fragmented only recently through transformation from interconnected to highly fragmented habitats within short time periods. Species and populations being faced with such contrasting habitat scenarios also show contrasting responses at species and intraspecific level. Organisms and populations from naturally fragmented habitats may show a reduction in their genetic load (purging) due to purifying selection in isolation. In contrast, sudden habitat transformations from interconnected to highly fragmented structures and the resulting transition from gene flow or panmixia to strong population differentiation often have negative effects on biota; while species occur in interconnected population networks (maintaining a high proportion of genetic diversity), a sudden breakdown of gene flow may lead to a severe loss of genetic diversity and the manifestation of weakly deleterious alleles. In consequence, fragmented habitats need not have a negative impact on species per se, but the history of habitat structures, particularly fast transformation processes, may severely affect the persistence and fitness of species.  相似文献   

7.
Abstract. Habitat fragmentation affects both plants and pollinators. Habitat fragmentation leads to changes in species richness, population number and size, density, and shape, thus to changes in the spatial arrangement of flowers. These changes influence the amount of food for flower-visiting insects and the quantity and quality of pollinations. Seed set in small populations is often reduced and genetic variation is expected but not always found to be low. The majority of studies show that low flower densities have reduced pollination success and higher inbreeding. Density effects are stronger than size effects. Most studies concluded that species richness in flower-visiting insects is directly related to richness in plant species. However, the consequences of low insect species richness for pollination are not always clear, depending on the studied pollinator-plant relationship. The effects of the presence of simultaneously flowering species are highly dependent on the circumstances and may range from competition to facilitation. Other flowering plant species may play a role as stepping stones or corridor in the connection between populations. In the absence of stepping stones even short distances between populations act as strong barriers for gene flow. We illustrate the present review paper with own data collected for three plant species, rare in The Netherlands: Phyteuma spicatum ssp. nigrum (Campanulaceae), Salvia pratensis (Labiatae) and Scabiosa columbaria (Dipsacaceae). The species differ in their breeding systems and in the assemblage of visitor species. Data are shown on the effects of population size on species richness with consequences for seed set. Effects of flower density and isolation on pollen exchange are given. Since plant reproduction depends on the behaviour of individual insects and not on the overall behaviour of the species, the examples all point to individual insects and extrapolate to effects at the species level.  相似文献   

8.
A major conclusion of studying metapopulation biology is that species conservation should favor regional rather than local population persistence. Regional persistence is tightly linked to size, spatial configuration and quality of habitat patches. Hence it is important for the management of endangered species that priority patches can be identified. We developed a predictive model of patch occupancy by capercaillie, a threatened grouse species, based on a single snapshot of data. We used logistic regression to predict patch occupancy as a function of patch size, isolation, connectivity, relative altitude, and biogeographical area. The probability of a patch being occupied increased with patch size and increasing altitude, and decreased with increasing distance to the next occupied patch. Patch size was the most important predictor although occupied patches varied considerably in size. Our model only uses data on the number, size and spatial configuration of habitat patches. It is a useful tool to designate priority areas for conservation, i.e. large core patches with high resilience in habitat quality, smaller island‐patches that still have high probability of being inhabited or becoming recolonised, and patches functioning as “stepping stones”. If capercaillie is to be preserved, habitat suitability needs to be maintained in a functional network of patches that account for size and inter‐patch distance thresholds as found in this study. We suggest that similar area‐isolation relationships are valid for almost any region within the distribution range of capercaillie. The thresholds for occupancy are however likely to depend on characteristics of the respective landscape. The outcome of our study emphasises the need for future investigations that explore the relationship between patch occupancy, matrix quality and its resistance to dispersing individuals.  相似文献   

9.
The conservation of biodiversity is increasingly dependent on human-altered habitats. In a fragmented forest landscape in northern Costa Rica within the Mesoamerican Biological Corridor, an area of great conservation importance, we compared the diversity and composition of ground-dwelling beetle communities in five habitat types along a gradient of increasing disturbance: primary forest, logged forest, secondary forest, plantation (Gmelina arborea) and pasture. Using pitfall trapping we captured a total of 1,877 beetles (Coleoptera), comprising 422 morphospecies in 26 families. The plantation sites had the lowest number of species followed by secondary forest and pasture. Multivariate analysis separated the beetle fauna according to land use, and suggested that only the logged forest maintains a similar species assemblage to primary forest. However, each habitat harboured a number of unique species indicating the conservation value of the mosaic of habitats found in fragmented landscapes. Our results suggest that to maintain forest beetle species diversity it is essential that areas of natural forest are conserved. However, other land uses also provide beetle habitats and in fragmented areas active management to maintain a mosaic of land uses will contribute to the conservation of beetle diversity.  相似文献   

10.
We propose a stage-structured integrodifference model for blowflies’ growth and dispersion taking into account the density dependence of fertility and survival rates and the non-overlap of generations. We assume a discrete-time, stage-structured, model. The spatial dynamics is introduced by means of a redistribution kernel. We treat one and two dimensional cases, the latter on the semi-plane, with a reflexive boundary. We analytically show that the upper bound for the invasion front speed is the same as in the one-dimensional case. Using laboratory data for fertility and survival parameters and dispersal data of a single generation from a capture-recapture experiment in South Africa, we obtain an estimate for the velocity of invasion of blowflies of the species Chrysomya albiceps. This model predicts a speed of invasion which was compared to actual observational data for the invasion of the focal species in the Neotropics. Good agreement was found between model and observations.  相似文献   

11.
The chance of local extinction is high during periods of small population size. Accordingly, a metapopulation made of local communities that support internal population cycling may face the threat of regional extinction if the local dynamics is coherent (synchronized). These systems achieve maximum sustainability at an intermediate level of migration that allows recolonization but prevents synchronization. Here we implement an individual-based simulation technique to examine the maximum persistence condition for a system of patch habitats connected by passive migration. The models discussed in this paper take into consideration realistic elements of metapopulations, such as migration cost, disordered spatial structure, frustration and environmental noise. It turns out that the state with maximum anti-correlation between neighboring patches is the most sustainable one, even in the presence of these complications. The results suggest, at least for small systems, a model independent conservation strategy: coherence between neighboring local communities has, in general, a negative impact, and population will benefit from intervention that increases anti-correlations.  相似文献   

12.
天然片断生境中山姜(Alpinia japonica)种群遗传结构   总被引:1,自引:0,他引:1  
陈克霞  王嵘  陈小勇   《生态学报》2008,28(6):2480-2480~2485
理论和实验研究表明片断化是导致生物多样性丧失的主要因素之一,但有关研究基本上集中在人类活动引发的片断化生境体系中.由于长期气候变化以及地形等因素的影响,一些物种的种群之间天然情况下就存在隔离,对这些种群进行研究可以弥补人类活动引起的片断化体系经历时间较短的不足.山姜是一个喜湿耐荫的多年生植物,分布在热带亚热带地区,由于气候和地形原因,该物种在浙江东部呈现天然片断化状态,如在浙江天童森林公园及其周边地区,仅分布在少数几个沟谷中.以这些种群为对象,采用RAPD标记分析经历长期天然片断化山姜种群遗传多样性程度和遗传分化格局.7条RAPD引物获得了69个位点,其中多态位点68个.种群水平遗传多样性较高,多态位点百分比、期望杂合度和Shannon多样性指数分别为78.81%~85.51%、0.3170~0.3430、0.4560~0.4914,这与其异交的繁殖方式有关,同时与山姜克隆生长,每个世代维持的时间长,种群更新降低也有关系.遗传变异大多分配在种群内,但种群间遗传分化达到显著程度,ΦST为0.297,计算的基因流中等,为0.592,不足以克服长期遗传漂变导致的种群分化,Mantel检验表明遗传距离与空间距离不存在相关关系,显示了长期片断化状态下遗传漂变的作用.  相似文献   

13.
Journal of Mathematical Biology - In this paper, we use periodic and stochastic integrodifference models to study the persistence of a single-species population in a habitat with temporally varying...  相似文献   

14.
Summary We found several rare UK butterflies to be restricted to relatively large and non-isolated habitat patches, while small patches and those that are isolated from population sources remain vacant. These patterns of occurrence are generated by the dynamic processes of local extinction and colonization. Habitat patches act as terrestrial archipelagos in which long-term population persistence, and hence effective long-term conservation, rely on networks of suitable habitats, sufficiently close to allow natural dispersal. Present address: School of Biological Sciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK  相似文献   

15.
One of the important questions in understanding infectious diseases and their prevention and control is how infectious agents can invade and become endemic in a host population. A ubiquitous feature of natural populations is that they are spatially fragmented, resulting in relatively homogeneous local populations inhabiting patches connected by the migration of hosts. Such fragmented population structures are studied extensively with metapopulation models. Being able to define and calculate an indicator for the success of invasion and persistence of an infectious agent is essential for obtaining general qualitative insights into infection dynamics, for the comparison of prevention and control scenarios, and for quantitative insights into specific systems. For homogeneous populations, the basic reproduction ratio R(0) plays this role. For metapopulations, defining such an 'invasion indicator' is not straightforward. Some indicators have been defined for specific situations, e.g., the household reproduction number R*. However, these existing indicators often fail to account for host demography and especially host migration. Here we show how to calculate a more broadly applicable indicator R(m) for the invasion and persistence of infectious agents in a host metapopulation of equally connected patches, for a wide range of possible epidemiological models. A strong feature of our method is that it explicitly accounts for host demography and host migration. Using a simple compartmental system as an example, we illustrate how R(m) can be calculated and expressed in terms of the key determinants of epidemiological dynamics.  相似文献   

16.
The effect of habitat fragmentation on spatial foraging behaviour in the root vole Microtus oeconomus was investigated in seven experimental populations. Four of the populations were established in large, continuous blocks (30 × 95 m) of meadow habitat (treatment plots), whereas the three remaining populations had six small rectangular habitat fragments (30 × 7.5 m) with variable inter-fragment distances (control plots). Both the small habitat fragments and the large continuous habitat were embedded in a non-habitat matrix area which was regularly mowed. Half-way through the study period, the continuous habitat in treatment plots was destroyed by mowing to give a configuration identical to the control plots. Dyed bait placed at the edges and in the interior of habitat fragments as well as in the matrix area was used to reveal differential use of these areas for foraging. Animals in the small-fragment plots fed more than expected along the edges, while edges were used according to availability in the large blocks of continuous habitat. In the fragmented plots, the frequency of foraging in the matrix decreased with increasing distance to the fragment border and with increasing inter-fragment distances. Furthermore, the frequency of use of more than one habitat fragment in individual foraging ranges decreased with increasing inter-fragment distances. Reproductively inactive animals of both sexes fed more often along habitat edges than reproductively active animals. Reproductively active females fed exclusively in one habitat fragment, whereas inactive animals and especially reproductively active males frequently included more than one fragment in their foraging ranges. The only effect of habitat destruction was less foraging in the matrix habitat in the post-destruction treatment plots compared to the permanently fragmented control plots. This was probably an effect of different matrix quality. Root voles in these experimental populations forage in edge and matrix habitat with great risk of becoming victims to predation, and the results are interpreted in this context. Received: 19 August 1998 / Accepted: 30 June 1999  相似文献   

17.
Aim To contrast floristic spatial patterns and the importance of habitat fragmentation in two plant communities (grassland and scrubland) in the context of ecological succession. We ask whether plant assemblages are affected by habitat fragmentation and, if so, at what spatial scale? Does the relative importance of the niche differentiation and dispersal‐limitation mechanisms change throughout secondary succession? Is the dispersal‐limitation mechanism related to plant functional traits? Location A Mediterranean region, the massif of Albera (Spain). Methods Using a SPOT satellite image to describe the landscape, we tested the effect of habitat fragmentation on species composition, determining the spatial scale of the assemblage response. We then assessed the relative importance of dispersal‐related factors (habitat fragmentation and geographical distance) and environmental constraints (climate‐related variables) influencing species similarity. We tested the association between dispersal‐related factors and plant traits (dispersal mode and life form). Results In both community types, plant composition was partially affected by the surrounding vegetation. In scrublands, animal‐dispersed and woody plants were abundant in landscapes dominated by closed forests, whereas wind‐dispersed annual herbs were poorly represented in those landscapes. Scrubby assemblages were more dependent on geographical distance, habitat fragmentation and climate conditions (temperature, rainfall and solar radiation); grasslands were described only by habitat fragmentation and rainfall. Plant traits did not explain variation in spatial structuring of assemblages. Main conclusions Plant establishment in early Mediterranean communities may be driven primarily by migration from neighbouring established communities, whereas the importance of habitat specialization and community drift increases over time. Plant life forms and dispersal modes did not explain the spatial variation of species distribution, but species richness within the community with differing plant traits was affected by habitat patchiness.  相似文献   

18.

To understand the effects that the climate change has on the evolution of species as well as the genetic consequences, we analyze an integrodifference equation (IDE) models for a reproducing and dispersing population in a spatio-temporal heterogeneous environment described by a shifting climate envelope. Our analysis on the IDE focuses on the persistence criterion, travelling wave solutions, and the inside dynamics. First, the persistence criterion, characterizing the global dynamics of the IDE, is established in terms of the basic reproduction number. In the case of persistence, a unique travelling wave is found to govern the global dynamics. The effects of the size and the shifting speed of the climate envelope on the basic reproduction number, and hence, on the persistence criterion, are also investigated. In particular, the critical domain size and the critical shifting speed are found in certain cases. Numerical simulations are performed to complement the theoretical results. In the case of persistence, we separate the travelling wave and general solutions into spatially distinct neutral fractions to study the inside dynamics. It is shown that each neutral genetic fraction rearranges itself spatially so as to asymptotically achieve the profile of the travelling wave. To measure the genetic diversity of the population density we calculate the Shannon diversity index and related indices, and use these to illustrate how diversity changes with underlying parameters.

  相似文献   

19.
Coastal heath is becoming increasingly fragmented, resulting in reduced pollinator abundance affecting species viability. The reproductive ecology and inbreeding of a common coastal heath species, Boronia falcifolia (Rutaceae), was investigated. Pollination observations and experiments were carried out at one site, and inbreeding was assessed using genetic markers at eight populations. Four pollination treatments were assessed: cross-pollination, self-pollination, autogamous pollination and open (insect) pollination. Boronia falcifolia was found to be highly self-compatible, frequently setting seeds from autogamous pollination. There were no significant differences between the autogamous, self and cross pollen treatments for any measures of reproductive success (pollen tube growth, fruit set, swollen locules and seed production). Insect activity resulted in fewer seeds per fruit than hand cross pollination, although pollinator visits were few. All populations studied were highly inbred. Autogamous self-pollination is widespread in B. falcifolia and this combined with its ability to vegetatively regenerate enhances its potential for survival when pollinators are few.  相似文献   

20.
Animal dispersal and subsequent settlement is a key process in the life history of many organisms, when individuals use demographic and environmental cues to target post-dispersal habitats where fitness will be highest. To investigate the hypothesis that environmental disturbance (habitat fragmentation) may alter these cues, we compared dispersal patterns of 60 red squirrels (Sciurus vulgaris) in three study sites that differ in habitat composition and fragmentation. We determined dispersal distances, pre- and post-dispersal habitat types and survival using a combination of capture–mark–recapture, radio-tracking and genetic parentage assignment. Most (75%) squirrels emigrated from the natal home range with mean dispersal distance of 1,014 ± 925 m (range 51–4,118 m). There were no sex-related differences in dispersal patterns and no differences in average dispersal distance, and the proportion of dispersers did not differ between sites. In one of the sites, dispersers settled in patches where density was lower than in the natal patch. In the least fragmented site, 90% of animals settled in the natal habitat type (habitat cuing) against 44–54% in the more strongly fragmented sites. Overall, more squirrels settled in the natal habitat type than expected based on habitat availability, but this was mainly due to individuals remaining within the natal wood. In the highly fragmented landscape, habitat cuing among emigrants did not occur more frequently than expected. We concluded that increased habitat fragmentation seemed to reduce reliable cues for habitat choice, but that dispersing squirrels settled in patches with lower densities of same-sex animals than at the natal home range or patch, independent of degree of fragmentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号