首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Molecular mechanisms of the mammalian circadian clock have been studied primarily by genetic perturbation and behavioral analysis. Here, we used bioluminescence imaging to monitor Per2 gene expression in tissues and cells from clock mutant mice. We discovered that Per1 and Cry1 are required for sustained rhythms in peripheral tissues and cells, and in neurons dissociated from the suprachiasmatic nuclei (SCN). Per2 is also required for sustained rhythms, whereas Cry2 and Per3 deficiencies cause only period length defects. However, oscillator network interactions in the SCN can compensate for Per1 or Cry1 deficiency, preserving sustained rhythmicity in mutant SCN slices and behavior. Thus, behavior does not necessarily reflect cell-autonomous clock phenotypes. Our studies reveal previously unappreciated requirements for Per1, Per2, and Cry1 in sustaining cellular circadian rhythmicity and demonstrate that SCN intercellular coupling is essential not only to synchronize component cellular oscillators but also for robustness against genetic perturbations.  相似文献   

2.
3.
Photoperiod is a significant modulator of behavior and physiology for many organisms. In rodents changes in photoperiod are associated with changes in circadian period and photic resetting of circadian pacemakers. Utilizing rhythms of in vivo behavior and in vitro mPer2::luc expression, we investigated whether different entrainment photoperiods [light:dark (L:D) 16:8 and L:D 8:16] alter the period or phase relationships between these rhythms and the entraining light cycle in Per2::luc C57BL/6J mice. We also tested whether mPer2::luc rhythms differs in anterior and posterior suprachiasmatic nucleus (SCN) slices. Our results demonstrate that photoperiod significantly changes the timing of the mPer2::luc peak relative to the time of light offset and the activity onset in vivo. In both L:D 8:16 and L:D 16:8 the mPer2::luc peak maintained a more stable phase relationship to activity offset, while altering the phase relationship to activity onset. After the initial cycle in culture, the period, phase, and peaks per cycle were not significantly different for anterior vs. posterior SCN slices taken from animals within one photoperiod. After short-photoperiod treatment, anterior SCN slices showed increased-amplitude Per2::luc waveforms and posterior SCN slices showed shorter-duration peak width. Finally, the SCN tissue in vitro did not demonstrate differences in period attributable to photoperiod pretreatment, indicating that period aftereffects observed in behavioral rhythms after long- and short-day photoperiods are not sustained in Per2::luc rhythms in vitro. The change in phase relationship to activity onset suggests that Per2::luc rhythms in the SCN may track activity offset rather than activity onset. The reduced amplitude rhythms following long-photoperiod treatment may represent a loss of coupling of component oscillators.  相似文献   

4.
Light is a prominent stimulus that synchronizes endogenous circadian rhythmicity to environmental light/dark cycles. Nocturnal light elevates mRNA of the Period1 (Per1) gene and induces long term state changes, expressed as phase shifts of circadian rhythms. The cellular mechanism for Per1 elevation and light-induced phase advance in the suprachiasmatic nucleus (SCN), a process initiated primarily by glutamatergic neurotransmission from the retinohypothalamic tract, was examined. Glutamate (GLU)-induced phase advances in the rat SCN were blocked by antisense oligodeoxynucleotide (ODN) against Per1 and Ca(2+)/cAMP response element (CRE)-decoy ODN. CRE-decoy ODN also blocked light-induced phase advances in vivo. Furthermore, the CRE-decoy blocked GLU-induced accumulation of Per1 mRNA. Thus, Ca(2+)/cAMP response element-binding protein (CREB) and Per1 are integral components of the pathway transducing light-stimulated GLU neurotransmission into phase advance of the circadian clock.  相似文献   

5.
6.
The mammalian SCN contains a biological clock that drives remarkably precise circadian rhythms in vivo and in vitro. Recent advances have revealed molecular and cellular mechanisms required for the generation of these daily rhythms and their synchronization between SCN neurons and to the environmental light cycle. This review of the evidence for a cell-autonomous circadian pacemaker within specialized neurons of the SCN focuses on 6 genes implicated within the pace making mechanism, an additional 4 genes implicated in pathways from the pacemaker, and the intercellular and intracellular mechanisms that synchronize SCN neurons to each other and to solar time.  相似文献   

7.
8.
Circadian clocks are responsible for daily rhythms in a wide array of processes, including gastrointestinal (GI) function. These are vital for normal digestive rhythms and overall health. Previous studies demonstrated circadian clocks within the cells of GI tissue. The present study examines the roles played by the suprachiasmatic nuclei (SCN), master circadian pacemaker for overt circadian rhythms, and the sympathetic nervous system in regulation of circadian GI rhythms in the mouse Mus musculus. Surgical ablation of the SCN abolishes circadian locomotor, feeding, and stool output rhythms when animals are presented with food ad libitum, while restricted feeding reestablishes these rhythms temporarily. In intact mice, chemical sympathectomy with 6-hydroxydopamine has no effect on feeding and locomotor rhythmicity in light-dark cycles or constant darkness but attenuates stool weight and stool number rhythms. Again, however, restricted feeding reestablishes rhythms in locomotor activity, feeding, and stool output rhythms. Ex vivo, intestinal tissue from PER2::LUC transgenic mice expresses circadian rhythms of luciferase bioluminescence. Chemical sympathectomy has little effect on these rhythms, but timed administration of the β-adrenergic agonist isoproterenol causes a phase-dependent shift in PERIOD2 expression rhythms. Collectively, the data suggest that the SCN are required to maintain feeding, locomotor, and stool output rhythms during ad libitum conditions, acting at least in part through daily activation of sympathetic activity. Even so, this input is not necessary for entrainment to timed feeding, which may be the province of oscillators within the intestines themselves or other components of the GI system.  相似文献   

9.
In mammals, the principal circadian pacemaker driving daily physiology and behavioral rhythms is located in the suprachiasmatic nucleus (SCN) in the anterior hypothalamus. The neural output of SCN is essential for the circadian regulation of behavioral activity. Although remarkable progress has been made in revealing the molecular basis of circadian rhythm generation within the SCN, the output pathways by which the SCN exert control over circadian rhythms are not well understood. Most SCN efferents target the subparaventricular zone (SPZ), which resides just dorsal to the SCN. This output pathway has been proposed as a major component involved in the outflow for circadian regulation. We have examined the downstream pathway of the central clock by means of multiunit neural activity (MUA) in freely moving mice. SCN neural activity is tightly coupled to environmental photic input and anticorrelated with MUA rhythm in the SPZ. In Clock mutant mice exhibiting attenuated circadian locomotor rhythmicity, MUA rhythmicity in the SCN and SPZ is similarly blunted. These results suggest that the SPZ plays a functional role in relaying circadian and photic signals to centers involved in generating behavioral activity.  相似文献   

10.
The circadian pacemaker of the suprachiasmatic nuclei (SCN) contains a major pacemaker for 24 h rhythms that is synchronized to the external light-dark cycle. In response to a shift in the external cycle, neurons of the SCN resynchronize with different pace. We performed electrical activity recordings of the SCN of rats in vitro following a 6 hour delay of the light-dark cycle and observed a bimodal electrical activity pattern with a shifted and an unshifted component. The shifted component was relatively narrow as compared to the unshifted component (2.2 h and 5.7 h, respectively). Curve fitting and simulations predicted that less than 30% of the neurons contribute to the shifted component and that their phase distribution is small. This prediction was confirmed by electrophysiological recordings of neuronal subpopulations. Only 25% of the neurons exhibited an immediate shift in the phase of the electrical activity rhythms, and the phases of the shifted subpopulations appeared significantly more synchronized as compared to the phases of the unshifted subpopulations (p<0.05). We also performed electrical activity recordings of the SCN following a 9 hour advance of the light-dark cycle. The phase advances induced a large desynchrony among the neurons, but consistent with the delays, only 19% of the neurons peaked at the mid of the new light phase. The data suggest that resetting of the central circadian pacemaker to both delays and advances is brought about by an initial shift of a relatively small group of neurons that becomes highly synchronized following a shift in the external cycle. The high degree of synchronization of the shifted neurons may add to the ability of this group to reset the pacemaker. The large desynchronization observed following advances may contribute to the relative difficulty of the circadian system to respond to advanced light cycles.  相似文献   

11.
12.
The proinflammatory cytokine interferon (IFN-gamma) is an immunomodulatory molecule released by immune cells. It was originally described as an antiviral agent but can also affect functions in the nervous system including circadian activity of the principal mammalian circadian pacemaker, the suprachiasmatic nucleus. IFN-gamma and the synergistically acting cytokine tumor necrosis factor-alpha acutely decrease spontaneous excitatory postsynaptic activity and alter spiking activity in tissue preparations of the SCN. Because IFN-gamma can be released chronically during infections, the authors studied the long-term effects of IFN-gamma on SCN neurons by treating dispersed rat SCN cultures with IFN-gamma over a 4-week period. They analyzed the effect of the treatment on the spontaneous spiking pattern and rhythmic expression of the "clock gene," Period 1. They found that cytokine-treated cells exhibited a lower average spiking frequency and displayed a more irregular firing pattern when compared with controls. Furthermore, long-term treatment with IFN-gamma in cultures obtained from a transgenic Per1-luciferase rat significantly reduced the Per1-luc rhythm amplitude in individual SCN neurons. These results show that IFN-gamma can alter the electrical properties and circadian clock gene expression in SCN neurons. The authors hypothesize that IFN-gamma can modulate circadian output, which may be associated with sleep and rhythm disturbances observed in certain infections and in aging.  相似文献   

13.
The mammalian SCN contains a biological clock that drives remarkably precise circadian rhythms in vivo and in vitro. This study asks whether the cycle-to-cycle variability of behavioral rhythms in mice can be attributed to precision of individual circadian pacemakers within the SCN or their interactions. The authors measured the standard deviation of the cycle-to-cycle period from 7-day recordings of running wheel activity, Period1 gene expression in cultured SCN explants, and firing rate patterns of dispersed SCN neurons. Period variability of the intact tissue and animal was lower than single neurons. The median variability of running wheel and Period1 rhythms was less than 40 min per cycle compared to 2.1 h in firing rate rhythms of dispersed SCN neurons. The most precise SCN neuron, with a period deviation of 1.1 h, was 10 times noisier than the most accurate SCN explant (0.1 h) or mouse (0.1 h) but comparable to the least stable explant (2.1 h) and mouse (1.1 h). This variability correlated with intrinsic period in mice and SCN explants but not with single cells. Precision was unrelated to the amplitude of rhythms and did not change significantly with age up to 1 year after birth. Analysis of the serial correlation of cycle-to-cycle period revealed that approximately half of this variability is attributable to noise outside the pacemaker. These results indicate that cell-cell interactions within the SCN reduce pacemaker noise to determine the precision of circadian rhythms in the tissue and in behavior.  相似文献   

14.
The suprachiasmatic nucleus (SCN) regulates a wide range of daily behaviors and has been described as the master circadian pacemaker. The role of daily rhythmicity in other tissues, however, is unknown. We hypothesized that circadian changes in olfactory discrimination depend on a genetic circadian oscillator outside the SCN. We developed an automated assay to monitor olfactory discrimination in individual mice throughout the day. We found olfactory sensitivity increased approximately 6-fold from a minimum during the day to a peak in the early night. This circadian rhythm was maintained in SCN-lesioned mice and mice deficient for the Npas2 gene but was lost in mice lacking Bmal1 or both Per1 and Per2 genes. We conclude that daily rhythms in olfactory sensitivity depend on the expression of canonical clock genes. Olfaction is, thus, the first circadian behavior that is not based on locomotor activity and does not require the SCN.  相似文献   

15.
16.
The suprachiasmatic nuclei (SCN) of the mammalian hypothalamus are in important circadian pacemaker. The electrical activity of these nuclei exhibits an intrinsic circadian rhythm. The rhythmicity of the SCN is also reflected in cyclic glucose consumption and serotonin metabolism. These rhythms are entrained to the light-dark cycle via the retinohypothalamic projection. This pathway, possibly together with a visual projection via the ventral lateral geniculate nuclei, innervates light-responsive SCN cells, which exhibit the functional properties of luminance detectors. The SCN contain various peptides, acetylcholine, and serotonin either intrinsically or in terminals of afferent projections. For acetylcholine it has been demonstrated that the SCN mediate the process of photic entrainment and light suppression of pineal synthetic activity. In the case of serotonin and vasopressin it seems certain that the SCN do not depend on their presence for generating circadian rhythms or for entrainment. Both substances may modulate the intrinsic pacemaker frequency through mechanisms that remain to be established.  相似文献   

17.
18.
The master circadian clock in mammals is located in the hypothalamic suprachiasmatic nuclei (SCN) and is synchronized by several environmental stimuli, mainly the light-dark (LD) cycle. Light pulses in the late subjective night induce phase advances in locomotor circadian rhythms and the expression of clock genes (such as Per1-2). The mechanism responsible for light-induced phase advances involves the activation of guanylyl cyclase (GC), cGMP and its related protein kinase (PKG). Pharmacological manipulation of cGMP by phosphodiesterase (PDE) inhibition (e.g., sildenafil) increases low-intensity light-induced circadian responses, which could reflect the ability of the cGMP-dependent pathway to directly affect the photic sensitivity of the master circadian clock within the SCN. Indeed, sildenafil is also able to increase the phase-shifting effect of saturating (1200 lux) light pulses leading to phase advances of about 9 hours, as well as in C57 a mouse strain that shows reduced phase advances. In addition, sildenafil was effective in both male and female hamsters, as well as after oral administration. Other PDE inhibitors (such as vardenafil and tadalafil) also increased light-induced phase advances of locomotor activity rhythms and accelerated reentrainment after a phase advance in the LD cycle. Pharmacological inhibition of the main downstream target of cGMP, PKG, blocked light-induced expression of Per1. Our results indicate that the cGMP-dependent pathway can directly modulate the light-induced expression of clock-genes within the SCN and the magnitude of light-induced phase advances of overt rhythms, and provide promising tools to design treatments for human circadian disruptions.  相似文献   

19.
20.
Circadian rhythms in clock gene expressions in the suprachiasmatic nucleus (SCN) of CS mice and C57BL/6J mice were measured under a daily restricted feeding (RF) schedule in continuous darkness (DD), and entrainment of the SCN circadian pacemaker to RF was examined. After 2-3 wk under a light-dark cycle with free access to food, animals were released into DD and fed for 3 h at a fixed time of day for 3-4 wk. Subsequently, they returned to having free access to food for 2-3 wk. In CS mice, wheel-running rhythms entrained to RF with a stable phase relationship between the activity onset and feeding time, and the rhythms started to free run from the feeding time after the termination of RF. mPer1, mPer2, and mBMAL1 mRNA rhythms in the SCN showed a fixed phase relationship with feeding time, indicating that the circadian pacemaker in the SCN entrained to RF. On the other hand, in C57BL/6J mice, wheel-running rhythms free ran under RF, and clock gene expression rhythms in the SCN showed a stable phase relation not to feeding time but to the behavioral rhythms, indicating that the circadian pacemaker in the SCN did not entrain. These results indicate that the SCN circadian pacemaker of CS mice is entrainable to RF under DD and suggest that CS mice have a circadian clock system that can be reset by a signal associated with feeding time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号