首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Prion and non-prion amyloids of the HET-s prion forming domain   总被引:2,自引:0,他引:2  
HET-s is a prion protein of the fungus Podospora anserina. A plausible structural model for the infectious amyloid fold of the HET-s prion-forming domain, HET-s(218-289), makes it an attractive system to study structure-function relationships in amyloid assembly and prion propagation. Here, we report on the diversity of HET-s(218-289) amyloids formed in vitro. We distinguish two types formed at pH 7 from fibrils formed at pH 2, on morphological grounds. Unlike pH 7 fibrils, the pH 2 fibrils show very little if any prion infectivity. They also differ in ThT-binding, resistance to denaturants, assembly kinetics, secondary structure, and intrinsic fluorescence. Both contain 5 nm fibrils, either bundled or disordered (pH 7) or as tightly twisted protofibrils (pH 2). We show that electrostatic interactions are critical for the formation and stability of the infectious prion fold given in the current model. The altered properties of the amyloid assembled at pH 2 may arise from a perturbation in the subunit fold or fibrillar stacking.  相似文献   

2.
The fungal prion-forming domain HET-s(218–289) forms infectious amyloid fibrils at physiological pH that were shown by solid-state NMR to be assemblies of a two-rung β-solenoid structure. Under acidic conditions, HET-s(218–289) has been shown to form amyloid fibrils that have very low infectivity in vivo, but structural information about these fibrils has been very limited. We show by x-ray fiber diffraction that the HET-s(218–289) fibrils formed under acidic conditions have a stacked β-sheet architecture commonly found in short amyloidogenic peptides and denatured protein aggregates. At physiological pH, stacked β-sheet fibrils nucleate the formation of the infectious β-solenoid prions in a process of heterogeneous seeding, but do so with kinetic profiles distinct from those of spontaneous or homogeneous (seeded with infectious β-solenoid fibrils) fibrillization. Several serial passages of stacked β-sheet-seeded solutions lead to fibrillization kinetics similar to homogeneously seeded solutions. Our results directly show that structural mutation can occur between substantially different amyloid architectures, lending credence to the suggestion that the processes of strain adaptation and crossing species barriers are facilitated by structural mutation.  相似文献   

3.
HET-s is a prion protein of the filamentous fungus Podospora anserina. An orthologue of this protein, called FgHET-s has been identified in Fusarium graminearum. The region of the FgHET-s protein corresponding to the prion forming domain of HET-s, forms amyloid fibrils in vitro. These fibrils seed HET-s(218-289) fibril formation in vitro and vice versa. The amyloid fold of HET-s(218-289) and FgHET-s(218-289) are remarkably similar although they share only 38% identity. The present work corresponds to the functional characterization of the FgHET-s(218-289) region as a prion forming domain in vivo. We show that FgHET-s(218-289) is capable of prion propagation in P. anserina and is able to substitute for the HET-s PFD in the full-length HET-s protein. In accordance with the in vitro cross-seeding experiments, we detect no species barrier between P. anserina and F. graminearum PFDs. We use the yeast Saccharomyces cerevisiae as a host to compare the prion performances of the two orthologous PFDs. We find that FgHET-s(218-289) leads to higher spontaneous prion formation rates and mitotic prion stability than HET-s(218-289). Then we analysed the outcome of HET-s(218-289)/FgHET-s(218-289) coexpression. In spite of the cross-seeding ability of HET-s(218-289) and FgHET-s(218-289), in vivo, homotypic polymerization is favoured over mixed fibril formation.  相似文献   

4.
We describe a distant homologue of the fungal HET-s prion, which is found in the fungus Fusarium graminearum. The domain FgHET-s(218-289), which corresponds to the prion domain in HET-s from Podospora anserina, forms amyloid fibrils in vitro and is able to efficiently cross-seed HET-s(218-289) prion formation. We structurally characterize FgHET-s(218-289), which displays 38% sequence identity with HET-s(218-289). Solid-state NMR and hydrogen/deuterium exchange detected by NMR show that the fold and a number of structural details are very similar for the prion domains of the two proteins. This structural similarity readily explains why cross-seeding occurs here in spite of the sequence divergence.  相似文献   

5.
The prion-forming domain of the fungal prion protein HET-s, HET-s(218-289), is known from solid-state NMR studies to have a β-solenoidal structure; the β-solenoid has the cross-β structure characteristic of all amyloids, but is inherently more complex than the generic stacked β-sheets found in studies of small synthetic peptides. At low pH HET-s(218-289) has also been reported to form an alternative structure, which has not been characterized. We have confirmed by x-ray fiber diffraction that HET-s(218-289) adopts a β-solenoidal structure at neutral pH, and shown that at low pH, it forms either a β-solenoid or a stacked β-sheet structure, depending on the integrity of the protein and the conditions of fibrillization. The low pH stacked-sheet structure is usually formed only by proteolyzed HET-s(218-289), but intact HET-s(218-289) can form stacked sheets when seeded with proteolyzed stacked-sheet HET-s(218-289). The polymorphism of HET-s parallels the structural differences between the infectious brain-derived and the much less infectious recombinant mammalian prion protein PrP. Taken together, these observations suggest that the functional or pathological forms of amyloid proteins are more complex than the simple generic stacked-sheet amyloids commonly formed by short peptides.  相似文献   

6.
The studies on the determination of the characteristics of the amyloid fibril interaction with the dye were based on the analysis of the dependence of the ThT fluorescence intensity on its concentration in the solution containing the amyloid fibrils. In the present work, we revealed that this intuitive approach provided erroneous data. We propose a new approach which provides a means for characterizing the interaction of thioflavin T (ThT) with amyloid fibrils and for determining the binding stoichiometry and binding constants, absorption spectrum, molar extinction coefficient, and fluorescence quantum yield of the ThT bound to the sites of different binding modes of fibrils. The key point of this approach is sample preparation by equilibrium microdialysis. The efficiency of the proposed approach is demonstrated via the examination of the ThT binding to insulin and Aβ42 fibrils as well as to the native form of the Electrophorus electricus acetylcholinesterase. We show that the peculiarities of ThT interaction with amyloid fibrils depend on the amyloidogenic protein and on the binding mode. This approach is universal and can be used for the analysis of binding mechanism of any dye that interacts with its receptor. Therefore, the proposed approach represents an important addition to the existing arsenal of means for the diagnostics and therapy of the neurodegenerative diseases.  相似文献   

7.
Despite the importance of protein fibrils in the context of conformational diseases, information on their structure is still sparse. Hydrogen/deuterium exchange measurements of backbone amide protons allow the identification hydrogen-bonding patterns and reveal pertinent information on the amyloid β-sheet architecture. However, they provide only little information on the identity of residues exposed to solvent or buried inside the fibril core. NMR spectroscopy is a potent method for identifying solvent-accessible residues in proteins via observation of polarization transfer between chemically exchanging side-chain protons and water protons. We show here that the combined use of highly deuterated samples and fast magic-angle spinning greatly attenuates unwanted spin diffusion and allows identification of polarization exchange with the solvent in a site-specific manner. We apply this measurement protocol to HET-s(218-289) prion fibrils under different conditions (including physiological pH, where protofibrils assemble together into thicker fibrils) and demonstrate that each protofibril of HET-s(218-289), is surrounded by water, thus excluding the existence of extended dry interfibril contacts. We also show that exchangeable side-chain protons inside the hydrophobic core of HET-s(218-289) do not exchange over time intervals of weeks to months. The experiments proposed in this study can provide insight into the detailed structural features of amyloid fibrils in general.  相似文献   

8.
The HET-s prion protein of Podospora anserina represents a valuable model system to study the structural basis of prion propagation. In this system, prion infectivity can be generated in vitro from a recombinant protein. We have previously identified the region of the HET-s protein involved in amyloid formation and prion propagation. Herein, we show that a recombinant peptide corresponding to the C-terminal prion-forming domain of HET-s (residues 218-289) displays infectivity. We used high resolution hydrogen/deuterium exchange analyzed by mass spectrometry to gain insight into the structural organization of this infectious amyloid form of the HET-s-(218-289) protein. Deuterium incorporation was analyzed by ion trap mass spectrometry for 76 peptides generated by pepsin proteolysis of HET-s-(218-289). By taking into account sequence overlaps in these peptides, a resolution ranging from 4-amino acids stretches to a single residue could be achieved. This approach allowed us to define highly protected regions alternating with more accessible segments along the HET-s-(218-289) sequence. The HET-s-(218-289) fibrils are thus likely to be organized as a succession of beta-sheet segments interrupted by short turns or short loops.  相似文献   

9.
The prion hypothesis states that it is solely the three-dimensional structure of the polypeptide chain that distinguishes the prion and nonprion forms of the protein. For HET-s, the atomic-resolution structure of the isolated prion domain HET-s(218-289), consisting of a highly ordered triangular cross-β arrangement, is known. Here we present a solid-state NMR study of fibrils of the full-length HET-s prion in which we compare their spectra with spectra from isolated C-terminal prion domain fibrils and the crystalline N-terminal globular domain HET-s(1-227). The spectra reveal unequivocally that the highly ordered structure of the isolated prion domain HET-s(218-289) is conserved in the context of the full-length fibrils investigated here. However, the globular domain loses much of its tertiary structure while partly retaining its secondary structure, thus exhibiting behavior reminiscent of a molten globule. Flexible residues that may constitute the linker connecting the two domains are detected using INEPT (insensitive nuclei enhanced by polarization transfer) spectroscopy. Based on our data, we propose a structural model that is in line with a general model developed for amyloid fibrils built from a cross-β core decorated with globular domains. The loss of structure in the HET-s globular domain sharply contrasts with the behavior observed for fibrils of Ure2p and suggests that there is considerable structural diversity in the fibrils of globular-domain-containing prions despite their similar appearances at the microscopic level.  相似文献   

10.
The process of amyloid polymerisation raises keen interest in particular because of the biomedical impact of this process. A variety of analytical methods have been developed to monitor amyloid formation. Thioflavin T (ThT) is the most commonly used dye for detection of amyloid aggregation. Nevertheless, ThT fluorescence enhancement is strongly dependent of fibril morphology. In this study using the HET-s prion fibril model, we show that amyloid formation can be monitored by measuring ThT fluorescence anisotropy. Kinetic parameters obtained by this method are identical to those determined by CD spectrometry. We propose that ThT anisotropy represent an interesting, simple and alternative technique to analyze the amyloid formation process.  相似文献   

11.
Benzthiazole dye thioflavin T (ThT) is widely used to study the formation and structure of amyloid fibrils. Nevertheless, till now there is no common opinion concerning molecular mechanisms of ThT binding to amyloid fibrils and the reasons of dramatic increase in its fluorescence quantum yield on incorporation into amyloid fibrils. Our data prove that ThT molecules incorporate in the amyloid fibrils in the monomeric form and there is no ground to suppose the formation of ThT dimers, eximers, or micells. It was shown that the increase in the quantum yield of ThT incorporated in amyloid fibrils was caused by restriction of benzthiazole and aminobenzene rings torsion fluctuations relative to each other. The use of equilibrium microdialysis allowed determining the absorption spectrum, the number of binding modes of ThT with insulin amyloid fibrils and for each mode determining the binding constants and the number of binding sites for each mode.  相似文献   

12.
The [Het-s] infectious element of the fungus Podospora anserina is a prion protein involved in a genetically controlled cell death reaction termed heterokaryon incompatibility. Previous analyses indicate that [Het-s] propagates as a self-perpetuating amyloid aggregate. The HET-s protein is 289 amino acids in length. Herein, we identify the region of the HET-s protein that is responsible for amyloid formation and prion propagation. The region of HET-s spanning residues 218-289 forms amyloid fibers in vitro and allows prion propagation in vivo. Conversely, a C-terminal deletion in HET-s prevents amyloid aggregation in vitro and prion propagation in vivo, and abolishes the incompatibility function. In the soluble form of HET-s, the region from residue 1 to 227 forms a well-folded domain while the C-terminal region is highly flexible. Together, our data establish a domain structure-function relationship for HET-s amyloid formation, prion propagation and incompatibility activity.  相似文献   

13.
Fungal prions are infectious filamentous polymers of proteins that are soluble in uninfected cells. In its prion form, the HET-s protein of Podospora anserina participates in a fungal self/non-self recognition phenomenon called heterokaryon incompatibility. Like other prion proteins, HET-s has a so-called "prion domain" (its C-terminal region, HET-s-(218-289)) that is responsible for induction and propagation of the prion in vivo and for fibril formation in vitro. Prion fibrils are thought to have amyloid backbones of polymerized prion domains. A relatively detailed model has been proposed for prion domain fibrils of HET-s based on a variety of experimental constraints (Ritter, C., Maddelein, M. L., Siemer, A. B., Luhrs, T., Ernst, M., Meier, B. H., Saupe, S. J., and Riek, R. (2005) Nature 435, 844-848). To test specific predictions of this model, which envisages axial stacking of beta-solenoids with two coils per subunit, we examined fibrils by electron microscopy. Electron diffraction gave a prominent meridional reflection at (0.47 nm)(-1), indicative of cross-beta structure, as predicted. STEM (scanning transmission electron microscopy) mass-per-unit-length measurements yielded 1.02 +/- 0.16 subunits per 0.94 nm, in agreement with the model prediction (1 subunit per 0.94 nm). This is half the packing density of approximately 1 subunit per 0.47 nm previously obtained for fibrils of the yeast prion proteins, Ure2p and Sup35p, whence it follows that the respective amyloid architectures are basically different.  相似文献   

14.
Baiesi M  Seno F  Trovato A 《Proteins》2011,79(11):3067-3081
The prion-forming C-terminal domain of the fungal prion HET-s forms infectious amyloid fibrils at physiological pH. The conformational switch from the nonprion soluble form to the prion fibrillar form is believed to have a functional role, as HET-s in its prion form participates in a recognition process of different fungal strains. On the basis of the knowledge of the high-resolution structure of the prion forming domain HET-s(218-289) in its fibrillar form, we here present a numerical simulation of the fibril growth process, which emphasizes the role of the topological properties of the fibrillar structure. An accurate thermodynamic analysis of the way an intervening HET-s chain is recruited to the tip of the growing fibril suggests that elongation proceeds through a dock and lock mechanism. First, the chain docks onto the fibril by forming the longest β-strands. Then, the re-arrangement in the fibrillar form of all the rest of the molecule takes place. Interestingly, we also predict that one side of the HET-s fibril is more suitable for sustaining its growth with respect to the other. The resulting strong polarity of fibril growth is a consequence of the complex topology of HET-s fibrillar structure, as the central loop of the intervening chain plays a crucially different role in favoring or not the attachment of the C-terminus tail to the fibril, depending on the growth side.  相似文献   

15.
Thioflavin-T (ThT) is a cationic benzothiazole dye that displays enhanced fluorescence upon binding to amyloid fibrils. This property makes ThT the current reagent of choice for the quantification of amyloid fibrils. Herein, we investigate the main pitfalls associated with the use of ThT-based assays to monitor the fibrillation of α-synuclein (α-syn), a protein linked to Parkinson’s disease and other α-synucleinopathies. We demonstrated for the first time that ThT interacts with α-syn disordered monomer and accelerates the protein fibrillation in vitro. As a consequence, misleading conclusions may arise from the use of ThT-based real-time assays in the evaluation of anti-fibrillogenic compounds. Interestingly, NMR experiments indicated that C-terminal domain of α-syn is the main region perturbed by ThT interaction, similarly to that found for the pesticide paraquat, a well-documented accelerator of α-syn fibrillation. Moreover, we demonstrated that certain potent inhibitors of α-syn fibrillation, such as oxidized catecholamines and polyphenols, undergo spontaneous oxidation in aqueous solution, generating compounds that strongly quench ThT fluorescence. In light of these findings, we alert for possible artifacts associated to the measure of the anti-fibrillogenic activity based only on ThT fluorescence approach.  相似文献   

16.
17.
A number of small organic molecules have been developed that bind to amyloid fibrils, a subset of which also inhibit fibrillization. Among these, the benzothiol dye Thioflavin-T (ThT) has been used for decades in the diagnosis of protein-misfolding diseases and in kinetic studies of self-assembly (fibrillization). Despite its importance, efforts to characterize the ThT-binding mechanism at the atomic level have been hampered by the inherent insolubility and heterogeneity of peptide self-assemblies. To overcome these challenges, we have developed a minimalist approach to designing a ThT-binding site in a "peptide self-assembly mimic” (PSAM) scaffold. PSAMs are engineered water-soluble proteins that mimic a segment of β-rich peptide self-assembly, and they are amenable to standard biophysical techniques and systematic mutagenesis. The PSAM β-sheet contains rows of repetitive amino acid patterns running perpendicular to the strands (cross-strand ladders) that represent a ubiquitous structural feature of fibril-like surfaces. We successfully designed a ThT-binding site that recapitulates the hallmarks of ThT-fibril interactions by constructing a cross-strand ladder consisting of contiguous tyrosines. The X-ray crystal structures suggest that ThT interacts with the β-sheet by docking onto surfaces formed by a single tyrosine ladder, rather than in the space between adjacent ladders. Systematic mutagenesis further demonstrated that tyrosine surfaces across four or more β-strands formed the minimal binding site for ThT. Our work thus provides structural insights into how this widely used dye recognizes a prominent subset of peptide self-assemblies, and proposes a strategy to elucidate the mechanisms of fibril-ligand interactions.  相似文献   

18.
Real-time monitoring of fibril growth is essential to clarify the mechanism of amyloid fibril formation. Thioflavin T (ThT) is a reagent known to become strongly fluorescent upon binding to amyloid fibrils. Here, we show that, by monitoring ThT fluorescence with total internal reflection fluorescence microscopy (TIRFM), amyloid fibrils of beta2-microgobulin (beta2-m) can be visualized without requiring covalent fluorescence labeling. One of the advantages of TIRFM would be that we selectively monitor fibrils lying along the slide glass, so that we can obtain the exact length of fibrils. This method was used to follow the kinetics of seed-dependent beta2-m fibril extension. The extension was unidirectional with various rates, suggesting the heterogeneity of the amyloid structures. Since ThT binding is common to all amyloid fibrils, the present method will have general applicability for the analysis of amyloid fibrils. We confirmed this with the octapeptide corresponding to the C terminus derived from human medin and the Alzheimer's amyloid beta-peptide.  相似文献   

19.
Binding mode of Thioflavin T in insulin amyloid fibrils   总被引:1,自引:1,他引:0  
Amyloid fibrils share various common structural features and their presence can be detected by Thioflavin T (ThT). In this paper, the binding mode of ThT to insulin amyloid fibrils was examined. Scatchard analysis and isothermal titration calorimetry (ITC) showed at least two binding site populations. The binding site population with the strongest binding was responsible for the characteristic ThT fluorescence. This binding had a capacity of about 0.1 moles of ThT bound per mole of insulin in fibril form. The binding capacity was unaffected by pH, but the affinity was lowest at low pH. Notably, presence of a third binding process prior to the other processes was suggested by ITC. Binding of ThT resulted in only minor changes in the fibril structure according to the X-ray diffraction patterns, where a slightly more dominant equatorial reflection at 16A relative to the intersheet distance of 11A was observed. No change in the interstrand distance of 4.8A was observed. On the basis of our results, we propose that ThT binds in cavities running parallel to the fibril axis, e.g., between the protofilaments forming the fibrils. Such cavities have been proposed previously in insulin fibrils and several other amyloid fibril models.  相似文献   

20.
A new approach for the determination of the amyloid fibril - thioflavin T (ThT) binding parameters (the number of binding modes, stoichiometry, and binding constants of each mode) is proposed. This approach is based on the absorption spectroscopy determination of the concentration of free and bound to fibril dye in solutions, which are prepared by equilibrium microdialysis. Furthermore, the proposed approach allowed us, for the first time, to determine the absorption spectrum, molar extinction coefficient, and fluorescence quantum yield of the ThT bound to fibril by each binding modes. This approach is universal and can be used for determining the binding parameters of any dye interaction with a receptor, such as ANS binding to proteins in the molten globule state or to protein amorphous aggregates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号