首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA ligases are essential both to in vivo replication, repair and recombination processes, and in vitro molecular biology protocols. Prior characterization of DNA ligases through gel shift assays has shown the presence of a nick site to be essential for tight binding between the enzyme and its dsDNA substrate, with no interaction evident on dsDNA lacking a nick. In the current study, we observed a significant substrate inhibition effect, as well as the inhibition of both the self-adenylylation and nick-sealing steps of T4 DNA ligase by non-nicked, non-substrate dsDNA. Inhibition by non-substrate DNA was dependent only on the total DNA concentration rather than the structure; with 1 μg/mL of 40-mers, 75-mers, or circular plasmid DNA all inhibiting ligation equally. A >15-fold reduction in T4 DNA ligase self-adenylylation rate when in the presence of high non-nicked dsDNA concentrations was observed. Finally, EMSAs were utilized to demonstrate that non-substrate dsDNA can compete with nicked dsDNA substrates for enzyme binding. Based upon these data, we hypothesize the inhibition of T4 DNA ligase by non-nicked dsDNA is direct evidence for a two-step nick-binding mechanism, with an initial, nick-independent, transient dsDNA-binding event preceding a transition to a stable binding complex in the presence of a nick site.  相似文献   

2.
DNA endonuclease derived from the yeast VMA1-gene product recognizes and cleaves 31 base-pairs of double-stranded DNA (dsDNA). Mixtures of the endonuclease (VDE) with a full DNA substrate consisting of 34 base-pairs, with nicked substrates each having a nick in either DNA chain, and with cleaved substrates each having a cleaved-off chain are prepared. Molecular weights (MWs) of eluted peaks from gel filtration columns were estimated from elution profiles in the presence of Mg2+ ions. Each mixture exhibited an elute peak at about 63k MW, larger than the MW of VDE unbound to dsDNA. This indicates that VDE and dsDNA substrates form stable complexes. The mixture of VDE either with the full substrate or with the nicked substrate having a nick in the anti-sense chain eluted an additional 25k-MW peak, which presumably corresponds to a cleaved product. The complex of VDE with the full substrate was eluted at 62k-MW location in the absence of Mg2+ ions and yielded a single crystal. Stable complexes of VDE either with the dsDNA substrates or with the cleaved products are obtainable.  相似文献   

3.
DNA ligases are the enzymes responsible for the repair of single-stranded and double-stranded nicks in dsDNA. DNA ligases are structurally similar, possibly sharing a common molecular mechanism of nick recognition and ligation catalysis. This mechanism remains unclear, in part because the structure of ligase in complex with dsDNA has yet to be solved. DNA ligases share common structural elements with DNA polymerases, which have been cocrystallized with dsDNA. Based on the observed DNA polymerase-dsDNA interactions, we propose a mechanism for recognition of a single-stranded nick by DNA ligase. According to this mechanism, ligase induces a B-to-A DNA helix transition of the enzyme-bound dsDNA motif, which results in DNA contraction, bending and unwinding. For non-nicked dsDNA, this transition is reversible, leading to dissociation of the enzyme. For a nicked dsDNA substrate, the contraction of the enzyme-bound DNA motif (a) triggers an opened-closed conformational change of the enzyme, and (b) forces the motif to accommodate the strained A/B-form hybrid conformation, in which the nicked strand tends to retain a B-type helix, while the non-nicked strand tends to form a shortened A-type helix. We propose that this conformation is the catalytically competent transition state, which leads to the formation of the DNA-AMP intermediate and to the subsequent sealing of the nick.  相似文献   

4.
DNA polymerase I (DNApolI) catalyzes DNA synthesis during Okazaki fragment maturation, base excision repair, and nucleotide excision repair. Some bacterial DNApolIs are deficient in 3′–5′ exonuclease, which is required for removing an incorrectly incorporated 3′-terminal nucleotide during DNA elongation by DNA polymerase activity. The key amino acid residues in the exonuclease center of Chlamydophila pneumoniae DNApolI (CpDNApolI) are naturally mutated, resulting in the loss of 3′–5′ exonuclease. Hence, the manner by which CpDNApolI proofreads the incorrectly incorporated nucleotide during DNA synthesis warrants clarification. C. pneumoniae encodes three 3′–5′ exonuclease activities: one endonuclease IV and two homologs of the epsilon subunit of replicative DNA polymerase III. The three proteins were biochemically characterized using single- and double-stranded DNA substrate. Among them, C. pneumoniae endonuclease IV (CpendoIV) possesses 3′–5′ exonuclease activity that prefers to remove mismatched 3′-terminal nucleotides in the nick, gap, and 3′ recess of a double-stranded DNA (dsDNA). Finally, we reconstituted the proofreading reaction of the mismatched 3′-terminal nucleotide using the dsDNA with a nick or 3′ recess as substrate. Upon proofreading of the mismatched 3′-terminal nucleotide by CpendoIV, CpDNApolI can correctly reincorporate the matched nucleotide and the nick is further sealed by DNA ligase. Based on our biochemical results, we proposed that CpendoIV was responsible for proofreading the replication errors of CpDNApolI.  相似文献   

5.
Here we report a new method to detect DNA point mutations.The method is based on the formation and deformation of double-stranded DNA(dsDNA)membranes on a gold surface.It can encage reporter molecules between the gold surface and the double-stranded DNA or keep them away from the gold surface.In these systems,Fe(CN)63- was used as the reporter.As the temperature increases,a sharp electrochemical signal change in the melting curve of wild-type dsDNA appears.At a special temperature,the and single base mutation target.Thus,the system provides a simple and sensitive method to detect DNA point mutations without labeling targets.  相似文献   

6.
7.
Oligonucleotide-directed mutagenesis is a widely used method for studying enzymes and improving their properties. The number of mutants that can be obtained with this method is limited by the number of synthetic 25-30mer oligonucleotides containing the mutation mismatch, becoming impracticably large with increasing size of a mutant library. To make this approach more practical, shorter mismatching oligonucleotides (7-12mer) might be employed. However, the introduction of these oligonucleotides in dsDNA poses the problem of sealing a DNA nick containing 5'-terminal base pair mismatches. In the present work we studied the ability of T4 DNA ligase to catalyze this reaction. It was found that T4 DNA ligase effectively joins short oligonucleotides, yielding dsDNA containing up to five adjacent mismatches. The end-joining rate of mismatching oligonucleotides is limited by the formation of the phosphodiester bond, decreasing with an increase in the number of mismatching base pairs at the 5'-end of the oligonucleotide substrate. However, in the case of a 3 bp mismatch, the rate is higher than that obtained with a 2 bp mismatch. Increasing the matching length with the number of mismatching base pairs fixed, or moving the mismatching motif downstream with respect to the joining site increases the rate of ligation. The ligation rate increases with the molar ratio [oligonucleotide:dsDNA]; however, at high excess of the oligonucleotide, inhibition of joining was observed. In conclusion, 9mer oligonucleotides containing a 3 bp mismatch are found optimal substrates to introduce mutations in dsDNA, opening perspectives for the application of T4 DNA ligase in mutagenesis protocols.  相似文献   

8.
While sequence-selective dsDNA targeting by triplex forming oligonucleotides has been studied extensively, only very little is known about the properties of PNA–dsDNA triplexes—mainly due to the competing invasion process. Here we show that when appropriately modified using pseudoisocytosine substitution, in combination with (oligo)lysine or 9-aminoacridine conjugation, homopyrimidine PNA oligomers bind complementary dsDNA targets via triplex formation with (sub)nanomolar affinities (at pH 7.2, 150 mM Na+). Binding affinity can be modulated more than 1000-fold by changes in pH, PNA oligomer length, PNA net charge and/or by substitution of pseudoisocytosine for cytosine, and conjugation of the DNA intercalator 9-aminoacridine. Furthermore, 9-aminoacridine conjugation also strongly enhanced triplex invasion. Specificity for the fully matched target versus one containing single centrally located mismatches was more than 150-fold. Together the data support the use of homopyrimidine PNAs as efficient and sequence selective tools in triplex targeting strategies under physiological relevant conditions.  相似文献   

9.
Triplex forming oligonucleotides (TFOs) are the most commonly used approach for site-specific targeting of double stranded DNA (dsDNA). Important parameters describing triplex formation include equilibrium binding constants (K(eq)) and association/dissociation rate constants (k(on) and k(off)). The 'fluorescent intercalator displacement replacement' (FIDR) assay is introduced herein as an operationally simple approach toward determination of these parameters for triplexes involving TC-motif TFOs. Briefly described, relative rate constants are determined from fluorescence intensity changes upon: (i) TFO-mediated displacement of pre-intercalated and fluorescent ethidium from dsDNA targets (triplex association) and (ii) Watson-Crick complement-mediated displacement of the TFO and replacement with ethidium (triplex dissociation). The assay is used to characterize triplexes between purine-rich dsDNA targets and TC-motif TFOs modified with six different locked nucleic acid (LNA) monomers, i.e. conventional and C5-alkynyl-functionalized LNA and α-L-LNA pyrimidine monomers. All of the studied monomers increase triplex stability by decreasing the triplex dissociation rate. LNA-modified TFOs form more stable triplexes than α-L-LNA-modified counterparts owing to slower triplex dissociation. Triplexes modified with C5-(3-aminopropyn-1-yl)-LNA-U monomer Z are particularly stable. The study demonstrates that three affinity-enhancing features can be combined into one high-affinity TFO monomer: conformational restriction of the sugar ring, expansion of the pyrimidine π-stacking surface and introduction of an exocyclic amine.  相似文献   

10.
CRISPR-Cas12a (Cpf1) is a bacterial RNA-guided nuclease that cuts double-stranded DNA (dsDNA) at sites specified by a CRISPR RNA (crRNA) guide. Additional activities have been ascribed to this enzyme in vitro: site-specific (cis) single-stranded DNA (ssDNA) cleavage and indiscriminate (trans) degradation of ssDNA, RNA, and dsDNA after activation by a complementary target. The ability of Cas12a to cleave nucleic acids indiscriminately has been harnessed for many applications, including diagnostics, but it remains unknown if it contributes to bacterial immunity. Here, we provide evidence that cleavage of ssDNA in cis or in trans by Cas12a is insufficient to impact immunity. Using LbCas12a expressed in either Pseudomonas aeruginosa or Escherichia coli, we observed that cleavage of dsDNA targets did not elicit cell death or dormancy, suggesting insignificant levels of collateral damage against host RNA or DNA. Canonical immunity against invasive dsDNA also had no impact on the replicative fitness of co-infecting dsDNA phage, ssDNA phage or plasmid in trans. Lastly, crRNAs complementary to invasive ssDNA did not provide protection, suggesting that ssDNA cleavage does not occur in vivo or is insignificant. Overall, these results suggest that CRISPR-Cas12a immunity predominantly occurs via canonical targeting of dsDNA, and that the other activities do not significantly impact infection outcomes.  相似文献   

11.
T4 DNA ligase is an Mg2+-dependent and ATP-dependent enzyme that seals DNA nicks in three steps: it covalently binds AMP, transadenylates the nick phosphate, and catalyses formation of the phosphodiester bond releasing AMP. In this kinetic study, we further detail the reaction mechanism, showing that the overall ligation reaction is a superimposition of two parallel processes: a 'processive' ligation, in which the enzyme transadenylates and seals the nick without dissociating from dsDNA, and a 'nonprocessive' ligation, in which the enzyme takes part in the abortive adenylation cycle (covalent binding of AMP, transadenylation of the nick, and dissociation). At low concentrations of ATP (<10 microM) and when the DNA nick is sealed with mismatching base pairs (e.g. five adjacent), this superimposition resolves into two kinetic phases, a burst ligation (approximately 0.2 min(-1)) and a subsequent slow ligation (approximately 2x10(-3) min(-1)). The relative rate and extent of each phase depend on the concentrations of ATP and Mg2+. The activation energies of self-adenylation (16.2 kcal.mol(-1)), transadenylation of the nick (0.9 kcal.mol(-1)), and nick-sealing (16.3-18.8 kcal.mol(-1)) were determined for several DNA substrates. The low activation energy of transadenylation implies that the transfer of AMP to the terminal DNA phosphate is a spontaneous reaction, and that the T4 DNA ligase-AMP complex is a high-energy intermediate. To summarize current findings in the DNA ligation field, we delineate a kinetic mechanism of T4 DNA ligase catalysis.  相似文献   

12.
A model is proposed for non-hexameric helicases translocating along single-stranded (ss) DNA and unwinding double-stranded (ds) DNA. The translocation of a monomeric helicase along ssDNA in weakly-ssDNA-bound state is driven by the Stokes force that is resulted from the conformational change following the transition of the nucleotide state. The unwinding of dsDNA is resulted mainly from the bending of ssDNA induced by the strong binding force of helicase with dsDNA. The interaction force between ssDNA and helicases in weakly-ssDNA-bound state determines whether monomeric helicases such as PcrA can unwind dsDNA or dimeric helicases such as Rep are required to unwind dsDNA.  相似文献   

13.
Specific base recognition and binding between native double-stranded DNA (dsDNA) and complementary single-stranded DNA (ssDNA) of mixed base sequence is presented. Third-strand binding, facilitated and stabilized by a DNA intercalator, YOYO-1, occurs within 5 min at room temperature. This triplex binding capability has been used to develop a homogeneous assay that accurately detects 1-, 2-, or 3-bp mutations or deletions in the dsDNA target. Every type of 1-bp mismatch can be identified. The assay can reliably distinguish homozygous from heterozygous polymerase chain reaction (PCR)-amplified genomic dsDNA, thus providing a highly sensitive clinical diagnostic assay.  相似文献   

14.
Nuclear changes may be important in the mechanism of CTL-mediated lysis. Rapid cleavage of target cell DNA into oligonucleosomes has been demonstrated as a very early event in CTL-mediated killing of murine hematopoietic targets. However, the results presented herein and by other investigators have shown that this extensive dsDNA fragmentation does not occur in all CTL targets. In terms of actual DNA damage, there is a wide range in the extent and type of DNA cleavage in various targets. Differences exist at both the species and the cell lineage level. The extent of DNA damage generally corresponds to the efficiency of lysis; thus, murine hematopoietic cells, which undergo dsDNA fragmentation, are killed more rapidly and at lower E/T cell ratios than are murine nonhematopoietic cells, which sustain single-stranded nicks. Experiments using cloned CTL demonstrate that the same effector cell kills both hematopoietic and nonhematopoietic targets, producing different types of DNA damage. These observations indicate that the fate of the target cell DNA is determined by the nature of the target cell and not by the CTL. We propose that DNA damage results from an enzyme pathway inherent to the target, which is activated by, not transferred from, the CTL.  相似文献   

15.
Zinc-finger–FokI nucleases (ZFNs) are useful for manipulating genomic DNA, but two ZFNs are required to cleave one site of double-stranded DNA (dsDNA), which limits the choice of targets. To refine ZFN technology, we constructed artificial zinc-finger nucleases containing an artificial zinc-finger protein (AZP) and a single-chain FokI dimer with nine different peptide linkers between two FokI molecules (designated AZP–scFokI). DNA cleavage assays revealed that the AZP–scFokI variant possessing the longest peptide linker cleaved dsDNA with equal or greater reactivity than the corresponding AZP–FokI dimer. The DNA cleavage pattern of AZP–scFokI suggests that the enhanced dsDNA cleavage was due to increased formation of FokI dimer in AZP–scFokI. Furthermore, we demonstrated that AZP–scFokI site-specifically cleaved its target DNA due to the AZP moiety discriminating one base pair difference. Thus, a single AZP–scFokI molecule is able to cleave dsDNA efficiently and site-specifically, and enhances the usefulness of the ZFN approach.  相似文献   

16.
The substrate requirement of the intrinsic 3'-5' exonuclease of DNA polymerase B1 from the hyperthermophilic archaeon Sulfolobus solfataricus P2 (Sso polB1) was investigated. Sso polB1 degraded both single-stranded (ss) and double-stranded (ds) DNA at similar rates in vitro at temperatures of physiological relevance. No difference was found in the cleavage of 3'-recessive, 3'-protruding and blunt-ended DNA duplexes at these temperatures. However, a single-stranded nick in duplex DNA was less readily employed by the enzyme to initiate cleavage than a free 3' end. At lower temperatures, Sso polB1 cleaved ssDNA more efficiently than dsDNA. The strong 3'-5' exonuclease activity of polB1 was inhibited by 50% in the presence of 2 microM dNTPs, but remained measurable at up to 600 microM dNTPs. In view of the strong exonuclease activity of Sso polB1 on matched dsDNA, we suggest that S. solfataricus may have evolved mechanisms to regulate the exonuclease/polymerase ratio of the enzyme, thereby reducing the cost of proofreading at high temperature.  相似文献   

17.
Double-stranded DNA (dsDNA) induces the transfer of phosphate from ATP to several proteins in extracts of widely divergent eukaryotic cells. Extracts of HeLa cells, rabbit reticulocytes, Xenopus eggs and Arbacia eggs all show dsDNA-dependent protein phosphorylation. The mechanism is specific for dsDNA and will not respond to either RNA or single-stranded DNA. One of the proteins which is phosphorylated in response to dsDNA has a subunit mol. wt. of 90 000 and has been identified as a heat-shock protein (hsp90). Although mouse cell extracts were shown to contain hsp90, they failed to show a dsDNA-dependent protein phosphorylation. The observation that dsDNA can modulate the phosphorylation of a set of proteins raises the possibility that dsDNA may play a role as a cellular regulatory signal.  相似文献   

18.
We characterize the binding affinity and the thermodynamics of hybridization of triplex-forming antiparallel purine-hairpins composed of two antiparallel purine domains linked by a loop directed toward single-stranded and double-stranded DNA (ssDNA, dsDNA). Gel retardation assays and melting experiments reveal that a 13-mer purine-hairpin binds specifically and with a K ( d ) of 8 x 10(8) M to polypyrimidine ssDNA to form a triple helical structure. Remarkably, we show that purine-hairpins also bind polypurine/polypyrimidine stretches included in a dsDNA of several hundred bp in length. Binding of purine-hairpins to dsDNA occurs by triplex formation with the polypyrimidine strand, causing displacement of the polypurine strand. Because triplex formation is restricted to polypurine/polypyrimidine stretches of dsDNA, we studied the triplex formation between purine-hairpins and polypyrimidine targets containing purine interruptions. We found that an 11-mer purine-hairpin with an adenine opposite to a guanine interruption in the polypyrimidine track binds to ssDNA and dsDNA, allowing expansion of the possible target sites and increase in the length of purine-hairpins. Thus, when using a 20-mer purine-hairpin targeting an interruption-containing polypyrimidine target, the binding affinity is increased compared to its 13-mer antiparallel purine-hairpin counterpart. Surprisingly, this increase is much more pronounced than that observed for a tail-clamp purine-hairpin extended up to 20 nt in the Watson-Crick domain only. Thus, triplexforming antiparallel purine-hairpins can be a potentially useful strategy for both single-strand and double-strand nucleic acid recognition.  相似文献   

19.
Interaction of dimeric intercalating dyes with single-stranded DNA.   总被引:5,自引:2,他引:3       下载免费PDF全文
The unsymmetrical cyanine dye thiazole orange homodimer (TOTO) binds to single-stranded DNA (ssDNA, M13mp18 ssDNA) to form a fluorescent complex that is stable under the standard conditions of electrophoresis. The stability of this complex is indistinguishable from that of the corresponding complex of TOTO with double-stranded DNA (dsDNA). To examine if TOTO exhibits any binding preference for dsDNA or ssDNA, transfer of TOTO from pre-labeled complexes to excess unlabeled DNA was assayed by gel electrophoresis. Transfer of TOTO from M13 ssDNA to unlabeled dsDNA proceeds to the same extent as that from M13 dsDNA to unlabeled dsDNA. A substantial amount of the dye is retained by both the M13 ssDNA and M13 dsDNA even when the competing dsDNA is present at a 600-fold weight excess; for both dsDNA and ssDNA, the pre-labeled complex retains approximately one TOTO per 30 bp (dsDNA) or bases (ssDNA). Rapid transfer of dye from both dsDNA and ssDNA complexes is seen at Na+ concentrations > 50 mM. Interestingly, at higher Na+ or Mg2+ concentrations, the M13 ssDNA-TOTO complex appears to be more stable to intrinsic dissociation (dissociation in the absence of competing DNA) than the complex between TOTO and M13 dsDNA. Similar results were obtained with the structurally unrelated dye ethidium homodimer. The dsDNA- and ssDNA-TOTO complexes were further examined by absorption, fluorescence and circular dichroism spectroscopy. The surprising conclusion is that polycationic dyes, such as TOTO and EthD, capable of bis-intercalation, interact with dsDNA and ssDNA with very similar high affinity.  相似文献   

20.
Prokaryotic Argonautes (pAgos) use small nucleic acids as specificity guides to cleave single-stranded DNA at complementary sequences. DNA targeting function of pAgos creates attractive opportunities for DNA manipulations that require programmable DNA cleavage. Currently, the use of mesophilic pAgos as programmable endonucleases is hampered by their limited action on double-stranded DNA (dsDNA). We demonstrate here that efficient cleavage of linear dsDNA by mesophilic Argonaute CbAgo from Clostridium butyricum can be activated in vitro via the DNA strand unwinding activity of nuclease deficient mutant of RecBC DNA helicase from Escherichia coli (referred to as RecBexo–C). Properties of CbAgo and characteristics of simultaneous cleavage of DNA strands in concurrence with DNA strand unwinding by RecBexo–C were thoroughly explored using 0.03–25 kb dsDNAs. When combined with RecBexo–C, CbAgo could cleave targets located 11–12.5 kb from the ends of linear dsDNA at 37°C. Our study demonstrates that CbAgo with RecBexo–C can be programmed to generate DNA fragments with custom-designed single-stranded overhangs suitable for ligation with compatible DNA fragments. The combination of CbAgo and RecBexo–C represents the most efficient mesophilic DNA-guided DNA-cleaving programmable endonuclease for in vitro use in diagnostic and synthetic biology methods that require sequence-specific nicking/cleavage of linear dsDNA at any desired location.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号