首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
3-Nitrotyrosine (NT) is approximately 10(3)-fold more acidic than Tyr, and its absorption properties are strongly pH-dependent. NT absorbs radiation in the wavelength range where Tyr and Trp emit fluorescence (300-450 nm), and it is essentially nonfluorescent. Therefore, NT may function as an energy acceptor in resonance energy transfer (FRET) studies for investigating ligand protein interactions. Here, the potentialities of NT were tested on the hirudin thrombin system, a well-characterized protease inhibitor pair of key pharmacological importance. We synthesized two analogs of the N-terminal domain (residues 1-47) of hirudin: Y3NT, in which Tyr3 was replaced by NT, and S2R/Y3NT, containing the substitutions Ser2 --> Arg and Tyr3 --> NT. The binding of these analogs to thrombin was investigated at pH 8 by FRET and UV/Vis-absorption spectroscopy. Upon hirudin binding, the fluorescence of thrombin was reduced by approximately 50%, due to the energy transfer occurring between the Trp residues of the enzyme (i.e., the donors) and the single NT of the inhibitor (i.e., the acceptor). The changes in the absorption spectra of the enzyme inhibitor complex indicate that the phenate moiety of NT in the free state becomes protonated to phenol in the thrombin-bound form. Our results indicate that the incorporation of NT can be effectively used to detect protein protein interactions with sensitivity in the low nanomolar range, to uncover subtle structural features at the ligand protein interface, and to obtain reliable Kd values for structure activity relationship studies. Furthermore, advances in chemical and genetic methods, useful for incorporating noncoded amino acids into proteins, highlight the broad applicability of NT in biotechnology and pharmacological screening.  相似文献   

2.
F Ni  D R Ripoll  E O Purisima 《Biochemistry》1992,31(9):2545-2554
The COOH-terminal region of hirudin represents an independent functional domain that binds to an anion-binding exosite of thrombin and inhibits the interaction of thrombin with fibrinogen and regulatory proteins in blood coagulation. The thrombin-bound structure of the peptide fragment, hirudin 55-65, has been determined by use of transferred NOE spectroscopy [Ni, F., Konishi, Y., & Scheraga, H. A. (1990) Biochemistry 29, 4479-4489]. The stability of the thrombin-bound conformation has been characterized further by a combined NMR and theoretical analysis of the conformational ensemble accessible by the hirudin peptide. Medium- and long-range NOE's were found for the free hirudin peptide in aqueous solution and in a mixture of dimethyl sulfoxide and water at both ambient (25 degrees C) and low (0 degrees C) temperatures, suggesting that ordered conformations are highly populated in solution. The global folding of these conformations is similar to that in the thrombin-bound state, as indicated by NOE's involving the side-chain protons of residues Phe(56), Ile(59), Pro(60), Tyr(63), and Leu(64). Residues Glu(61), Glu(62), Tyr(63), and Leu(64) all contain approximately 50% of helical conformations calculated from the ratio of the sequential dNN and d alpha N NOE's. Among the helical ensemble, active 3(10)-helical conformations were found by an analysis of the medium-range [(i,i+2) and (i,i+3)] NOE's involving the last six residues of the peptide. An analysis of the side-chain rotamers revealed that, upon binding to thrombin, there may be a rotation around the alpha CH-beta CH bond of Ile(59) such that Ile(59) adopts a gauche- (chi 1 = +60) conformation in contrast to the highly populated trans (chi 1 = -60) found for Ile(59) in the free peptide. However, the thrombin-bound conformation of the hirudin peptide is still an intrinsically stable conformer, and the preferred conformational ensemble of the peptide contains a large population of the active conformation. The apparent preference for a gauche- (chi 1 = +60) side-chain conformation of Ile(59) in the bound state may be explained by the existence of a positively charged arginine residue among the hydrophobic residues in the thrombin exosite.  相似文献   

3.
Interaction of site specific hirudin variants with alpha-thrombin   总被引:4,自引:0,他引:4  
J Dodt  S K?hler  A Baici 《FEBS letters》1988,229(1):87-90
The kinetics of complex formation between recombinant hirudin or recombinant hirudin mutants with thrombin were analyzed. In order to elucidate the inhibitor's reactive site peptide bond predetermined amino acid substitutions were introduced at positions of basic amino acid residues by means of site-directed mutagenesis of a hirudin gene. In comparison to recombinant hirudin (Ki = 19 pM) only those mutant inhibitors which were modified at amino acid position Lys47 showed a higher Ki value for their complexes with thrombin. The observed effects are mainly due to increased koff rate constants.  相似文献   

4.
A Betz  J Hofsteenge  S R Stone 《Biochemistry》1992,31(19):4557-4562
Site-specific substitutions of the first five amino acids of the thrombin inhibitor hirudin have been made and the effects of these substitutions on the kinetics of formation of the thrombin-hirudin complex evaluated. The effects of different substitutions of Val1 indicate that nonpolar interactions play a major role in the binding of this residue. In the second position (Val2), polar amino acids were better accommodated than in the first. The mutant with arginine in the second position bound particularly well to thrombin; its dissociation constant was 9-fold lower than that of wild-type recombinant hirudin. Comparison of the effects of single and double mutations involving Val1 and Val2 indicates that there was no cooperativity in the binding of these two residues. Elimination of the hydrophobic interactions made by the aromatic ring of Tyr3 of hirudin resulted in a large loss of binding energy (12.7 kJ mol-1). Replacement of Thr4 of hirudin by serine and alanine suggested that both the gamma-methyl and the hydroxyl group of the threonine were important in the stabilization of the thrombin-hirudin complex. Replacement of Asp5 of hirudin by alanine and glutamate caused about the same loss in binding energy (5 kJ mol-1). The effects of site-specific substitutions are discussed in terms of the crystal structure of the thrombin-hirudin complex. Molecular modeling provided plausible explanations for many of the observed effects. For instance, such studies suggested that the improved binding of the mutant with arginine in the second position could be due to an interaction of the arginine with the primary specificity pocket.  相似文献   

5.
Recombinant hirudin variant rHV2-Lys47 was radioiodinated using the chloramine-T method. Depending on the reaction pH, the two tyrosine residues, Tyr3 and Tyr63, responded differently to iodination but without change in total iodination yield. Of the incorporated -125 iodine 80% was located on Tyr3 at pH 7.4, but 65% was found on Tyr63 at pH 4. These distinct iodination patterns suggest the existence of a pH-dependent multimerization and/or important conformational changes in the tertiary structure with pH. Each radiotracer was purified to high specific activity by simple low-pressure chromatography including gel filtration and reverse-phase separation, both on short cartridges. The method was validated by reverse-phase and anion-exchange HPLC with on-line radioactivity detection. The iodination sites were characterized following carboxypeptidase Y cleavage coupled with radio-HPLC.  相似文献   

6.
Thrombin is a serine protease that plays a central role in blood coagulation. It is inhibited by hirudin, a polypeptide of 65 amino acids, through the formation of a tight, noncovalent complex. Tetragonal crystals of the complex formed between human alpha-thrombin and recombinant hirudin (variant 1) have been grown and the crystal structure of this complex has been determined to a resolution of 2.95 A. This structure shows that hirudin inhibits thrombin by a previously unobserved mechanism. In contrast to other inhibitors of serine proteases, the specificity of hirudin is not due to interaction with the primary specificity pocket of thrombin, but rather through binding at sites both close to and distant from the active site. The carboxyl tail of hirudin (residues 48-65) wraps around thrombin along the putative fibrinogen secondary binding site. This long groove extends from the active site cleft and is flanked by the thrombin loops 35-39 and 70-80. Hirudin makes a number of ionic and hydrophobic interactions with thrombin in this area. Furthermore hirudin binds with its N-terminal three residues Val, Val, Tyr to the thrombin active site cleft. Val1 occupies the position P2 and Tyr3 approximately the position P3 of the synthetic inhibitor D-Phe-Pro-ArgCH2Cl. Thus the hirudin polypeptide chain runs in a direction opposite to that expected for fibrinogen and that observed for the substrate-like inhibitor D-Phe-Pro-ArgCH2Cl.  相似文献   

7.
The hirudin variant HV2 was modified by in vitro site-specific mutagenesis of HV2 cDNA to generate HV2(Asn-47----Lys), HV2(Asn-47----Arg) and HV2(Lys-35----Thr, Asn-47----Lys). Residues 35 and 47 are positioned respectively within the finger and prothrombin-like domains of hirudin, both of which have been suggested as thrombin binding sites. The modified polypeptides were synthesized in Saccharomyces cerevisiae using a secretion vector and purified from culture supernatants. By analysis of the human alpha-thrombin:hirudin inhibition reaction in steady-state conditions it was shown that the dissociation constants for HV2(Lys-47) and HV2(Arg-47) were 5- to 14-fold lower than for unmodified HV2, whereas mutation of Lys-35 did not significantly alter the inhibition kinetics. Furthermore, HV2(Lys-47), whose sequence is identical to a natural hirudin variant, displayed enhanced anti-thrombotic activity in vivo, having a 100-fold lower ED50 compared to HV2 in the rabbit Wessler venous thrombosis model. These results support a role for the prothrombin-like domain in thrombin binding and, moreover, demonstrate that in vivo antithrombotic efficiency correlates with the dissociation constant of the inhibition reaction.  相似文献   

8.
The interaction of hirudin with the dysfunctional enzymes thrombin Quick I and II has been investigated. Natural and recombinant hirudin caused nonlinear competitive inhibition of thrombin Quick I. The results were consistent with thrombin Quick I existing in two forms that have different affinities for hirudin. The affinities of these forms for natural hirudin were respectively 10(4)- and 10(6)-fold lower than that of alpha-thrombin. In contrast, truncated hirudin molecules lacking the C-terminal tail of the molecule caused linear inhibition of thrombin Quick I. These results indicate that different modes of interaction of the two forms of thrombin Quick I with the C-terminal tail of hirudin were the cause of the nonlinear inhibition. Comparison of the dissociation constants of thrombin Quick I with the truncated and full-length forms of hirudin suggested that the interactions that normally occur between the C-terminal tail of hirudin and thrombin were completely disrupted with the low-affinity form of thrombin Quick I. Thrombin Quick II displayed an affinity for natural hirudin that was 10(3)-fold lower than that observed with alpha-thrombin. In contrast, it bound a mutant hirudin with altered N-terminal amino acids only 16-fold less tightly. These results are discussed in terms of structural alterations in the active-site cleft in thrombin Quick II.  相似文献   

9.
The kinetic mechanism of the inhibition of alpha-thrombin by hirudin was analyzed using the hirudin-derived fragments hirudin(1-47) and hirudin(45-65). Previously, these fragments have been shown to interact with alpha-thrombin at distinct sites inhibiting thrombin-mediated clot formation. Binding to the active site the N-terminal fragment hirudin(1-47) competitively inhibits hydrolysis of the substrates Tos-Gly-Pro-Arg-NH-Mec (Tos, tosyl; NH-Mec, 4-methylcoumaryl-7-amide) and fibrinogen with Ki values of 420 +/- 18 nM and 460 +/- 25 nM, respectively. Interacting with the anion-binding site of alpha-thrombin the C-terminal fragment competitively inhibits the hydrolysis of fibrinogen with a Ki of 760 +/- 40 nM. It was found, however, that this fragment acts as a hyperbolic uncompetitive inhibitor with respect to the hydrolysis of the peptide-NH-Mec substrate. According to the Botts-Morales scheme for enzyme inhibition, the parameters Ki = 710 +/- 38 nM, K'i = 348 +/- 22 nM, as well as alpha = beta = 0.49 of thrombin inhibition by the C-terminal fragment hirudin(45-65), were obtained. The results are discussed in terms of the interaction of hirudin and thrombin.  相似文献   

10.
Recombinant hirudin (r-hirudin), unlike the naturally occurring leech protein, lacks a sulfate ester on Tyr-63 which reduces its binding affinity to thrombin by 3-10-fold. We demonstrate that nitration or iodination of Tyr-63 restores hirudin-thrombin affinity to levels similar to or exceeding that of the natural inhibitor. In contrast, nitration of Tyr-3 reduces the affinity of hirudin for thrombin. These chemical modifications results in multiple reaction products that are readily separated by reverse-phase HPLC. The mechanism of the observed changes in thrombin affinity may involve a reduction in the pK of the hydroxyl group of tyrosine due to substitution of the electrophilic iodo or nitro group on the phenyl ring, resulting in an increased negative charge at neutral pH. For Tyr-63, this effect mimics the sulfatotyrosine of natural hirudin, leading to an increased thrombin affinity at the anion-binding exosite. For Tyr-3, the increased polarity may destabilize its interaction within the apolar-binding site of thrombin. Substitution of the highly conserved Tyr-3 residue with Phe or Trp not only enables specific and quantitative chemical modification at Tyr-63 but also independently increases hirudin-thrombin affinity. Kinetic analysis of thrombin inhibition showed that enhanced binding by r-hirudin(nitro-Tyr-63) is due to an increase in the association rate between hirudin and thrombin whereas the reduced binding of r-hirudin(nitro-Tyr-3) results from a large increase in the dissociation rate. These observations indicate that specific segments within both the amino- and carboxy-terminal regions of hirudin interact with thrombin.  相似文献   

11.
Hirudin is an anticoagulant polypeptide isolated from a medicinal leech that inhibits thrombin with extraordinary potency (Kd = 0.2-1.0 pM) and selectivity. Hirudin is composed of a compact N-terminal region (residues 1-47, cross-linked by three disulfide bridges) that binds to the active site of thrombin, and a flexible C-terminal tail (residues 48-64) that interacts with the exosite I of the enzyme. To minimize the sequence of hirudin able to bind thrombin and also to improve its therapeutic profile, several N-terminal fragments have been prepared as potential anticoagulants. However, the practical use of these fragments has been impaired by their relatively poor affinity for the enzyme, as given by the increased value of the dissociation constant (Kd) of the corresponding thrombin complexes (Kd = 30-400 nM). The aim of the present study is to obtain a derivative of the N-terminal domain 1-47 of hirudin displaying enhanced inhibitory potency for thrombin compared to the natural product. In this view, we have synthesized an analogue of fragment 1-47 of hirudin HM2 in which Val1 has been replaced by tert-butylglycine, Ser2 by Arg, and Tyr3 by beta-naphthylalanine, to give the BugArgNal analogue. The results of chemical and conformational characterization indicate that the synthetic peptide is able to fold efficiently with the correct disulfide topology (Cys6-Cys14, Cys16-Cys28, Cys22-Cys37), while retaining the conformational properties of the natural fragment. Thrombin inhibition data indicate that the effects of amino acid replacements are perfectly additive if compared to the singly substituted analogues (De Filippis V, Quarzago D, Vindigni A, Di Cera E, Fontana A, 1998, Biochemistry 37:13507-13515), yielding a molecule that inhibits the fast or slow form of thrombin by 2,670- and 6,818-fold more effectively than the natural fragment, and that binds exclusively at the active site of the enzyme with an affinity (Kd,fast = 15.4 pM, Kd,slow = 220 pM) comparable to that of full-length hirudin (Kd,fast = 0.2 pM, Kd,slow = 5.5 pM). Moreover, BugArgNal displays absolute selectivity for thrombin over the other physiologically important serine proteases trypsin, plasmin, factor Xa, and tissue plasminogen activator, up to the highest concentration of inhibitor tested (10 microM).  相似文献   

12.
Thrombin is a primary target for the development of novel anticoagulants, since it plays two important and opposite roles in hemostasis: procoagulant and anticoagulant. All thrombin functions are influenced by Na+ binding, which triggers the transition of this enzyme from an anticoagulant (slow) form to a procoagulant (fast) form. In previous studies, we have conveniently produced by chemical synthesis analogues of the N-terminal fragment 1-47 of hirudin HM2 containing noncoded amino acids and displaying up to approximately 2700-fold more potent antithrombin activity, comparable to that of full-length hirudin. In the work presented here, we have exploited the versatility of chemical synthesis to probe the structural and energetic properties of the S3 site of thrombin through perturbations introduced in the structure of hirudin fragment 1-47. In particular, we have investigated the effects of systematic replacement of Tyr3 with noncoded amino acids retaining the aromatic nucleus of Tyr, as well as similar hydrophobic and steric properties, but possessing different electronic (e.g., p-fluoro-, p-iodo-, or p-nitro-Phe), charge (p-aminomethyl-Phe), or conformational (homo-Phe) properties. Our results indicate that the affinity of fragment 1-47 for thrombin is proportional to the desolvation free energy change upon complex formation, and is inversely related to the electric dipole moment of the amino acid side chain at position 3 of hirudin. In this study, we have also identified the key features that are responsible for the preferential binding of hirudin to the procoagulant (fast) form of thrombin. Strikingly, shaving at position 3, by Tyr --> Ala exchange, abolishes the differences in the affinity for thrombin allosteric forms, whereas a bulkier side chain (e.g., beta-naphthylalanine) improves binding preferentially to the fast form. These results provide strong, albeit indirect, evidence that the procoagulant (fast) form of thrombin is in a more open and accessible conformation with respect to the less forgiving structure it acquires in the slow form. This view is also supported by the results of molecular dynamics simulations conducted for 18 ns on free thrombin in full explicit water, showing that after approximately 5 ns thrombin undergoes a significant conformational transition, from a more open conformation (which we propose can be related to the fast form) to a more compact and closed one (which we propose can be related to the slow form). This transition mainly involves the Trp148 and Trp60D loop, the S3 site, and the fibrinogen binding site, whereas the S1 site, the Na+-binding site, and the catalytic pocket remain essentially unchanged. In particular, our data indicate that the S3 site of the enzyme is less accessible to water in the putative slow form. This structural picture provides a reasonable molecular explanation for the fact that physiological substrates related to the procoagulant activity of thrombin (fibrinogen, thrombin receptor 1, and factor XIII) orient a bulky side chain into the S3 site of the enzyme. Taken together, our results can have important implications for the design of novel thrombin inhibitors, of practical utility in the treatment of coagulative disorders.  相似文献   

13.
F Ni  Y Konishi  H A Scheraga 《Biochemistry》1990,29(18):4479-4489
The interaction of the C-terminal fragments (residues 52-65 and 55-65) of the thrombin-specific inhibitor hirudin with bovine thrombin was studied by use of one- and two-dimensional NMR techniques in aqueous solution. Thrombin induces specific line broadening of the proton resonances of residues Asp(55) to Gln(65) of the synthetic hirudin fragments H-Asn-Asp-Gly-Asp(55)-Phe-Glu-Glu-Ile-Pro-Glu-Glu-Tyr(63)-Leu-Gln-COOH and acetyl-Asp(55)-Phe-Glu-Glu-Ile-Pro-Glu-Glu-Tyr(63)-Leu-Gln-COOH. This demonstrates that residues 55-65 are the predominant binding site of hirudin fragments with thrombin. Hirudin fragments take on a well-defined structure when bound to thrombin as indicated by several long-range transferred NOEs between the backbone and side-chain protons of the peptides, but they are not structured when free in solution. Particularly, transferred NOEs exist between the alpha CH proton of Glu(61) and the NH proton of Leu(64) [d alpha N(i,i+3)], between the alpha CH proton of Glu(61) and the beta CH2 protons of Leu(64) [d alpha beta(i,i+3)], and between the alpha CH proton of Glu(62) and the gamma CH2 protons of Gln(65) [d alpha gamma(i,i+3)]. These NOEs are characteristic of an alpha-helical structure involving residues Glu(61) to Gln(65). There are also NOEs between the side-chain protons of residues Phe(56), Ile(59), Pro(60), Tyr(63), and Leu(64). Distance geometry calculations suggest that in the structure of the thrombin-bound hirudin peptides all the charged residues lie on the opposite side of a hydrophobic cluster formed by the nonpolar side chains of residues Phe(56), Ile(59), Pro(60), Tyr(63), and Leu(64).  相似文献   

14.
For the identification of the primary binding site of hirudin for thrombin we generated hirudin mutants with site directed amino acid substitutions with the help of recombinant DNA technology. Preliminary results indicate, that lys (47) may be directly involved in the hirudin-thrombin interaction: 1. The mutant glu (47) shows a Ki-value which is increased by two orders of magnitude (1.6.10(-9) M); 2. Incubation of mutant ala(48) with endoproteinase lys-C results in proteolysis of the newly formed peptide bond lys(47)-ala(48), whereas all other peptide bonds (lys-X) are not accessible.  相似文献   

15.
J Y Chang 《Biochemistry》1991,30(27):6656-6661
The C-terminal peptide of a hirudin acts as an anticoagulant by binding specifically to a noncatalytic (fibrinogen recognition) site of thrombin. This binding has been shown to shield five spatially distant lysines of the thrombin B-chain (Lys21, Lys65, Lys77, Lys106, and Lys107). It was also demonstrated that modification of the sequence of the hirudin C-terminal peptide invariably diminished its anticoagulant activity. The major object of this study is to investigate how the decreased activity of the modified hirudin C-terminal peptide is reflected by the change of its binding properties to these five lysines of thrombin. A synthetic peptide representing the last 12 C-terminal amino acids of hirudin (Hir54-65) was (1) truncated from both its N-terminal and its C-terminal ends, or (2) substituted with Gly along residues 57-62, or (3) chemically modified to add (sulfation at Tyr63) or abolish (Asp and Glu modification with carbodiimide/glycinamide) its negatively charged side chains. The binding characteristics of these peptides to thrombin were investigated by chemical methods, and their corresponding anticoagulant activities were studied. Our results demonstrated the following: (1) the anticoagulant activities of hirudin C-terminal peptides were quantitatively related to their abilities to shield the five identified lysines of thrombin. The most potent peptide was sulfated Hir54-65 (S-Hir54-65) with an average binding affinity to the five lysines of 120 nM. A heptapeptide (Hir54-60) also displayed anticoagulant activity and thrombin binding ability at micromolar concentrations. (2) All active hirudin C-terminal peptides regardless of their sizes and potencies were shown to be capable of shielding the five lysines of thrombin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Activation of prothrombin by factor Xa is accompanied by expression of regulatory exosites I and II on the blood coagulation proteinase, thrombin. Quantitative affinity chromatography and equilibrium binding studies with a fluorescein-labeled derivative of the exosite I-specific peptide ligand, hirudin(54-65) ([5F]Hir(54-65) (SO(3)(-)), were employed to identify and characterize this site on human and bovine prothrombin and its expression on thrombin. [5F]Hir(54-65)(SO(3)(-)) showed distinctive fluorescence excitation spectral differences in complexes with prothrombin and thrombin and bound to human prothrombin and thrombin with dissociation constants of 3.2 +/- 0.3 micrometer and 25 +/- 2 nm, respectively, demonstrating a 130-fold increase in affinity for the active proteinase. The bovine proteins similarly showed a 150-fold higher affinity of [5F]Hir(54-65)(SO(3)(-)) for thrombin compared with prothrombin, despite a 2-5-fold lower affinity of the peptides for the bovine proteins. Unlabeled, Tyr(63)-sulfated and nonsulfated hirudin peptides bound competitively with [5F]Hir(54-65)(SO(3)(-)) to human and bovine prothrombin and thrombin, exhibiting similar, 40-70-fold higher affinities for the proteinases, although nonsulfated Hir(54-65) bound with 7-17-fold lower affinity than the sulfated analog. These studies characterize proexosite I for the first time as a specific binding site for hirudin peptides on both human and bovine prothrombin that is present in a conformationally distinct, low affinity state and is activated with a approximately 100-fold increase in affinity when thrombin is formed.  相似文献   

17.
Recombinant hirudin variant-2(Lys47), was found to be a competitive inhibitor of human alpha-thrombin with respect to peptidyl p-nitroanilide substrates. These results contrast with those of Degryse and coworkers that suggest that recombinant hirudin variant-2(Lys47) inhibited thrombin by a noncompetitive mechanism [Degryse et al. (1989) Protein Engng, 2, 459-465]. gamma-Thrombin, which can arise from alpha-thrombin by autolysis, was shown to have an affinity for recombinant hirudin variant-2(Lys47) that was four orders of magnitude lower than that of alpha-thrombin. It was demonstrated that the apparent noncompetitive mechanism observed previously was probably caused by a contamination of the thrombin preparation by gamma-thrombin. Comparison of the inhibition of alpha-thrombin by recombinant hirudins variant-2(Lys47) and variant-1, which differ from one another in eight out of 65 amino acids, indicated that the two variants have essentially the same kinetic parameters.  相似文献   

18.
Effect of heparin on the interaction between thrombin and hirudin   总被引:2,自引:0,他引:2  
The effect of heparin on the interaction between thrombin and hirudin has been examined by kinetic methods. Three forms of heparin fractionated on the basis of their affinity for antithrombin III and unfractionated heparin were found to act as noncompetitive inhibitors of the formation of the thrombin-hirudin complex. A three--four fold increase in the dissociation constant of the complex was observed at saturating heparin concentrations. This increase in the dissociation constant was due to a twofold decrease in the rate of association of thrombin and hirudin together with a similar increase in the rate of dissociation of the complex. Implications for the location of the heparin binding site on thrombin and the possible therapeutic use of the hirudin are discussed.  相似文献   

19.
Refined structure of the hirudin-thrombin complex   总被引:26,自引:0,他引:26  
The structure of a recombinant hirudin (variant 2, Lys47) human alpha-thrombin complex has been refined using restrained least-squares methods to a crystallographic R-factor of 0.173. The hirudin structure consists of an N-terminal domain folded into a globular unit and a long 17-peptide C-terminal in an extended chain conformation. The N-terminal domain binds at the active-site of thrombin where Ile1' to Tyr3' penetrates to the catalytic triad. The alpha-amino group of Ile1' of hirudin makes a hydrogen bond with OG of Ser195 of thrombin, the side-chains of Ile1' and Tyr3' occupy the apolar site, Thr2' is at the entrance to, but does not enter, the S1 specificity site and Ile1' to Tyr3' form a parallel beta-strand with Ser214 to Gly219. The latter interaction is antiparallel in all other serine proteinase-protein inhibitor complexes. The extended C-terminal segment of hirudin, which is abundant in acidic residues, makes many electrostatic interactions with the fibrinogen binding exosite while the last five residues are in a 3(10) helical turn residing in a hydrophobic patch on the thrombin surface. The precision of the complementarity displayed by these two molecules produces numerous interactions, which although independently generally weak, together are responsible for the high degree of affinity and specificity. Although hirudin-thrombin and D-Phe-Pro-Arg-chloromethyl ketone-thrombin differ in conformation in the autolysis loop (Lys145 to Gly150), this is most likely due to different crystal packing interactions and changes in circular dichroism between the two are probably due to the inherent flexibility of the loop. An RGD sequence, which is generally known to be involved in cell surface receptor interactions, occurs in thrombin and is associated with a long solvent channel filled with water molecules leading to the surface from the end of the S1 site. However, the RGD triplet does not appear to be able to interact in concert in a surface binding mode.  相似文献   

20.
Bifunctional thrombin inhibitors based on the sequence of hirudin45-65   总被引:1,自引:0,他引:1  
The interaction of alpha-thrombin with the hirudin (HV1) fragment N alpha-acetyl desulfo hirudin45-65 (P51) was investigated. Kinetic analysis revealed that P51 inhibits the proteolysis of a tripeptidyl substrate with Ki = 0.72 +/- 0.13 and 0.11 +/- 0.03 microM for bovine and human alpha-thrombins, respectively. The inhibition was partially competitive, affecting substrate binding to the enzyme-inhibitor complex by a factor alpha = 2 (bovine) and alpha = 4 (human) characteristic of hyperbolic inhibitors. P51 also inhibited thrombin-induced fibrin clot formation with IC50 values of 0.94 +/- 0.20 and 0.058 +/- 0.006 microM for bovine and human alpha-thrombins, respectively. The enhanced antithrombin activity for human thrombin could be attributed to species variations in the putative auxiliary "anion" exosite since N alpha-acetyl desulfo hirudin55-65 displayed the same rank order of potency shift in a clotting assay without inhibiting the amidolytic activity of either enzyme. From these observations, a potent thrombin inhibitor was designed having modified residues corresponding to the P1 and P3 recognition sites. N alpha-Acetyl[D-Phe45, Arg47] hirudin45-65 (P53) emerged as a pure competitive inhibitor with a Ki = 2.8 +/- 0.9 nM and IC50 = 4.0 +/- 0.8 nM (human alpha-thrombin) and is designated as a "bifunctional" inhibitor. Its enhanced potency could be explained by a cooperative intramolecular interaction between the COOH-terminal domain of the inhibitor and the auxiliary exosite of thrombin on the one hand, and the modified NH2-terminal residues with the catalytic site on the other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号