首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Phenylalanine hydroxylase was purified from crude extracts of human livers which show enzyme activity by usine two different methods: (a) affinity chromatography and (b) immunoprecipitation with an antiserum against highly purified monkey liver phenylalanine hydroxylase. Purified human liver phenylalanine hydroxylase has an estimated mol. wt. of 275 000, and subunit mol. wts. of approx. 50 000 and 49 000. These two molecular-weight forms are designated H and L subunits. On two-dimensional polyacrylamide gel under dissociating conditions, enzyme purified by the two methods revealed at least six subunit species, which were resolved into two size classes. Two of these species have a molecular weight corresponding to that of the H subunit, whereas the other four have a molecular weight corresponding to that of the L subunit. This evidence indicates that active phenylalanine hydroxylase purified from human liver is composed of a mixture of sununits which are different in charge and size. None of the subunit species could be detected in crude extracts of livers from two patients with classical phenylketonuria by either the affinity or the immunoprecipitation method. However, they were present in liver from a patient with malignant hyperphenylalaninaemia with normal activity of dihydropteridine reductase.  相似文献   

2.
Eight polymorphic restriction enzyme sites at phenylalanine hydroxylase locus from the parental chromosomes in Polish families with phenylketonuria were analyzed. Among 28 chromosomes studied, we identified haplotypes found within the Danish population. Haplotype 2 has been found in 25% of affected alleles. One of the patients studied is homozygous for this haplotype.  相似文献   

3.
4.
《Biochemical medicine》1976,15(1):55-86
Phenylalanine hydroxylase prepared from rat and human liver occurs in three unique isozymal forms. The enzyme was separated into three fractions on neutral calcium phosphate gel columns. Authenticity of the enzyme activities was confirmed by substrate specificity, Michaelis constants for substrate and cofactor, and pH optima. Differentiation of three forms as suggested by column chromatography was confirmed by rechromatography, gel filtration, density gradient centrifugation, and dissimilar responses to temperature, para-chlorophenylalanine, and pretreatment with lecithin.We have demonstrated that the isozymes mature at different times during intrauterine and extrauterine development and that the enzyme is not mature at birth in the rat.We offer various proposals of the significance of isozymes of this enzyme, particularly with regard to the various states of hyperphenylalaninemia and particularly phenylketonuria.  相似文献   

5.
The data on analysis of phenylalanine hydroxilase (PAH) gene mutations in 39 phenylketonuria (PKU) families from Ukraine are presented. Obtained results indicate that the most common mutation observed in the Ukrainian population is R408W mutation (66.6%). Besides two minor mutations R158Q (2.6%) and Y414C (1.25%) were revealed.  相似文献   

6.
Sequence and expression of the Drosophila phenylalanine hydroxylase mRNA   总被引:2,自引:0,他引:2  
We report the cloning, nucleotide (nt) sequence and expression of the cDNA (pah) encoding phenylalanine hydroxylase (PAH) of Drosophila melanogaster. The strong hybridization signals observed in genomic blots when D. melanogaster DNA was probed with 32P-labeled human pah cDNA, indicated the existence of a high degree of sequence similarity between the pah genes of both species. The length of the pah genomic fragment is about 30 to 40 kb. The cDNA contains 84 bp of the 5'-untranslated region, 1359 bp of the protein-coding region and 87 bp of the 3' region, with only one polyadenylation signal. The isolated cDNA is probably full-length, since the size of the D. melanogaster PAH mRNA is 1.5 kb. At the nt level, the similarity of the D. melanogaster cDNA with human and rat pah cDNAs is 57.9% and 58.1%, respectively. The highest similarities are restricted to the nt sequence coding for the presumed hydroxylation domain. There is no nt sequence similarity between the first three exons of the human pah gene and an equivalent fraction of the D. melanogaster pah gene. At the amino acid (aa) level, the similarity in the presumed hydroxylation domain is 88.5%, in which two motifs of the structure AGLLSSXXXL are found, where X represents any aa. It was interesting to notice the conservation of aa 408, 311 and 280, where mutations are associated with phenylketonuria in humans. We observed, moreover, that, as it occurs in humans and rats, the expression of the D. melanogaster pah gene is tissue-specific and temporally regulated.  相似文献   

7.
We report the characterization of a mutation in the phenylalanine hydroxylase (PAH) gene associated with partial residual activity of the enzyme. This point mutation (280glu----lys) was found by sequencing a mutant cDNA clone derived from a needle biopsy of the liver in a child with variant form of phenylketonuria. There is a strict concordance between homozygosity for the mutation and this particular phenotype. The (280glu----lys) mutation is linked to an original and rare RFLP haplotype at the PAH locus found in south Europe and North Africa. So far, this genotype-haplotype association is both inclusive and exclusive. Thirty-three PAH-deficient patients were screened for the mutation by using polymerase chain-reaction amplification of their genomic DNA extracted from Guthrie cards. Since a large number of patients can be screened for a particular mutation by using Guthrie cards, the possibility arises of using these samples collected by national newborn screening centers for prospective and retrospective detection of other mutations in the human genome.  相似文献   

8.
The variation in mutations in exons 3, 6, 7, 11 and 12 of the phenylalanine hydroxylase (PAH) gene was investigated in 59 children with phenylketonuria (PKU) and 100 normal children. Three single nucleotide polymorphisms were detected by sequence analysis. The mutational frequencies of cDNA 696, cDNA 735 and cDNA 1155 in patients were 96.2%, 76.1% and 7.6%, respectively, whereas in healthy children the corresponding frequencies were 97.0%, 77.3% and 8.3%. In addition, 81 mutations accounted for 61.0% of the mutant alleles. R111X, H64 > TfsX9 and S70 del accounted for 5.1%, 0.8% and 0.8% mutation of alleles in exon 3, whereas EX6-96A > G accounted for 10.2% mutation of alleles in exon 6. R243Q had the highest incidence in exon 7 (12.7%), followed by Ivs7 + 2 T > A (5.1%) and T278I (2.5%). G247V, R252Q, L255S, R261Q and E280K accounted for 0.8% while Y356X and V399V accounted for 5.9% and 5.1%, respectively, in exon 11. R413P and A434D accounted for 5.9% and 2.5%, respectively, in exon 12. Seventy-two variant alleles accounted for the 16 mutations observed here. The mutation characteristics and distributions demonstrated that EX6-96A > G and R243Q were the hot regions for mutations in the PAH gene in Shanxi patients with PKU.  相似文献   

9.
We report the insertion of the transposable element B104 in the Phenylalanine hydroxylase gene of the Drosophila mutant Henna-recessive 3. Its presence alters the Phenylalanine hydroxylase splicing pattern, producing at least two aberrant mRNAs which contain part of the B104 sequence interrupting the coding region. This aberrant splicing is provoked by the use of a cryptic donor site encoded by the B104 3' long terminal repeat in combination with either the gene intron 3 acceptor site or a novel acceptor site generated by the target duplication caused by transposition. One of them, referred as mRNA type 1, encodes a truncated protein that could be predictably non-functional. In mRNA type 2, in spite of a 42 nt insertion, the Phenylalanine hydroxylase reading frame is not altered and it would encode for a protein with 14 extra amino acids which would be able to account for the low enzyme activity detected in this mutant. These results demonstrated that Henna locus encodes the enzyme phenylalanine hydroxylase providing direct evidence of its participation in pteridine synthesis. Moreover, it constitutes an example of the ability of transposable elements to generate protein variation in populations with the evolutionary consequences that this implies.  相似文献   

10.
Restriction fragment length polymorphism haplotyping of mutated and normal phenylalanine hydroxylase (PAH) alleles in 49 Dutch phenylketonuria (PKU) families was performed. All mutant PAH chromosomes identified by haplotyping (n = 98) were screened for eight of the most predominant mutations. Compound heterozygosity was proven in 40 kindreds. Homozygosity was found for the IVS12nt1 mutation in 5 families, and for the R158Q and IVS10nt546 mutations in one family each. All patients from these families suffer from severe PKU, providing additional proof that these mutations are deleterious for the PAH gene. Genotypical heterogeneity was evident for mutant haplotype 1 (n = 27) carrying the mutations R261Q (n = 12), E280K (n = 4), P281L (n = 1) and unknown (n = 10), and likewise for mutant haplotype 4 (n = 30) carrying the mutations R158Q (n = 13), Y414C (n = 1) and unknown (n = 16). Mutant haplotype 3 (n = 20), in tight association with mutation IVS12nt1, appeared to be in strong linkage disequilibrium (LDE) with its normal counterpart allele (n = 4). Mutant haplotype 6 (n = 4), in tight association with the IVS10nt546 mutation, showed moderate LDE with its counterpart allele (n = I). The distribution of the mutant PAH haplotypes 1, 3 and 4 among the Dutch PKU population resembles that in other Northern and Western European countries, but it is striking that mutant haplotype 2 and its associated mutation R408W is nearly absent in The Netherlands, in strong contrast to its neighbouring countries.  相似文献   

11.
Maximum inhibition of phenylalanine hydroxylase activity in the liver (85%) and in the kidney (50%) of suckling rats required the administration of over 9 mumol of p-chlorophenylalanine/10g body weight. Despite the decrease in the total activity from 184 to 34 units per 10g body weight, the injection of as much as 26 mumol of phenylalanine was required for its concentration in plasma to be still considerably elevated 12h later. In rats injected with p-chlorophenylalanine every 48h and with phenylalanine every 24h from 3 to 18 days of age, the hepatic and renal phenylalanine hydroxylase remained inhibited, whereas the activities of three other hepatic enzymes were unchanged. There was about 20% inhibition of brain and body growth, but no interference with the developmental formation of several cerebral enzymes (four dehydrogenases, hexokinase and glutaminase) was detected. In the course of this prolonged treatment, the phenylalanine concentrations in plasma increased gradually; on day 2 and day 8 (measured 12h after the last injection) they were 800 and 1395 nmol/ml respectively; on day 15, 12 and 18h after the usual injection, the values were 2030 and 1030 respectively as opposed to the 96 nmol in untreated rats. This degree of hyperphenylalaninaemia, persisting for 18h per day throughout a critical period of development, fulfils the primary criterion of a suitable animal model for phenylketonuria.  相似文献   

12.
13.
A total of 10 restriction site polymorphisms have been identified at the human phenylalanine hydroxylase locus using a full-length human phenylalanine hydroxylase cDNA clone as a hybridization probe to analyze human genomic DNA. These polymorphic patterns segregate in a Mendelian fashion and concordantly with the disease state in various PKU kindreds. The frequencies of the restriction site polymorphisms at the human phenylalanine hydroxylase locus among Caucasians are such that the observed heterozygosity in the population is 87.5%. Thus, most families with a history of classical phenylketonuria can take advantage of the genetic analysis for prenatal diagnosis and carrier detection of the hereditary disorder.  相似文献   

14.
Summary A total of 252 chromosomes from 126 patients with phenylalanine hydroxylase (PAH) deficiencies were analyzed for both mutant genotypes and restriction fragment length polymorphism (RFLP) haplotypes at the PAH locus. The mutant genes studied originated either from Western Europe (116 alleles) or from Mediterranean countries (136 alleles). Only 27% of all mutant alleles were found to carry identified mutations, particularly mutations at codon 252 (2.3%), 261 (7.5%), 280 (6.3%), 408 (3.5%) and at the splice donor site of intron 12 (6.3%). The mutant genotypes were associated with RFLP haplotypes 7, 1, 38, 2 and 3 at the PAH locus respectively. Except for the splice mutation of intron 12, these associations were preferential, but not exclusive, since the other four mutations were found on the background of at least two RFLP haplotypes. These results, together with the observation that 85% of PAH deficient patients are heterozygotes for their mutant genotypes, emphasize the great heterogeneity of PAH deficiencies in Mediterranean countries and hamper systematic DNA testing for carrier status in this population.  相似文献   

15.
Summary RFLPs of 36 normal and 41 mutant alleles at the phenylalanine hydroxylase locus were determined in 31 Portuguese kindreds. A total of 14 haplotypes including 10 normal and 7 mutant alleles were observed. Almost 75% of all mutant alleles were confined within only two haplotypes, namely haplotype 9 (17.1%) and haplotype 1 (56.1%). This frequency of mutant haplotype 1 in Portugal is, to our knowledge, the highest for this mutant haplotype in all studies reported to date. Other mutant haplotypes were either rare (haplotype 2, 9.7%) or totally absent (haplotype 3, 0%). Only 24.5% of all mutant alleles were found to consistently carry identified mutations, particularly R261Q (9.8%), R252W (3.3%), R408W (1.6%) and I94 (3.3%). A new mutation, L249F, located in the seventh exon of the gene, accounted for 6.5% of all mutant alleles in our series. Interestingly, this mutant genotype was consistently associated with mutant haplotype 1 (P<0.01), as also observed for the R261Q mutation. It appears, therefore, that mutant haplotype 1 is genotypically heterogeneous in Portugal and that more than two mutations account for its prevalence in this country.  相似文献   

16.
Summary The hyperphenylalaninemic disorders of classic phenylketonuria (PKU), mild phenylketonuria, and hyperphenylalaninemia (HPA), result from a deficiency of the hepatic enzyme phenylalanine hydroxylase (PAH) or its cofactor (tetrahydrobiopterin). Use of the complementary DNA of this enzyme has allowed the establishment of a restriction fragment length polymorphism (RFLP) haplotype-analysis system. This haplotype analysis system provides the means for determination of mutant PAH alleles in most affected families and is the basis for mutational analysis of the PKU locus. This review is focused on two major areas of current PKU research: (1) the use of DNA haplotype analysis in the study of the population genetics of PAH deficiency, and (2) the study of genotypes, and their various combinations, as a means of explaining and predicting the phenotypic variability observed for the disorders of PAH deficiency.  相似文献   

17.
Phenylketonuria (PKU) is an autosomal recessive disease due to deficiency of a hepatic enzyme, phenylalanine hydroxylase (PAH). The absence of PAH activity results in typical PKU while persistence of a residual enzyme activity gives rise to variant forms of the disease. We report here a 3-base pair in-frame deletion of the PAH gene (delta 194) in a mild variant, with markedly reduced affinity of the enzyme for phenylalanine (Km = 160 nM), and we provide functional evidence for responsibility of the deletion in the mutant phenotype. Since the deletion was located in the third exon of the gene, which presents no homology with other hydroxylases, we suggest that exon 3 is involved in the specificity of the enzyme for phenylalanine. Finally, since none of the 98 PKU patients tested were found to carry this particular deletion, our study suggests that this molecular event probably occurred recently on the background of a haplotype 2 gene in Portugal.  相似文献   

18.
19.
Mutations in the phenylalanine hydroxylase (PAH) gene were identified in a group of untreated phenylketonuria patients from Victoria, Australia. Ninety-eight percent of the alleles were identified, and a total of 26 different mutations were detected on 83 independent chromosomes. The three most prevalent mutations--R408W, I65T, and IVS12nt1--together accounted for 54% of the alleles. A number of alleles were demonstrated, by genealogical studies, to be of Irish or Scottish origin, including a newly described mutation 1197/1198 del A. The distribution and relative frequencies of the more common alleles in this population parallel observed frequencies in the British Isles and are consistent with the known history of Caucasian settlement of this region of Australia. We have analyzed the haplotype and polymorphic short tandem-repeat allele of the mutant chromosomes and describe a number of new associations.  相似文献   

20.
The spectrum and frequency of mutations of exon 7 of the gene for phenylalanine hydroxylase (PAH) were studied in 34 phenylketonuria (PKU) patients living in Novosibirsk oblast. The five most prevalent mutations constituted 17.64% of defective alleles: R243Q (1.47%), R252W (1.47%), R261Q (5.88%), E280K (1.47%), and P281L (7.35%). A neutral polymorphic locus V245V was found within exon 7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号