首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human diploid fibroblasts have the capacity to complete a finite number of cell divisions before entering a state of replicative senescence characterized by growth arrest, changes in morphology, and altered gene expression. Herein, we report that interaction with extracellular matrix (ECM) from young cells is sufficient to restore aged, senescent cells to an apparently youthful state. The identity of the restored cells as having been derived from senescent cells has been confirmed by a variety of methods, including time lapse live cell imaging and DNA finger print analysis. In addition to cell morphology, phenotypic restoration was assessed by resumption of proliferative potential, growth factor responsiveness, reduction of intracellular reactive oxygen species levels, recovery of mitochondrial membrane potential, and increased telomere length. Mechanistically, we find that both Ku and SIRT1 are induced during restoration and are required for senescent cells to return to a youthful phenotype. These observations demonstrate that human cellular senescence is profoundly influenced by cues from the ECM, and that senescent cell plasticity is much greater than that was previously believed to be the case.  相似文献   

2.
Adipocytes were recently shown to secrete adipocytokines, such as adiponectin and leptin, which may have an endocrine role. Subcutaneous adipose tissue lies just beneath the dermis, and dermal condition is correlated with body mass index (BMI). However, it is not clear whether adipocytokines released by adipocytes in subcutaneous adipose tissue influence the adjacent dermis. We found that human dermal fibroblasts express genes encoding receptors for adiponectin and leptin, and that those cytokines both significantly increase production of hyaluronic acid (HA), a major extracellular matrix component (ECM) of dermis, by dermal fibroblasts. This effect is accompanied with up-regulation of HA synthase 2 gene expression. Moreover, adiponectin significantly increases production of collagen, the most abundant component of ECM in dermis, by dermal fibroblasts. These results suggest that subcutaneous adipocytes influence dermal condition by up-regulating collagen and HA production by dermal fibroblasts via secretion of adiponectin and leptin.  相似文献   

3.
Normal diploid human fibroblasts and first passage monkey kidney epithelial cells were examined for growth and metabolic activity on microcarriers made from glass and on microcarriers made from DEAE-dextran. The cells grew to a higher density (cells cm2 of surface area) on the glass microcarriers made from glass and on microcarriers made from DEAE-dextran. The cells grew to a higher density (cells/cm2 of surface area) on the glass microcarriers than they did on the DEAE-dextran microcarriers and morphological differences were observed between the cells growing on the two substrates. On the DEAE-dextran microcarriers, the cells were much more resistant to protease-mediated detachment than were the cells on the glass microcarriers. In these respects, the cells grown on the glass microcarriers were similar to cells grown in conventional monolayer culture. Interestingly, the cells grown on the DEAE-dextran microcarriers expressed higher levels of proteolytic enzyme activity than the cells grown on the glass microcarriers. Substrate-dependent differences in prostaglandin production also occurred--both in unstimulated cells and in cells stimulated with 12-0-tetradecanoyl phorbol acetate. The unstimulated cells on the glass microcarriers produced slightly higher levels of three different prostaglandins than did the cells on the DEAE-dextran microcarriers. However, after stimulation the levels were much higher in the DEAE-dextran microcarrier cultures than in the glass microcarrier cultures. In contrast to these results, there was no significant, substrate-dependent difference in the production of infectious herpes simplex virus. Taken together, these findings suggest that when commercially-useful cells such as normal fibroblasts and epithelial cells are grown in large quantities on microcarriers, the nature of the substrate may have a profound effect on the growth and physiology of the cells. They also suggest that when microcarriers are used, unexpected results based on preliminary work in conventional monolayer culture may be obtained.  相似文献   

4.
A growing body of evidence suggests that components of the tumor microenvironment, including cancer-associated fibroblasts (CAF), may modulate the treatment sensitivity of tumor cells. Here, we investigated the possible influence of CAFs on the sensitivity of head and neck squamous cell carcinoma (HNSCC) cell lines to cetuximab, an antagonistic epidermal growth factor receptor (EGFR) antibody. Cetuximab treatment caused a reduction in the proliferation rate of HNSCC cell lines, whereas the growth of HNSCC-derived CAF cultures was unaffected. When tumor cells were cocultured with CAFs in a transwell system, the cetuximab-induced growth inhibition was reduced, and a complete protection from growth inhibition was observed in one of the tumor cell lines investigated. Media that had been conditioned by CAFs offered protection from cetuximab treatment in a concentration-dependent manner, suggesting that the resistance to treatment was mediated by CAF-derived soluble factors. The coculture of HNSCC cell lines with CAFs resulted in an elevated expression of matrix metalloproteinase-1 (MMP-1) in both the tumor cells and CAFs. Moreover, the CAF-induced resistance was partly abolished by the presence of an MMP inhibitor. However, CAFs treated with siRNA targeting MMP-1 still protected tumor cells from cetuximab treatment, suggesting that several MMPs may cooperate to facilitate resistance or that the protective effect is mediated by another member of the MMP family. These results identify a novel CAF-dependent modulation of cetuximab sensitivity and suggest that inhibiting MMPs may improve the effects of EGFR-targeted therapy. Mol Cancer Res; 10(9); 1158-68. ?2012 AACR.  相似文献   

5.
Mixed cultures of fibroblasts with rat colon carcinoma cell lines were used to investigate the production of extracellular matrix glycoproteins. Tumoral cells were shown to influence their production in different ways depending on the cell clone (PROb cells which in vivo produce progressive tumors and REGb cells which produce regressive ones) but also on the relative proportions of stromal and tumoral cells. When fibroblasts were predominant, the REGb cells containing mixture produced higher levels of all protein studied as compared with the PROb cells containing system. When the situation was reversed in favor of tumoral cells, REGb cells containing cocultures still produced more fibronectin, laminin and undulin, but the difference with PROb ones was reduced. On the opposite, cocultures enriched with PROb cells made more entactin and SPARC and approximately equal amounts of tenascin.  相似文献   

6.
7.
Reprogramming of somatic cells to induced pluripotent stem cells (iPSC) provides an important cell source to derive patient-specific cells for potential therapeutic applications. However, it is not yet clear whether reprogramming through pluripotency allows the production of differentiated cells with improved functional properties that may be beneficial in regenerative therapies. To address this, we compared the production and assembly of extracellular matrix (ECM) by iPSC-derived fibroblasts to that of the parental, dermal fibroblasts (BJ), from which these iPSC were initially reprogrammed, and to fibroblasts differentiated from human embryonic stem cells (hESC). iPSC- and hESC-derived fibroblasts demonstrated stable expression of surface markers characteristic of stromal fibroblasts during prolonged culture and showed an elevated growth potential when compared to the parental BJ fibroblasts. We found that in the presence of l-ascorbic acid-2-phosphate, iPSC- and hESC-derived fibroblasts increased their expression of collagen genes, secretion of soluble collagen, and extracellular deposition of type I collagen to a significantly greater degree than that seen in the parental BJ fibroblasts. Under culture conditions that enabled the self-assembly of a 3D stromal tissue, iPSC- and hESC-derived fibroblasts generated a well organized, ECM that was enriched in type III collagen. By characterizing the functional properties of iPSC-derived fibroblasts compared to their parental fibroblasts, we demonstrate that these cells represent a promising, alternative source of fibroblasts to advance future regenerative therapies.  相似文献   

8.
Human diploid fibroblasts in culture were examined for production of glycopeptide hormones. Forty-one percent of the strains produced human chorionic gonadotropin (hCG) under normal growth conditions. Constitutive hCG synthesis was apparently unrelated to donor age, length of time in culture, or number of passages. Follicle stimulating hormone (FSH) was not found in any strain investigated. Only one cell strain produced free α-chains of glycopeptide hormones. Hydroxyurea (HU) at a concentration of 1 mM mediated a small, statistically significant increase in hCG production (p < 0.01) in all constitutive strains, but had no effect on non-hCG-producing fibroblast strains. Sodium butyrate (Bu) was effective in increasing hCG synthesis in only one constitutive strain, derived from a newborn foreskin. HU treatment had no apparent effect on cell structure. All Bu-treated strains, both those producing hCG and the nonproducers, showed morphological alterations; cells were flattened and they contained ordered arrays of refractile granules. It is suggested that hCG synthesis in cultured human diploid fibroblasts may result from a localized chromosomal event in which the loci responsible for this hormone are activated. Human diploid fibroblasts in culture are shown to be amenable to the study of gene expression and its modulation.  相似文献   

9.
AIMS: The aim of this study was to investigate extracellular matrix (ECM) and mucin binding of selected bacterial isolates with probiotic features in comparison with commercially used probiotic bacteria. METHODS AND RESULTS: ECM molecules were immobilized in microtitre plates (mucin and fetuin) or on the surface of latex beads. Porcine mucin was bound by all 13 probiotic strains tested with important inter-strain differences; however, fetuin binding was similar (weak) for all 14 strains tested. Strongly positive (three) binding of bovine fibrinogen was expressed by strains from fermented food (Lactobacillus rhamnosus GG, L. casei Shirota and L. johnsonii La1) as well as by L. casei L.c., Lactobacillus sp. 2I3 and by L. plantarum LP. The other strains expressed moderate (2) or weakly positive (1) binding of bovine fibrinogen. Strongly positive (3) binding of porcine fibronectin was observed only with two strains; however, all other strains also bound this molecule. Bovine lactoferrin was bound to a higher extent than transferrins. SIGNIFICANCE AND IMPACT OF THE STUDY: Some animal strains (at least L. casei L.c. and Lactobacillus sp. 2I3) are comparable with the commercially used strains with respect to their ECM binding ability. As this feature is important for probiotic bacteria to be able to colonize intestine, these strains should be considered for their wider use in fermented feed (or probiotic preparations) for animals.  相似文献   

10.
Summary Fibroblasts of the synovium of sheathed tendons were isolated, and their biochemical properties were compared with those of the fibroblasts of the remaining tendon. The synovial cells had a lower attachment efficiency than did the tendon cells. On the day of cell isolation the synovial cells synthesized collagen as 10% of their total protein, whereas the tendon cells synthesized 30% collagen. After growth in fetal bovine serum (FBS), the percentage of collagen synthesized by both populations decreased; however, the synovial cells still made less collagen than did the tendon cells (5 versus 11%). On the basis of cyanogen bromide peptide analysis, the synovial cells were found to synthesize Types I and III collagen in primary culture, whereas the tendon cells synthesized only Type I. The synovial cells aslo synthesized two to three times less sulfated glycosaminoglycans in culture than did the tendon cells. Thus, the two cell, populations differed in attachment efficiency and in their biosynthesis of collagen and sulfated glycosaminoglycans. These differences reflect extracellular matrix differences that have been observed in the tendon in vivo. In addition, the results augment existing data showing that not all fibroblasts have identical phenotypes. This investigation was supported by National Institutes of Health Grant AM 25749.  相似文献   

11.
Despite the growing evidence implicating proteoglycans in the control of cell proliferation and differentiation, little is known about the factors that control their metabolism in neoplasia or the mechanisms through which these macromolecules may influence neoplastic growth. The primary objective of the present study was to test whether human colon carcinoma cells released soluble mediators capable of stimulating the synthesis of proteoglycans in normal colon fibroblasts in vitro. Serum-free medium conditioned by colon carcinoma cells (TCM) was capable of stimulating several-fold the synthesis and secretion of proteoglycans in normal colon fibroblasts without inducing a mitogenic response. This effect was a true stimulation of proteoglycan biosynthesis since the kinetics of turnover were identical in the presence or absence of TCM. Characterization of the proteoglycans synthesized in the absence of TCM revealed that colon fibroblasts synthesized at least three species of proteoglycans including a heparan sulfate proteoglycan which was associated primarily with the cell layer and two populations of proteoglycans which were predominantly released into the medium and contained chondroitin-dermatan sulfate side chains. When fibroblasts were exposed to TCM, they synthesized and released higher amounts of proteoglycans which had overall similar density, molecular weight, and polydispersity but differed from controls in that they contained significantly higher proportions of chondroitin sulfate side chains. Partial characterization of TCM strongly indicated that the stimulatory activity comprised a family of polypeptides, with molecular weight between 5.4 and 6.0 X 10(5), which were heat stable and acid/alkali labile. Neoplastic modulation of proteoglycan metabolism in normal mesenchymal cells may represent an additional mechanism through which tumor cells can alter their surrounding environment.  相似文献   

12.
Fibroblasts of the synovium of sheathed tendons were isolated, and their biochemical properties were compared with those of the fibroblasts of the remaining tendon. The synovial cells had a lower attachment efficiency than did the tendon cells. On the day of cell isolation the synovial cells synthesized collagen as 10% of their total protein, whereas the tendon cells synthesized 30% collagen. After growth in fetal bovine serum (FBS), the percentage of collagen synthesized by both populations decreased; however, the synovial cells still made less collagen than did the tendon cells (5 versus 11%). On the basis of cyanogen bromide peptide analysis, the synovial cells were found to synthesize Types I and III collagen in primary culture, whereas the tendon cells synthesized only Type I. The synovial cells also synthesized two to three times less sulfated glycosaminoglycans in culture than did the tendon cells. Thus, the two cell populations differed in attachment efficiency and in their biosynthesis of collagen and sulfated glycosaminoglycans. These differences reflect extracellular matrix differences that have been observed in the tendon in vivo. In addition, the results augment existing data showing that not all fibroblasts have identical phenotypes.  相似文献   

13.
14.
Fas, which functions to initiate a signal causing apoptosis, is expressed in epithelia, thus, suggesting a role in controlling cell number during states of cell and matrix turnover. In view of this, we hypothesized that cell-matrix interactions may be an important determinant of Fas expression in epithelial cells. To investigate this, we examined the effect of insoluble extracellular matrix molecules on Fas expression in murine lung epithelial (MLE) cells, a transformed mouse lung epithelial cell line. We report that (1) insoluble extracellular matrices increased Fas mRNA in a time and concentration-dependent manner; (2) induced increases in Fas mRNA were associated with concomitantly increased Fas protein; and (3) nonspecific adherence to a polylysine substrate did not induce Fas mRNA. Consistent with these findings, Fas-induced apoptosis was significantly enhanced in cultures plated on type IV collagen. Employing rat hepatocytes, we confirmed that the insoluble extracellular matrix also increases Fas expression in primary epithelial cells. By amplifying Fas-mediated apoptosis, these data suggest a mechanism whereby the extracellular matrix regulates the fate of specific epithelial cell populations. J. Cell. Physiol. 174:285–292, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

15.
Fetal bovine ligamentum nuchae fibroblasts maintained in culture synthesized soluble elastin but were unable to form the insoluble elastic fiber. Secreted elastin precursors accumulated in culture medium and were measured using a radioimmunoassay for elastin. When elastin production was examined in ligament tissue from fetal calves of various gestational ages, cells from tissue taken during the last trimester of development produced significantly more elastin than did cells from younger fetal tissue, with maximal elastin synthesis occurring shortly before birth. Soluble elastin was detected in ligament cells plated at low density until proliferation began to be density inhibited and the cells became quiescent. Also, soluble elastin production per cell declined with increasing population doubling or with age in culture. Cells grown in the presence of 5% fetal calf serum produced approximately four times as much soluble elastin as cells grown in serum-free medium. The addition of dexamethasone (0.1 microM) and bleomycin (1 microgram/ml) increased soluble elastin production by cultured cells 180% and 50%, respectively, whereas theophylline (5 micrograms/ml) depressed production 50% and antagonized stimulation by dexamethasone. Ascorbate (50 micrograms/ml), soybean trypsin inhibitor (1 mg/ml), insulin (100 microunits/ml), and aminoacetonitrile (50 micrograms/ml) had no effect, but cycloheximide at 10(-4) M completely inhibited soluble elastin production. In contrast to cells in culture, ligament tissue minces (ligament cells surrounded by in vivo extracellular matrix) efficiently incorporated soluble elastin precursors into insoluble, cross-linked elastin. In addition, soluble elastin production per cell (per microgram of DNA) was higher in tissue minces than elastin production by cells maintained on plastic. These results suggest a role for extracellular matrix in formation of the elastic fiber and in stabilizing elastin phenotypic expression by ligament fibroblasts. Fibroblasts from the bovine ligamentum nuchae present an excellent model for in vitro studies of elastin biosynthesis.  相似文献   

16.
Low density lipoprotein receptor-related protein (LRP1) is an endocytic receptor for diverse proteases, protease inhibitors, and other plasma membrane proteins, including the urokinase receptor (uPAR). LRP1 also functions in cell-signaling and regulates gene expression. The goal of this study was to determine whether LRP1 regulates remodeling of provisional extracellular matrix (ECM) by fibroblasts. To address this problem, we utilized an in vitro model in which type I collagen was reconstituted and overlaid with fibronectin. Either the collagen or fibronectin was fluorescently-labeled. ECM remodeling by fibroblasts deficient in LRP1, uPAR, or MT1-MMP was studied. MT1-MMP was required for efficient remodeling of the deep collagen layer but not involved in fibronectin remodeling. Instead, fibronectin was remodeled by a system that required urokinase-type plasminogen activator (uPA), uPAR, and exogenously-added plasminogen. LRP1 markedly inhibited fibronectin remodeling by regulating cell-surface uPAR and plasminogen activation. LRP1 also regulated remodeling of the deep collagen layer but not by controlling MT1-MMP. Instead, LRP1 deficiency or inhibition de-repressed a secondary pathway for collagen remodeling, which was active in MT1-MMP-deficient cells but not in uPAR-deficient cells. These results demonstrate that LRP1 regulates ECM remodeling principally by repressing pathways that require plasminogen activation by uPA in association with uPAR.  相似文献   

17.
The occurrence of a functional intracellular renin-angiotensin system (RAS) has emerged as a new paradigm. Recently, we and others demonstrated intracellular synthesis of ANG II in cardiac myocytes and vascular smooth muscle cells that was dramatically stimulated in high glucose conditions. Cardiac fibroblasts significantly contribute to diabetes-induced diastolic dysfunction. The objective of the present study was to determine the existence of the intracellular RAS in cardiac fibroblasts and its role in extracellular matrix deposition. Neonatal rat ventricular fibroblasts were serum starved and exposed to isoproterenol or high glucose in the absence or presence of candesartan, which was used to prevent receptor-mediated uptake of ANG II. Under these conditions, an increase in ANG II levels in the cell lysate represented intracellular synthesis. Both isoproterenol and high glucose significantly increased intracellular ANG II levels. Confocal microscopy revealed perinuclear and nuclear distribution of intracellular ANG II. Consistent with intracellular synthesis, Western analysis showed increased intracellular levels of renin following stimulation with isoproterenol and high glucose. ANG II synthesis was catalyzed by renin and angiotensin-converting enzyme (ACE), but not chymase, as determined using specific inhibitors. High glucose resulted in increased transforming growth factor-beta and collagen-1 synthesis by cardiac fibroblasts that was partially inhibited by candesartan but completely prevented by renin and ACE inhibitors. In conclusion, cardiac fibroblasts contain a functional intracellular RAS that participates in extracellular matrix formation in high glucose conditions, an observation that may be helpful in developing an appropriate therapeutic strategy in diabetic conditions.  相似文献   

18.
The aim of this study was to detect the effect of extracellular matrix (ECM) proteins on rat Leydig cell shape, adhesion, expression of integrin subunits and testosterone production, in vitro. Leydig cells isolated from adult rats were cultured on plates uncoated or coated with different concentrations of laminin-1, fibronectin, or type IV collagen in the presence or absence of hCG for 3 or 24 hr. A significant increase of cell adhesion and of alpha3, alpha5, and beta1 integrin subunit expression was observed when cells were cultured on ECM proteins, compared to those grown on uncoated plates. Leydig cells cultured on glass coverslips coated with ECM proteins for 24 hr exhibited elongated shapes with long cell processes (spreading), while cells cultured on uncoated plates showed few cell processes. A significant decrease in testosterone production was observed when basal and hCG-stimulated Leydig cells were cultured for 3 or 24 hr on plates coated with type IV collagen (12 and 24 microg/cm(2)) compared to uncoated plates. A significant though a slighter decrease in testosterone production was also observed in cells cultured on plates coated with fibronectin (12 and 24 microg/cm(2)), compared to uncoated plates. Laminin-1 did not modify testosterone production under basal or hCG stimulated conditions. These results suggest that ECM proteins are able to modulate Leydig cell steroidogenesis, in vitro.  相似文献   

19.
The prototype extracellular matrix glycoproteins had been identified on the basis of their activity in promoting cell adhesion and spreading. Recently, more and more evidence is accumulating that the reverse effect of extracellular matrix proteins, namely the inhibition of cell adhesion and spreading, may be equally important for proper cell function during morphogenesis and development. Several anti-adhesive proteins have been described and their mechanisms of action are being investigated.  相似文献   

20.
Tensin, a focal adhesion protein, is expressed in renal tubular epithelial cells (TECs). Tensin-null mice develop multiple large cysts in the renal proximal tubules. However, the role of tensin in human glomeruli remains unclear. In this study, we assessed tensin localization in human kidney and interaction between tensin and other adhesion components. In human mesangial cells (MCs) and TECs, we confirmed mRNA and protein expressions of tensin by RT-PCR and immunoprecipitation. In normal kidney, immunohistochemistry revealed that tensin was localized in MCs and parietal epithelial cells as well as TECs. In biopsy specimens, the expression of tensin was significantly increased in areas of mesangial expansion in patients with IgA nephropathy and diabetic nephropathy. These results suggest that the expression of tensin is associated with extracellular matrix (ECM) production. In vitro, immunocytochemistry revealed that MCs express tensin mainly at the ends of actin stress fibers and apparently in the focal adhesion areas. Integrin 5, but not 1 and 3, colocalized with tensin. Vinculin and focal adhesion kinase (FAK) were coprecipitated by tensin, suggesting that tensin can mediate signal transduction between cell and ECM through these molecules. Tensin may play important roles in mesangial ECM production through an adhesion complex with integrin 5, FAK, and vinculin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号