首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present heritability estimates for final size of body traits and egg size as well as phenotypic and genetic correlations between body and egg traits in a recently established population of the barnacle goose (Branta leucopsis) in the Baltic area. Body traits as well as egg size were heritable and, hence, could respond evolutionarily to phenotypic selection. Genetic correlations between body size traits were significantly positive and of similar magnitude or higher than the corresponding phenotypic correlations. Heritability estimates for tarsus length obtained from full-sib analyses were higher than those obtained from midoffspring-midparent regressions, and this indicates common environment effects on siblings. Heritabilities for tarsus length obtained from midoffspring-mother regressions were significantly higher than estimates from midoffspring-father regressions. The results suggest that this discrepancy is not caused by maternal effects through egg size, nor by extra-pair fertilizations, but by a socially inherited foraging site fidelity in females.  相似文献   

2.
The existence of additive genetic variance in developmental stability has important implications for our understanding of morphological variation. The heritability of individual fluctuating asymmetry and other measures of developmental stability have frequently been estimated from parent-offspring regressions, sib analyses, or from selection experiments. Here we review by meta-analysis published estimates of the heritability of developmental stability, mainly the degree of individual fluctuating asymmetry in morphological characters. The overall mean effect size of heritabilities of individual fluctuating asymmetry was 0.19 from 34 studies of 17 species differing highly significantly from zero (P < 0.0001). The mean heritability for 14 species was 0.27. This indicates that there is a significant additive genetic component to developmental stability. Effect size was larger for selection experiments than for studies based on parent-offspring regression or sib analyses, implying that genetic estimates were unbiased by maternal or common environment effects. Additive genetic coefficients of variation for individual fluctuating asymmetry were considerably higher than those for character size per se. Developmental stability may be significantly heritable either because of strong directional selection, or fluctuating selection regimes which prevent populations from achieving a high degree of developmental stability to current environmental and genetic conditions.  相似文献   

3.
The heritability estimate (±SE) for tarsus length in the pied flycatcher is 0.53 ± 0.10, based on mother-offspring regressions. The heritability is almost the same (0.50 ± 0.22) for offspring transferred to other nests and reared by foster parents, whereas there is no resemblance (0.04 ± 0.23) between the offspring and their foster mothers. Hence, the nest environment does not affect parent-offspring resemblance. However, a full-sib correlation yields an estimate of the heritability twice as high as the parent-offspring regression did, indicating that shared environment effects, which are not correlated with the tarsus length of parents, must be important. An environmental deviation due to food factors affecting tarsus length is demonstrated. The most important food factors are probably associated with 1) polygyny, which leads to reduced paternal feeding at secondary nests, 2) high breeding density, and 3) progress of the breeding season. All three are associated with reductions in offspring mean tarsus length. We estimate selection on tarsus length for the major components of lifetime reproductive success. Offspring with the shortest tarsi have reduced survival from fledging until breeding, and males with tarsus length close to the mean are most successful in attracting mates. Clutch size increases with female tarsus length, except for individuals with very long tarsi. In general, directional selection is weak, but stabilizing selection is rather strong for survival and male mating success.  相似文献   

4.
We demonstrate that egg size in side-blotched lizards is heritable (parent-offspring regressions) and thus will respond to natural selection. Because our estimate of heritability is derived from free-ranging lizards, it is useful for predicting evolutionary response to selection in wild populations. Moreover, our estimate for the heritability of egg size is not likely to be confounded by nongenetic maternal effects that might arise from egg size per se because we estimate a significant parent-offspring correlation for egg size in the face of dramatic experimental manipulation of yolk volume of the egg. Furthermore, we also demonstrate a significant correlation between egg size of the female parent and clutch size of her offspring. Because this correlation is not related to experimentally induced maternal effects, we suggest that it is indicative of a genetic correlation between egg size and clutch size. We synthesize our results from genetic analyses of the trade-off between egg size and clutch size with previously published experiments that document the mechanistic basis of this trade-off. Experimental manipulation of yolk volume has no effect on offspring reproductive traits such as egg size, clutch size, size at maturity, or oviposition date. However, egg size was related to offspring survival during adult phases of the life history. We partitioned survival of offspring during the adult phase of the life history into (1) survival of offspring from winter emergence to the production of the first clutch (i.e., the vitellogenic phase of the first clutch), and (2) survival of the offspring from the production of the first clutch to the end of the reproductive season. Offspring from the first clutch of the reproductive season in the previous year had higher survival during vitellogenesis of their first clutch if these offspring came from small eggs. We did not observe selection during these prelaying phases of adulthood for offspring from later clutches. However, we did find that later clutch offspring from large eggs had the highest survival over the first season of reproduction. The differences in selection on adult survival arising from maternal effects would reinforce previously documented selection that favors the production of small offspring early in the season and large offspring later in the season—a seasonal shift in maternal provisioning. We also report on a significant parent-offspring correlation in lay date and thus significant heritable variation in lay date. We can rule out the possibility of yolk volume as a confounding maternal effect—experimental manipulation of yolk volume has no effect on lay date of offspring. However, we cannot distinguish between genetic effects (i.e., heritable) and nongenetic maternal effects acting on lay date that arise from the maternal trait lay date per se (or other unidentified maternal traits). Nevertheless, we demonstrate how the timing of female reproduction (e.g., date of oviposition and date of hatching) affect reproductive attributes of offspring. Notably, we find that date of hatching has effects on body size at maturity and fecundity of offspring from later clutches. We did not detect comparable effects of lay date on offspring from the first clutch.  相似文献   

5.
We report the first study with the aim to estimate heritability in a wild population, a nest box breeding population of blue tits. We estimated heritability as well as genetic and phenotypic correlations of resting metabolic rate (RMR), body mass and tarsus length with an animal model based on data from a split cross‐fostering experiment with brood size manipulations. RMR and body mass, but not tarsus length, showed significant levels of explained variation but for different underlying reasons. In body mass, the contribution to the explained variation is mainly because of a strong brood effect, while in RMR it is mainly because of a high heritability. The additive variance in RMR was significant and the heritability was estimated to 0.59. The estimates of heritability of body mass (0.08) and tarsus length (0.00) were both low and based on nonsignificant additive variances. Thus, given the low heritability (and additive variances) in body mass and tarsus length the potential for direct selection on RMR independent of the two traits is high in this population. However, the strong phenotypic correlation between RMR and mass (0.643 ± 0.079) was partly accounted for by a potentially strong, although highly uncertain, genetic correlation (1.178 ± 0.456) between the two traits. This indicates that the additive variance of body mass, although low, might still somewhat constrain the independent evolvability of RMR.  相似文献   

6.
Heritability of body size in two experimentally created environments, representing good and poor feeding conditions, respectively, was estimated using cross-fostered collared flycatcher Ficedula albicollis nestlings. Young raised under poor feeding conditions attained smaller body size (tarsus length) than their full-sibs raised under good feeding conditions. Parent-offspring regressions revealed lower heritability (h2) of body size under poor than under good feeding conditions. Hence, as the same set of parents were used in the estimation of h2 in both environments, this suggests environment-dependent change in additive genetic component of variance (VA), or that the genetic correlation between parental and poor offspring environment was less than that between parental and good offspring environment. However, full-sib analyses failed to find evidence for genotype-environment interactions, although the power of these tests might have been low. Full-sib heritabilities in both environments tended to be higher than estimates from parent-offspring regressions, indicating that prehatching or early posthatching common environment/maternal effects might have inflated full-sib estimates of VA. The effect of sibling competition on estimates of VA was probably small as the nestling size-hierarchy at day 2 posthatch was not generally correlated with size-hierarchy at fledging. Furthermore, there was no correlation between maternal body condition during the incubation and final size of offspring, indicating that direct maternal effects related to nutritional status were small. A review of earlier quantitative genetic studies of body size variation in birds revealed that in eight of nine cases, heritability of body size was lower in poor than in good environmental conditions. The main implication of this relationship will be a decreased evolutionary response to selection under poor environmental conditions. On the other hand, this will retard the loss of genetic variation by reducing the accuracy of selection and might help explain the moderate to high heritabilities of body-size traits under good environmental conditions.  相似文献   

7.
Summary In parent—offspring regressions, high heritability estimates of characters may simply be due to common environment: the resemblance between the living conditions of parents and their offspring in species showing restricted natal dispersal. In vole-eating Tengmalm's owls (Aegolius funereus), the natal dispersal and breeding dispersal of adult females are wide (up to > 1000 km and > 500 km, respectively), whereas adult males are resident. We found that body measurements of 183 recruits born in western Finland were independent of parental age and vole abundance in the birth year. Early-laid eggs produced longer winged recruits than late-laid eggs. The wing lengths of the daughters showed a significant positive regression on the wing length of their mothers, but the removal of the maternal effect via laying date lowered this relationship. The development time of offspring to the first autumn might also be crucial for morphological characters of females in their later life. Significant regressions were not found between the wing length of the son and his father. The mother—daughter regression was small for laying date, but positive (p = 0.08) for clutch size. These results suggest low heritability in breeding and morphological characters of owls and this low heritability may enable plastic adjustment to optimize fitness at any stage in a fluctuating environment. Nonadditive genetic variance also creates variation between offspring characters that are not genetically correlated with the parents and may explain these low heritability estimates.  相似文献   

8.
Recent speciation events provide potential opportunities to understand the microevolution of reproductive isolation. We used a marker-based approach and a common garden to estimate the additive genetic variation in skeletal traits in a system of two ecomorphs within the coral species Favia fragum: a Tall ecomorph that is a seagrass specialist, and a Short ecomorph that is most abundant on coral reefs. Considering both ecomorphs, we found significant narrow-sense heritability (h(2) ) in a suite of measurements that define corallite architecture, and could partition additive and nonadditive variation for some traits. We found positive genetic correlations for homologous height and length measurements among different types of vertical plates (costosepta) within corallites, but negative correlations between height and length within, as well as between costosepta. Within ecomorphs, h(2) estimates were generally lower, compared to the combined ecomorph analysis. Marker-based estimates of h(2) were comparable to broad-sense heritability (H) obtained from parent-offspring regressions in a common garden for most traits, and similar genetic co-variance matrices for common garden and wild populations may indicate relatively small G × E interactions. The patterns of additive genetic variation in this system invite hypotheses of divergent selection or genetic drift as potential evolutionary drivers of reproductive isolation.  相似文献   

9.
Heritabilities, genetic variances and covariances for body size traits, i.e. tarsus length, head length and body mass, were estimated under different environmental conditions in a Barnacle Goose (Branta leucopsis) population. Under poor growth conditions, that is, when average body size of fully grown offspring in a given cohort was small, the offspring-parent regressions and full-sib analyses yielded heritability estimates not significantly different from zero. By contrast, when growth conditions were normal or good the heritability estimates were generally significantly positive. Comparisons of genetic covariance estimates indicated that they also differed across the analysed environmental conditions. This result, together with similar results obtained in studies of passerine birds, suggests that genotype-environment interactions might be frequent within the range of environments normally encountered by birds in natural populations. If general, such results might question the validity of assuming approximate constancy of additive genetic variances and covariances over time and environments in evolutionary models.  相似文献   

10.
A recent study on a captive zebra finch population suggested that variation in digit ratio (i.e. the relative length of the second to the fourth toe) might be an indicator of the action of sex steroids during embryo development, as is widely assumed for human digits. Zebra finch digit ratio was found to vary with offspring sex, laying order of eggs within a clutch, and to predict aspects of female mating behaviour. Hence, it was proposed that the measurement of digit ratio would give insights into how an individual's behaviour is shaped by its maternal environment. Studying 500 individuals of a different zebra finch population I set out to: (1) determine the proximate causes of variation in digit ratio by means of quantitative genetics and (2) to search for phenotypic and genetic correlations between digit ratio, sexual behaviour and aspects of fitness. In contrast to the earlier study, I found no sexual dimorphism in digit ratio and no effect of either laying order or experimentally altered hatching order on digit ratio. Instead, I found that variation in digit ratio was almost entirely additive genetic, with heritability estimates ranging from 71 to 84%. The rearing environment (from egg deposition to independence) explained an additional 5-6% of the variation in digit ratio, but there was no indication of any maternal effects transmitted through the egg. I found highly significant phenotypic correlations (and genetic correlations of similar size) between digit ratio and male song rate (positive correlation) as well as between digit ratio and female hopping activity in a choice chamber (negative correlation). Rather surprisingly, the strength of these correlations differed significantly between subsequent generations of the same population, illustrating how quickly such correlations can appear and disappear probably due to genotype-environment interactions.  相似文献   

11.
We studied selection on tarsus length among first year willow tits Parus montanus in relation to environmental and genetical influences on growth. The main environmental influence on growth was a cohort effect. We also found a substantial heritable component of phenotypic variation for tarsus length (h2 = 0.61), and crossfostering in one year showed no shared environment effect which could account for parent/offspring resemblance. The deteriorating conditions for growth later in the season did not confound our heritability estimates as the time of laying was not correlated to parent size, and no maternal effects operating through egg size were found. We tested for selection during the summer dispersal phase by comparing tarsus length among fullgrown pulli (age 14 days, controlled by repeated measurements of the same individuals later during breeding and the ensuing winter) and the tarsus length of the first year cohort in autumn composed of a mixture of locally born birds remaining within our study area after the dispersal phase and immigrants born outside the study site. Following a season with poor nestling growth, birds with short tarsi were selected against when underweight, suggesting that growth condition is the target of selection. Such selection on those individuals which show the strongest environmental influence on phenotypic variation will reduce the potential for an evolutionary response to selection.  相似文献   

12.
Telomeres are protective DNA–protein complexes located at the ends of eukaryotic chromosomes, whose length has been shown to predict life-history parameters in various species. Although this suggests that telomere length is subject to natural selection, its evolutionary dynamics crucially depends on its heritability. Using pedigree data for a population of white-throated dippers (Cinclus cinclus), we test whether and how variation in early-life relative telomere length (RTL, measured as the number of telomeric repeats relative to a control gene using qPCR) is transmitted across generations. We disentangle the relative effects of genes and environment and test for sex-specific patterns of inheritance. There was strong and significant resemblance among offspring sharing the same nest and offspring of the same cohort. Furthermore, although offspring resemble their mother, and there is some indication for an effect of inbreeding, additive genetic variance and heritability are close to zero. We find no evidence for a role of either maternal imprinting or Z-linked inheritance in generating these patterns, suggesting they are due to non-genetic maternal and common environment effects instead. We conclude that in this wild bird population, environmental factors are the main drivers of variation in early-life RTL, which will severely bias estimates of heritability when not modelled explicitly.  相似文献   

13.
The effects of a single population bottleneck of differing severity on heritability and additive genetic variance was investigated experimentally using a butterfly. An outbred laboratory stock was used to found replicate lines with one pair, three pairs and 10 pairs of adults, as well as control lines with approximately 75 effective pairs. Heritability and additive genetic variance of eight wing pattern characters and wing size were estimated using parent-offspring covariances in the base population and in all daughter lines. Individual morphological characters and principal components of the nine characters showed a consistent pattern of treatment effects in which average heritability and additive genetic variance was lower in one pair and three pair lines than in 10 pair and control lines. Observed losses in heritability and additive genetic variance were significantly greater than predicted by the neutral additive model when calculated with coefficients of inbreeding estimated from demographic parameters alone. However, use of molecular markers revealed substantially more inbreeding, generated by increased variance in family size and background selection. Conservative interpretation of a statistical analysis incorporating this previously undetected inbreeding led to the conclusion that the response to inbreeding of the morphological traits studied showed no significant departure from the neutral additive model. This result is consistent with the evidence for minimal directional dominance for these traits. In contrast, egg hatching rate in the same experimental lines showed strong inbreeding depression, increased phenotypic variance and rapid response to selection, highly indicative of an increase in additive genetic variance due to dominance variance conversion.  相似文献   

14.
S. H. Orzack  J. Gladstone 《Genetics》1994,137(1):211-220
We detected significant parent-offspring regressions for the first sex ratio (the sex ratio produced by a female in a fresh host) and the second sex ratio (the sex ratio produced by a female in a previously parasitized host) in the parasitic wasp, Nasonia vitripennis. For both traits, estimates of the narrow-sense heritability range from &0.05 to &0.15 (depending on how the data are analyzed). The study population was derived from isofemale strains created from wasps captured in a single bird nest. The same population exhibited no significant parent-offspring regression for the brood sizes associated with the first and second sex ratios. There may be a significant negative parent-offspring regression for diapause proportion in the first sex ratio broods. The estimates of the genetic correlations between first and second sex ratios are positive although almost all are not significantly different from 0.0. To our knowledge, this study is the first ``fine-scale' analysis of genetic variation for sex ratio traits in any species of insect. Such studies are an essential part of the assessment of the validity of claims that sex ratio traits are locally optimal.  相似文献   

15.
Genetic estimates of the variability of immune responses are rarely examined in natural populations because of confounding environmental effects. As a result, and because of the difficulty of pinpointing the genetic determinants of immunity, no study has to our knowledge examined the contribution of specific genes to the heritability of an immune response in wild populations. We cross-fostered nestling house sparrows to disrupt the association between genetic and environmental effects and determine the heritability of the response to a classic immunological test, the phytohaemagglutinin (PHA)-induced skin swelling. We detected significant heritability estimates of the response to PHA, of body mass and tarsus length when nestlings were 5 and 10 days old. Variation at Mhc genes, however, did not explain a significant portion of the genetic variation of nestling swelling to PHA. Our results suggest that while PHA-induced swelling is influenced by the nest of origin, the importance of additive genetic variation relative to non-additive genetic variation and the genetic factors that influence the former in wild populations still need to be identified for this trait.  相似文献   

16.
Abstract The knowledge about the relative contributions of additive genetic and maternal effects, as well as the proximate determinants of maternal effects variation, on population differentiation remains elusive. Likewise, although embryonic performance is often an important component of fitness, it has been relatively little explored in respect to population differentiation. By conducting reciprocal crosses between an acid and a neutral origin population of moor frogs ( Rana arvalis ), we investigated the relative importance of additive genetic versus maternal effects in local adaptation to acidity in embryonic traits. Furthermore, by performing removal experiments of gelatinous egg capsules (jelly), we evaluated the possibility that differences in the extraembryonic membranes might explain the interpopulation variation in embryonic acid tolerance found in this and earlier studies. Embryos were raised from fertilization to hatching at three different pH levels (pH 4.0, 4.25, and 7.5) in the laboratory, and acid stress tolerance was measured in terms of embryonic survival, growth and development (i.e., size and age at hatching). The results show that the higher acid tolerance of acid population embryos (in terms of survival) was maternally determined, indicating adaptive maternal effects. The jelly removal experiment revealed that adaptation to acidity in embryonic survival may arise through variation related to structure/composition of the egg capsules. There was no evidence for a genetic basis in acid tolerance in sublethal effects, but additive and nonadditive genetic effects were found in embryonic growth and development, independently of treatment. The results indicate a role for maternal effects in local adaptation to acidity in amphibians, and genetically based differences in early life-histories among the populations.  相似文献   

17.
Heavy metals can be strong and stable directional selective agents for metal-exposed populations. Genetic variation for the metal-tolerance characteristic “cadmium excretion efficiency” was studied in populations of the collembolan Orchesella cincta from a reference- and a metal-contaminated forest soil. Previously it has been shown that “excretion efficiency” influences tolerance through midgut-mediated immobilization and excretion of toxic metal ions, and that an increased mean excretion efficiency is present in animals inhabiting metal-contaminated litter. In the present research, offspring-parent regressions showed that additive genetic variation for cadmium excretion efficiency was present in the population from the reference site. The heritability estimate was 0.33. In the natural population exposed to heavy metals from an industrial source, additive genetic variation was not significantly different from zero. Differences in the heritability between the reference and the exposed population were not significant. Genetic variation for cadmium excretion efficiency allows for a response to selection in the reference population. Such a response has probably occurred in the metal-exposed population. Half-sib analysis with animals from the reference population was used to estimate genetic variation and maternal effects for excretion efficiency, relative growth rate and molting frequency, and to determine genetic correlations between these characteristics. Additive genetic variation was demonstrated for all three characteristics, heritability estimates were 0.48, 0.75 and 0.46, respectively. Maternal effects were low for excretion efficiency and molting frequency, but may be present for relative growth rate. Phenotypic and genetic correlations among these characteristics were positive. The environmental correlation between relative growth rate and molting frequency was positive, others were negative. Direct selection for any of the characteristics, or genetic correlations between tolerance characteristics and growth characteristics, or both may have caused the responses previously observed in field populations.  相似文献   

18.
The parental influences on three progeny traits (survival to eyed‐embryo stage, post‐hatching body length and yolk‐sac volume) of Arctic charr Salvelinus alpinus were studied under two thermal conditions (2 and 7° C) using a factorial mating design. The higher temperature resulted in elevated mortality rates and less advanced development at hatching. Survival was mostly attributable to maternal effects at both temperatures, but the variation among families was dependent on egg size only at the low temperature. No additive genetic variation (or pure sire effect) could be observed, whereas the non‐additive genetic effects (parental combination) contributed to offspring viability at 2° C. In contrast, any observable genetic variance in survival was lost at 7° C, most likely due to the increased environmental variance. Irrespective of temperature, dam and sire–dam interaction contributed significantly to the phenotypic variation in both larval length and yolk size. A significant proportion of the variation in larval length was also due to the sire effect at 2° C. Maternal effects were mediated partly through egg size, but as a whole, they decreased in importance at the high temperature, enabling a concomitant increase in non‐additive genetic effects. For larval length, however, the additive component, like maternal effects, decreased at 7° C. The present results suggest that an exposure to thermal stress during incubation can modify the genetic architecture of early developmental traits in S. alpinus and presumably constrain their short‐term adaptive potential and evolvability by increasing the amount of environmentally induced variation.  相似文献   

19.
In altricial birds, growth rates and nestling morphology vary between broods. For natural selection to produce evolutionary change in these variables, there must exist heritable variation. Since nestling traits are not any longer present in parents, traditional offspring-parent regressions cannot estimate heritabilities of these. In this study, a partial cross-fostering experiment was performed, where nestlings of the European Starling (Sturnus vulgaris) were reciprocally exchanged between nests. The experiment demonstrated a significant heritability of nestling tarsus length and body mass, but not of the growth trajectories followed by individual nestlings. The heritability estimate for tarsus length obtained in the cross-fostering experiment using full-sib analysis was lower than those obtained by offspring-parent regressions. This is likely due to a genotype-by-environment effect on tarsus length, with nestlings destined to become large but in poor condition having a low probability of appearing as parents. The main reason for the low heritability of growth was probably the large within-brood variation in growth pattern due to the initial size hierarchy of nestlings. Nestlings demonstrated targeted growth, where small-sized nestlings that initially grew slower than their siblings, managed to catch up.  相似文献   

20.
Currently, there is no agreement about the suitability of haematocrit (the proportion of blood volume occupied by packed red blood cells) as a predictor of condition in birds. In order to clarify this point, genetic and environmental components of phenotypic variation for a number of traits were estimated in nestling Barn Swallows Hirundo rustica by means of a partial cross-fostering experiment. The studied traits were haematocrit, two morphological traits used as estimates of condition in birds (body mass and body mass relative to body size) and a morphological trait that presumably is not associated with condition (tarsus length). First, we found that body mass relative to body size was related to haematocrit, supporting the suggestion that haematocrit reflects condition in this species. Secondly, we found that the coefficient of residual (i.e. environmental) variation of haematocrit was larger than that of tarsus length, but smaller than those of body mass or body mass relative to body size. Under the hypothesis that traits closely related to condition (and, ultimately, to fitness) are characterized by large residual variance, these results also suggest that haematocrit is related to condition, but that this relationship must be weak. Therefore, the use of haematocrit as an estimate of condition is not recommended. Finally, heritabilities of the studied traits were calculated, differing significantly from zero only for tarsus length, the trait with the smallest residual variation. However, a consistent pattern in the relationship between heritability and genetic variation was not found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号