首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have shown that many fungi (eukaryotes) exhibit distinct denitrifying activities, although occurrence of denitrification was previously thought to be restricted to bacteria (prokaryotes), and have characterized the fungal denitrification system. It comprises NirK (copper-containing nitrite reductase) and P450nor (a cytochrome P450 nitric oxide (NO) reductase (Nor)) to reduce nitrite to nitrous oxide (N(2)O). The system is localized in mitochondria functioning during anaerobic respiration. Some fungal systems further contain and use dissimilatory and assimilatory nitrate reductases to denitrify nitrate. Phylogenetic analysis of nirK genes showed that the fungal-denitrifying system has the same ancestor as the bacterial counterpart and suggested a possibility of its proto-mitochondrial origin. By contrast, fungi that have acquired a P450 from bacteria by horizontal transfer of the gene, modulated its function to give a Nor activity replacing the original Nor with P450nor. P450nor receives electrons directly from nicotinamide adenine dinucleotide to reduce NO to N(2)O. The mechanism of this unprecedented electron transfer has been extensively studied and thoroughly elucidated. Fungal denitrification is often accompanied by a unique phenomenon, co-denitrification, in which a hybrid N(2) or N(2)O species is formed upon the combination of nitrogen atoms of nitrite with a nitrogen donor (amines and imines). Possible involvement of NirK and P450nor is suggested.  相似文献   

2.
We examined the denitrification system of the fungus Cylindrocapon tonkinense and found several properties distinct from those of the denitrification system of Fusarium oxysporum. C. tonkinense could form N2O from nitrite under restricted aeration but could not reduce nitrate by dissimilatory metabolism. Nitrite-dependent N2O formation and/or cell growth during the anaerobic culture was not affected by further addition of ammonium ions but was suppressed by respiration inhibitors such as rotenone or antimycin, suggesting that denitrification plays a physiological role in respiration. Dissimilatory nitrite reductase and nitric oxide reductase (Nor) activities could not be detected in cell extracts of the denitrifying cells. The Nor activity was purified and found to depend upon two isoenzymes of Cytochrome P-450nor (P-450nor), which were designated P-450nor1 and P-450nor2. These isozymes differed in the N-terminal amino acid sequence, isoelectric point, specificity to the reduced pyridine nucleotide (NADH or NADPH), and the reactivity to the antibody to P-450nor of F. oxysporum. the difference between the specificities to NADH and NADPH suggests that P-450nor1 and P-450nor2 play different roles in anaerobic energy acquisition.  相似文献   

3.
In the present review we wanted to highlight the characteristic features of cytochtome P450 NADH-NO reductase (P450nor) from Fusarium oxysporum which belongs to the heme-thiolate protein family. This enzyme catalyzes the reduction of two NO molecules to N2O. The discovery, isolation, identification and crystallography are described in detail. Special emphasis was focused on the mechanism of NO reduction and possible electronic configurations of the 444 nm intermediate were discussed. Among heme-thiolate proteins nitric oxide reductase (P450nor) is unique since it catalyzes the conversion to dinitrogen oxide as a reductive process. However, it joins the typical physical characteristics of other P450 proteins including the ferric NO complex which can be considered as the enzyme-substrate complex of the enzyme. At a closer look some of its properties like a tilted structure and a shorter Fe-N distance indicate properties for a facilitated hydride transfer from NADH. The resulting intermediate forms the product in a subsequent reaction with the NO radical. For this rate-limiting step at physiological NO levels electron transfer is postulated as a common feature with other heme-thiolate mechanisms. P450nor seems to have an important role in protecting the fungus from NO inhibition of mitochondria especially when dioxygen becomes limiting.  相似文献   

4.
Intact cells of the denitrifying fungus Fusarium oxysporum were previously shown to catalyze codenitrification to form a hybrid nitrous oxide (N2O) species from nitrite and other nitrogen compounds such as azide and ammonia. Here we show that cytochrome P450nor can catalyze the codenitrification reaction to form N2O from nitric oxide (NO) but not nitrite, and azide or ammonia. The results show that the direct substrate of the codenitrification by intact cells should not be nitrite but NO, which is formed from nitrite by the reaction of a dissimilatory nitrite reductase.  相似文献   

5.
Cytochrome P450nor is involved in fungal denitrification as nitric oxide (NO) reductase. Although the heme protein has been known to occur in restricted species of fungi that belong to ascomycotina, we have previously suggested that it would also occur in the yeast Trichosporon cutaneum, which is phylogenetically far from those P450nor-producing ascomycetous fungi. Here we isolated and characterized the heme protein from the basidiomycetous yeast T. cutaneum. P450nor of the yeast (TcP450nor) exhibited properties in terms of catalysis, absorption spectrum and molecular mass that are almost identical to those of its counterparts in ascomycetous fungi. We also isolated and sequenced its cDNA. The predicted primary structure of TcP450nor showed high sequence identities (around 65%) to those of other P450nors, indicating that they belong to the same family. TcP450nor protein cofractionated with cytochrome c oxidase by subcellular fractionation and its predicted primary structure contained an extension on its amino terminus that is characteristic of a mitochondrial-targeting signal, indicating that it is a mitochondrial protein like some of the isoforms of other fungi. On the other hand, TcP450nor was unique in that inducers such as nitrate, nitrite, or NO were not required for its production in the cells. The occurrence of P450nor across the subdivisions of eumycota suggests that P450nor and denitrification are distributed more universally among fungi than was previously thought.  相似文献   

6.
The denitrifying fungus Cylindrocarpon tonkinense contains two isozymes of cytochrome P450nor. One isozyme, P450nor1, uses NADH specifically as its electron donor whereas the other isozyme P450nor2 prefers NADPH to NADH. Here we show that P450nor1 is localized in both cytosol and mitochondria, like P450nor of Fusarium oxysporum, while P450nor2 is exclusively in cytosol. We also found that the addition of glucose as a carbon source to the culture media leads to the production of much more P450nor2 in the fungal cells than a non-fermentable substrate (glycerol or acetate) does. These results suggest that the NADP-dependent pentose phosphate cycle acts predominantly in C. tonkinense as the glycolysis pathway under the denitrifying conditions, which was confirmed by the observation that glucose induced enzyme activities involved in the cycle. These results showed that P450nor2 should act as the electron sink under anaerobic, denitrifying conditions to regenerate NADP+ for the pentose phosphate cycle.  相似文献   

7.
The involvement of cytochrome P450nor (P450nor) is the most striking feature of the fungal denitrifying system, and has never been shown in bacterial systems. To establish the physiological significance of the P450nor, we constructed and investigated mutants of Fusarium oxysporum that lacked the gene for P450nor. We mutated the gene by targeted integration of a disrupted gene into the chromosome of F. oxysporum. The mutants were shown to contain neither P450nor protein nor nitric oxide (NO) reductase (Nor) activity, implying that they are indeed deficient in P450nor. These mutants had apparently lost the denitrifying activity and failed to evolve nitrous oxide (N2O) upon incubation under oxygen-limiting conditions in the presence of nitrate. Their mycelia exhibited normal levels of dissimilatory nitrite reductase (Nir) activity and were able to evolve NO under these conditions. The promoter region of the P450nor gene was fused to lacZ and introduced into the wild-type strain of F. oxysporum. The transformed strain produced β-galactosidase under denitrifying conditions as efficiently as the wild type does P450nor. These results represent unequivocal genetic evidence that P450nor is essential for the reduction of NO to N2O, the last step in denitrification by F. oxysporum. Received: 28 June 1999 / Accepted: 22 December 1999  相似文献   

8.
9.
Induction of the mitochondrial nitrate-respiration (denitrification) system of the fungus Fusarium oxysporum requires the supply of low levels of oxygen (O(2)). Here we show that O(2) and nitrate (NO(3)(-)) respiration function simultaneously in the mitochondria of fungal cells incubated under hypoxic, denitrifying conditions in which both O(2) and NO(3)(-) act as the terminal electron acceptors. The NO(3)(-) and nitrite (NO(2)(-)) reductases involved in fungal denitrification share the mitochondrial respiratory chain with cytochrome oxidase. F. oxysporum cytochrome c(549) can serve as an electron donor for both NO(2)(-) reductase and cytochrome oxidase. We are the first to demonstrate hybrid respiration in respiring eukaryotic mitochondria.  相似文献   

10.
NAFLD (non-alcoholic fatty liver disease), associated with obesity and the cardiometabolic syndrome, is an important medical problem affecting up to 20% of western populations. Evidence indicates that mitochondrial dysfunction plays a critical role in NAFLD initiation and progression to the more serious condition of NASH (non-alcoholic steatohepatitis). Herein we hypothesize that mitochondrial defects induced by exposure to a HFD (high fat diet) contribute to a hypoxic state in liver and this is associated with increased protein modification by RNS (reactive nitrogen species). To test this concept, C57BL/6 mice were pair-fed a control diet and HFD containing 35% and 71% total calories (1 cal approximately 4.184 J) from fat respectively, for 8 or 16 weeks and liver hypoxia, mitochondrial bioenergetics, NO (nitric oxide)-dependent control of respiration, and 3-NT (3-nitrotyrosine), a marker of protein modification by RNS, were examined. Feeding a HFD for 16 weeks induced NASH-like pathology accompanied by elevated triacylglycerols, increased CYP2E1 (cytochrome P450 2E1) and iNOS (inducible nitric oxide synthase) protein, and significantly enhanced hypoxia in the pericentral region of the liver. Mitochondria from the HFD group showed increased sensitivity to NO-dependent inhibition of respiration compared with controls. In addition, accumulation of 3-NT paralleled the hypoxia gradient in vivo and 3-NT levels were increased in mitochondrial proteins. Liver mitochondria from mice fed the HFD for 16 weeks exhibited depressed state 3 respiration, uncoupled respiration, cytochrome c oxidase activity, and mitochondrial membrane potential. These findings indicate that chronic exposure to a HFD negatively affects the bioenergetics of liver mitochondria and this probably contributes to hypoxic stress and deleterious NO-dependent modification of mitochondrial proteins.  相似文献   

11.
We cloned and characterized the gene and cDNA of Aspergillus oryzae cytochrome P450nor (Anor). The Anor gene (nicA; CYP55A5) has a different gene structure from other P450nor genes in that it has an extra intron. There were not only two kinds of mRNA but also two sets of TATA-box and CCAAT-box, and it appears that this gene has two expression patterns, like CYP55A1 of Fusarium oxysporum. A reporter analysis using the uidA gene indicated that gene expression of CYP55A5 was induced under anaerobic conditions, like CYP55A1. When the CYP55A5 gene was overexpressed in A. oryzae, a large amount of active Anor were accumulated as intracellular protein. Anor employed both NADH and NADPH as electron donors for reducing nitric oxide to nitrous oxide. Anor measured the amount of NO generated from 3-(2-Hydroxy-1-(1-methylethyl)-2-nitrosohydrazino)-1-propanamine (NOC5) with a spectrophotometer. The sensitivity was 10 nmol/ml.  相似文献   

12.
Cytochrome P450 was first found in the microsomes from animal tissues, and then the presence of P450 in mitochondria was reported for the steroidogenic organs, adrenal gland and gonads. Three forms of mitochondrial P450 (11A, 11B1, and 11B2) were purified from these organs and their functions in steroid hormone biosynthesis were confirmed. Later studies showed the presence of several other forms of P450 (24A, 27A, 27B, and 27C) in the mitochondria of various non-steroidogenic organs including liver and kidney. These mitochondrial P450s were found to participate in the biosynthesis of bile acids from cholesterol in the liver, and the metabolic activation of Vitamin D3 to its active form, 1,25-dihydroxyvitamin D3, in the liver and the kidney. In contrast to the "drug-metabolizing" P450s in microsomes, most mitochondrial P450s show high specificity to their endogenous substrates, and have negligible activity towards xenobiotic compounds. In contrast to these established roles of mitochondrial P450s in the metabolism of endogenous substrates, the metabolism of xenobiotic chemicals by P450-catalyzed reactions in mitochondria has long been a subject of controversy. It is now known that all P450s in eukaryotic organisms are coded by nuclear genes, and the nascent peptides of various forms of P450 synthesized by cytoplasmic ribosomes are targeted to either endoplasmic reticulum (ER) or mitochondria depending on the ER-targeting sequence or the mitochondria-targeting sequence present in their amino-terminal portion. However, the presence of some microsome-type P450s in the mitochondria from various animal tissues including liver and brain has been reported. Possible mechanisms of intracellular sorting of some microsome-type P450s to mitochondria have been proposed, although physiological significance of the contribution of P450s in mitochondria to the metabolism of xenobiotic chemicals in animal tissues is still elusive.  相似文献   

13.
We previously reported that cytochrome P450 (P450) is a key enzyme of organic nitrate biotransformation and that P450 levels of the heart and its vessels markedly decreased at the development of nitrate tolerance. Escape from tolerance of organic nitrate by induction of cytochrome P450. Most organic nitrates, including nitroglycerin (NTG), are metabolized in the liver, where nitric oxide (NO) is concomitantly produced from the organic nitrates. Therefore, organic nitrate administration may also affect hepatic P450 levels, since the liver is the major organ of P450-related metabolism. Male Wistar rats were intravenously administrated NTG or isosorbide dinitrate (ISDN) for 24-96 h. Hepatic P450 was drastically decreased after 48 h or 72 h of continuous NTG or ISDN infusion, when nitrate tolerance was observed, but it recovered 48 h after cessation of the drug administration. hemeoxygenase-1 (HO-1) was induced within 24 h of continuous NTG infusion, but it returned to normal levels 48 h after cessation of the NTG. The administration of sodium nitroprusside, an agent to which the animals showed no tolerance, did not induce HO-1 or P450 depletion as judged by SDS-PAGE in combination with Western-blotting. These results suggest that P450-dependent drug metabolism may be drastically affected after continuous organic nitrate administration.  相似文献   

14.
From conditions for production in Fusarium oxysporum of the unique nitrate/nitrite-inducible cytochrome P-450, tentatively called P-450dNIR, it was expected that the fungus is capable of metabolizing nitrate dissimilatively. Here we report that F. oxysporum exhibits a distinct denitrifying ability which results in the anaerobic evolution of nitrous oxide (N2O) from nitrate or nitrite. Comparison of the cell growth during denitrification indicated that the dissimilatory reduction of nitrate to nitrite is an energetically favorable process in F. oxysporum; however, further reduction of nitrite to N2O might be energy-exhausting and may function as a detoxification mechanism. A potent nitrite reductase activity to form N2O could be reconstituted by combination of the cell-free extract prepared from the denitrifying cells and an NADH-phenadinemethosulfate-dependent reducing system. The activity was strongly inhibited by carbon monoxide, cyanide, oxygen (O2), and the antibody against P-450dNIR. The results, along with those concerning inducing conditions of P-450dNIR, were highly indicative that the cytochrome is involved in the denitrifying nitrite reduction. This work has thus presented not only the first demonstration that a eukaryote exhibits a marked denitrifying ability, but also the first instance of a cytochrome P-450 that is involved in a reducing reaction with a distinct physiological significance against a hydrophilic, inorganic substrate.  相似文献   

15.
The mechanism of nitrate tolerance is poorly defined. We studied the rat P450 (CYP)-catalyzed conversion of organic nitrate to nitric oxide (NO) by purified CYP isoforms and the relationship between P450 expression and nitrate tolerance following continuous infusion of organic nitrates in rats. CYP1A2 effectively formed NO from isosorbide dinitrate and nitroglycerine (NTG). The hypotensive effect of an NTG bolus injection was abolished in rats which had been previously given a continuous 48 h infusion of NTG. Nitrate tolerance was reversible to control levels 2 days after cessation of the continuous infusion. At 48 h after infusion, NTG-induced NO generation of the vessels increased in acetone (a P450 inducer)-pretreated rats, and nitrite and nitrate levels were markedly greater than in normal rats. The appearance and disappearance of P450 isoforms paralleled the conversion of organic nitrates to NO as assessed by immunohistochemistry and Western blotting. Our observations indicate that nitrate tolerance is in large part the result of decreased P450 expression and activity. Interventions that maintain or increase P450 activity may be a useful strategy to provide sustained relief from ischemic conditions in humans.  相似文献   

16.
The functional state of mitochondria, obtained from the testicles, after chronic intoxication by sodium nitrate (in a dose of 200 mg/kg during 14; 30 and 90 days) was investigated in experiment on white rats. It was revealed, that in dynamics of changes of mitochondrial oxidation and phosphorylation in the testicles under the excessive supply of sodium nitrate into the organism the determined phases should be marked: on the 14th day of intoxication this is the ascending of rate of respiration, on the 30th and 90th day--separation of the mitochondrial oxidation and ADP phosphorylation. It is supposed, that in pathogenesis of these changes the essential role belongs to nitric oxide production.  相似文献   

17.
Escape from tolerance of organic nitrate by induction of cytochrome P450.   总被引:2,自引:0,他引:2  
The mechanism of organic nitrate tolerance is poorly defined. We studied the rat P450-catalyzed conversion of organic nitrate to nitric oxide (NO) by purified P450 isoforms relationship between P450 expression and nitrate tolerance following continuous infusion of organic nitrates in rats. The hypotensive effect of an nitroglycerin (NTG) bolus injection was abolished in rats that had been previously provided a continuous 48 h infusion of NTG. This effect was accompanied by a gradual but marked decrease in plasma and urinary nitrate levels following a peak at 18-24 h. Nitrate tolerance was reversible; the decline in the hypotensive effect and P450 levels observed after 2 d of continuous infusion was followed by restoration to control levels 2 d after cessation of the infusion. Similarly, the hypotensive action disappeared in P450-depleted, and -inhibited rats. At 48 h after infusion, NTG-induced NO generation of the vessels increased in acetone (a P450 inducer) -pretreated rats. The appearance and disappearance of P450 paralleled the conversion of organic nitrates to NO. Our observations indicate that nitrate tolerance is in large part the result of decreased P450 expression and activity. Interventions that maintain or increase P450 activity may be a strategy to provide relief from ischemic conditions in humans.  相似文献   

18.
A cDNA clone for the nitrate/nitrite-inducible cytochrome P-450 (P-450) of the fungus Fusarium oxysporum (tentatively termed P-450dNIR) was isolated by an immunoscreening method. Sequence determination revealed a polypeptide of 403 amimo acid residues (Mr = 44,371), which was shown to contain the full-length sequence of the fungal P-450. The amino terminus region of the predicted sequence contained neither the signal-like, hydrophobic domain that is commonly observed in microsomal P-450s nor the tagging prosequence that is essential for localization of mitochondrial P-450s. Further, the sequence exhibited higher homologies against those of soluble bacterial P-450s, in particular P-450s of Streptomyces, rather than those of eukaryotic P-450s including yeast and fungal P-450s. These results are highly indicative that P-450dNIR is the first soluble P-450 derived from eukaryotic organisms. The unique features might be related to the novel function of P-450dNIR, which is involved in a dissimilatory reduction of nitrite by the fungus. P-450dNIR was classified into a new family, P-450LV, and the corresponding gene of the fungus was named CYP55.  相似文献   

19.
Nitric oxide reductase (Nor) cytochrome P450nor (P450nor) is unique because it is catalytically self-sufficient, receiving electrons directly from NADH or NADPH. However, little is known about the direct binding of NADH to cytochrome. Here, we report that oxidized pyridine nucleotides (NAD(+) and NADP(+)) and an analogue induce a spectral perturbation in bound heme when mixed with P450nor. The P450nor isoforms are classified according to electron donor specificity for NADH or NADPH. One type (Fnor, a P450nor of Fusarium oxysporum) utilizes only NADH. We found that NAD(+) induced a type I spectral change in Fnor, whereas NADP(+) induced a reverse type I spectral change, although the K(d) values for both were comparable. In contrast, NADP(+) as well as NAD(+) caused a type I spectral change in Tnor, a P450nor isozyme from Trichosporon cutaneum that utilizes both NADH and NADPH as electron donors. The B' helix region of Tnor ((73)SAGGKAAA(80)) contains some Ala and Gly residues, whereas the sequence is replaced at a few sites with more bulky amino acid residues in Fnor ((73)SASGKQAA(80)). A single mutation (S75G) significantly improved the NADPH- dependent Nor activity of Fnor, and the overall activity was accelerated via the NADPH-enhanced reduction step. These results showed that pyridine nucleotide cofactors can bind P450nor and that only a few residues in the B' helix region determine cofactor specificity. We further showed that a poor electron donor (NADPH) could also bind Fnor, but an appropriate configuration for electron transfer is blocked by steric hindrance mainly by Ser(75) against the 2'-phosphate moiety. The present results along with previous observations together revealed a novel motif for cofactor binding.  相似文献   

20.
The haem-distal pocket of nitric oxide reductase cytochrome P450 contains many Arg and Lys residues that are clustered to form a putative access channel for NADH. Asp88 is the sole negatively charged amino acid in this positive charge cluster, and thus it would be interesting to know its functional role. Here we found the intriguing phenomenon that mutation at this site of P450nor (D88A or D88V) considerably decreased the overall nitric oxide reductase activity without blocking the reducing half reaction in which the ferric enzyme-NO complex is reduced with NADH to yield a specific intermediate (I). The results indicate that the catalytic turnover subsequent to the I formation was blocked by such mutation. This property of the mutants made it possible to perform kinetic analysis of the reduction step, which is impossible with the wild-type P450nor. These results are the first kinetic evidence for direct complex formation between P450nor and an electron donor (NADH or NADPH). The kinetic analysis also showed that the inhibition by chloride ions (Cl(-)) is competitive with respect to NAD(P)H, which highlights the importance of the binding site for Cl(-) (the anion hole) in the interaction with NAD(P)H. We also characterized another mutant (D393A) of P450nor. The results demonstrated that both Asp residues play important roles in the interaction with NADH, whereas the role of Asp88 is unique in that it must be essential for the release of NAD(+) rather than binding to NADH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号