首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxidation of methanol, formaldehyde and formic acid was studied in cells and cell-free extract of the yeast Candida boidinii No. 11Bh. Methanol oxidase, an enzyme oxidizing methanol to formaldehyde, was formed inducibly after the addition of methanol to yeast cells. The oxidation of methanol by cell-free extract was dependent on the presence of oxygen and independent of any addition of nicotine-amide nucleotides. Temperature optimum for the oxidation of methanol to formaldehyde was 35 degrees C, pH optimum was 8.5. The Km for methanol was 0.8mM. The cell-free extract exhibited a broad substrate specificity towards primary alcohols (C1--C6). The activity of methanol oxidase was not inhibited by 1mM KCN, EDTA or monoiodoacetic acid. The strongest inhibitory action was exerted by p-chloromercuribenzoate. Both the cells and the cell-free extract contained catalase which participated in the oxidation of methanol to formaldehyde; the enzyme was constitutively formed by the yeast. The pH optimum for the degradation of H2O2 was in the same range as the optimum for methanol oxidation, viz. at 8.5. Catalase was more resistant to high pH than methanol oxidase. The cell-free extract contained also GSH-dependent NAD-formaldehyde dehydrogenase with Km = 0.29mM and NAD-formate dehydrogenase with Km = 55mM.  相似文献   

2.
Catalase has been partially purified from cell-free extracts of methanol-grown Hansenula polymorpha and its peroxidative properties were studied. It was shown that the enzyme is capable of oxidizing methanol, formaldehyde and formate in the presence of hydrogen peroxide. The physiological significance of these reactions in the transduction of energy from the oxidation of methanol in yeasts is discussed.  相似文献   

3.
A formaldehyde oxidase activity was found in cell-free extracts of methanol-grown yeast Candida boidinii. Loss of alcohol oxidase activity in a mutant, 48, led to loss of the formaldehyde oxidase activity, indicating that the same enzyme is probably responsible for both activities. This could be demonstrated with the purified alcohol oxidase which oxidizes, besides lower primary alcohols, formaldehyde to formate. The K m value for formaldehyde is 5.7 mM. It seems that alcohol oxidase is not implicated in formaldehyde oxidation in vivo.  相似文献   

4.
The oxidation of methanol and formaldehyde was investigated by using some combination systems of alcohol oxidase, catalase, which were purified from Candida N-16, and hydrogen peroxide. The activity of alcohol oxidase was irreversibly inhibited when the enzyme was incubated with 2.5 mm hydrogen peroxide for 15 min. However, the oxidation of methanol to formaldehyde by alcohol oxidase in the presence of catalase was extremely promoted by the addition of 30 mm hydrogen peroxide. Alcohol oxidase could oxidize not only methanol but also formaldehyde as follows: HCHO + 02 + H2O→HCOOH + H2O2. The formaldehyde oxidizing activity was inhibited by hydrogen peroxide. The system containing alcohol oxidase and catalase appears to be the entity of the oxygen-dependent oxidation system of formaldehyde previously found in the cell-free extract of the yeast.  相似文献   

5.
Summary The oxidation of formaldehyde to carbon dioxide in cell-free extracts of methanol-grown Candida boidinii has been investigated. A specific NAD-dependent formaldehyde dehydrogenase requiring reduced glutathione has been partially purified. Furthermore, a NAD-linked formate dehydrogenase was found in cell-free extracts. The synthesis of these two enzymes is induced by methanol and repressed by glucose. The possible significance of these enzymes in the energy-generating system is discussed.  相似文献   

6.
1. The oxidation of methanol to carbon dioxide by Candida N–16 grown on methanol was investigated. The presence of enzymes which catalyze the following reaction was found in the cell-free extract of the yeast employed; CH3OH→HCHO→HCOOH→CO2. 2. Methanol was oxidized to formaldehyde by an alcohol oxidase. The reaction was as follows; CH3OH+O2→HCHO+H2O2. The alcohol oxidase was crystallized after purification by ammonium sulfate-precipitation and column chromatography using DEAE-Sephadex A-50. A prosthetic group of the enzyme was proved to be FAD. The enzyme possessed a broad specificity for alcohols such as methanol, ethanol, n-propanol, n-butanol and n-amylalcohol. The enzyme was inducibly formed only by the addition of methanol. 3. The oxidation of formaldehyde to formate was catalyzed by a NAD-linked dehydrogenase dependent on GSH. 4. Formate was oxidized by a NAD-linked dehydrogenase. 5. Catalase was also found in the extract, and methanol was chemically oxidized by the reaction of catalase and hydrogen peroxide which was generated by the alcohol oxidase system. 6. The oxidation pathway from methanol to carbon dioxide was also found in other methanol-utilizing yeasts such as Candida N-17, Saccharomyces H-1 and Torulopsis M-1.  相似文献   

7.
The distribution of choline oxidase activity was studied with cell-free extracts of yeasts, molds and actinomycetes. A fungus which was identified as Cylindrocarpon didymum M–1 showed the highest activity. The enzyme was purified from the cell-free extract of C. didymum M–1 by a procedure involving ammonium sulfate fractionation and DEAE-cellulose, hydroxyl-apatite and Sephadex G–150 column chromatographies. The enzyme preparation was homogeneous when subjected to disc gel electrophoresis and ultracentrifugation. Sedimentation velocity yielded a value of . The enzyme showed a typical flavoprotein spectrum of absorption maxima at 276,370 and 454 nm.  相似文献   

8.
A formate oxidase activity was found in the crude extract of a formaldehyde-resistant fungus isolated from soil. The fungus was classified and designated as Aspergillus nomius IRI013, which could grow on a medium containing up to 0.45% formaldehyde and consumed formaldehyde completely. The specific activity of formate oxidase in the extract of the fungus grown on formaldehyde was found to be considerably higher than that in the extracts of the fungus grown on formate and methanol. Formate oxidase from the fungus grown on formaldehyde was purified to homogeneity. The enzyme had a relative molecular mass of 100000 and was composed of two apparently identical subunits that had a relative molecular mass of 59000. The enzyme showed the highest activity using formate as substrate. Hydrogen peroxide was formed during the oxidation of formate. The Michaelis constant for formate was 15.9 mM; highest enzyme activity was found at pH 4.5-5.0. The enzyme activity was strongly inhibited by NaN(3), p-chloromercuribenzoate and HgCl(2).  相似文献   

9.
Glucose oxidase from Aspergillus niger was immobilized on nonporous glass beads by covalent bonding and its kinetics were studied in a packed-column recycle reactor. The optimum pH of the immobilized enzyme was the same as that of soluble enzyme; however, immobilized glucose oxidase showed a sharper pH-activity profile than that of the soluble enzyme. The kinetic behavior of immobilized glucose oxidase at optimum pH and 25 degrees C was similar to that of the soluble enzyme, but the immobilized material showed increased temperature sensitivity. Immobilized glucose oxidase showed no loss in activity on storage at 4 degrees C for nearly ten weeks. On continuous use for 60 hr, the immobilized enzyme showed about a 40% loss in activity but no change in the kinetic constant.  相似文献   

10.
Shao J  Ge H  Yang Y 《Biotechnology letters》2007,29(6):901-905
A partially purified potato polyphenol oxidase (PPO) was immobilized in a cross-linked chitosan–SiO2 gel and used to treat phenol solutions. Under optimized conditions (formaldehyde 20 mg/ml, PPO 4 mg/ml and pH 7.0), the activity of immobilized PPO was 1370 U/g and its K m value for catechol was 12 mm at 25°C. The highest activity of immobilized enzyme was at pH 7.4. Immobilization stabilized the enzyme with 73 and 58% retention of activity after 10 and 20 days, respectively, at 30°C whereas most of the free enzyme was inactive after 7 days. The efficiency of removing phenol (10 mg phenol/l) by the immobilized PPO was 86%, and about 60% removal efficiency was retained after five recycles. The immobilized PPO may thus be a useful for removing phenolic compounds from industrial waste-waters.  相似文献   

11.
The molecular weight of purified aldehyde oxidase from Pseudomonas stutzeri IFO12695 was estimated to be 160 kDa by a gel filtration method. SDS-PAGE showed that the enzyme consisted of three non-identical subunits with molecular weights of 18, 38, and 83 kDa. The enzyme exhibited an absorption spectrum with maxima at 277, 325, 365, 415, 450, 480, and 550 nm and possessed molybdenum, CMP, iron, sulfur, and FAD as its cofactors, indicating that it belonged to the xanthine oxidase family. A variety of aliphatic and aromatic aldehydes were oxidized; and among them n-hexylaldehyde gave the most rapidly action. When 10 mM formaldehyde was treated with the aldehyde oxidase in the presence of catalase for 240 min, the formaldehyde concentration was reduced to 0.8 mM, suggesting this enzyme might be effective for the removal of formaldehyde contained in wastewater.  相似文献   

12.
A fromaldehyde oxidase activity was found in cellfree extracts of methanol-grown yeast Candida boidinii. Loss of alcohol oxidase activity in a mutant, 48, led to loss of the formaldehyde oxidase activity, indicating that the same enzyme is probably responsible for both activities. This could be demonstrated with the purified alcohol oxidase which oxidizes, besides lower primary alcohols, formaldehyde to formate. The Km value for formaldehyde is 5.7 mM. It seems that alcohol oxidase is not implicated in formaldehyde oxidation in vivo.  相似文献   

13.
The enzymatic conversion of xanthoxin to abscisic acid by cell-free extracts of Phaseolus vulgaris L. leaves has been found to be a two-step reaction catalyzed by two different enzymes. Xanthoxin was first converted to abscisic aldehyde followed by conversion of the latter to abscisic acid. The enzyme activity catalyzing the synthesis of abscisic aldehyde from xanthoxin (xanthoxin oxidase) was present in cell-free leaf extracts from both wild type and the abscisic acid-deficient molybdopterin cofactor mutant, Az34 (nar2a) of Hordeum vulgare L. However, the enzyme activity catalyzing the synthesis of abscisic acid from abscisic aldehyde (abscisic aldehyde oxidase) was present only in extracts of the wild type and no activity could be detected in either turgid or water stressed leaf extracts of the Az34 mutant. Furthermore, the wilty tomato mutants, sitiens and flacca, which do not accumulate abscisic acid in response to water stress, have been shown to lack abscisic aldehyde oxidase activity. When this enzyme fraction was isolated from leaf extracts of P. vulgaris L. and added to extracts prepared from sitiens and flacca, xanthoxin was converted to abscisic acid. Abscisic aldehyde oxidase has been purified about 145-fold from P. vulgaris L. leaves. It exhibited optimum catalytic activity at pH 7.25 in potassium phosphate buffer.  相似文献   

14.
The enzymology of methanol utilization in thermotolerant methylotrophic Bacillus strains was investigated. In all strains an immunologically related NAD-dependent methanol dehydrogenase was involved in the initial oxidation of methanol. In cells of Bacillus sp. C1 grown under methanol-limiting conditions this enzyme constituted a high percentage of total soluble protein. The methanol dehydrogenase from this organism was purified to homogeneity and characterized. In cell-free extracts the enzyme displayed biphasic kinetics towards methanol, with apparent K m values of 3.8 and 166 mM. Carbon assimilation was by way of the fructose-1,6-bisphosphate aldolase cleavage and transketolase/transaldolase rearrangement variant of the RuMP cycle of formaldehyde fixation. The key enzymes of the RuMP cycle, hexulose-6-phosphate synthase (HPS) and hexulose-6-phosphate isomerase (HPI), were present at very high levels of activity. Failure of whole cells to oxidize formate, and the absence of formaldehyde-and formate dehydrogenases indicated the operation of a non-linear oxidation sequence for formaldehyde via HPS. A comparison of the levels of methanol dehydrogenase and HPS in cells of Bacillus sp. C1 grown on methanol and glucose suggested that the synthesis of these enzymes is not under coordinate control.Abbreviations RuMP ribulose monophosphate - HPS hexulose-6-phosphate synthase - HPI hexulose-6-phosphate isomerase - MDH methanol dehydrogenase - ADH acohol dehydrogenase - PQQ pyrroloquinoline, quinone - DTT dithiothreitol - NBT nitrobluetetrazolium - PMS phenazine methosulphate - DCPIP dichlorophenol indophenol  相似文献   

15.
Bacterium MEY43, an isolate from soil, produced aldehyde oxidase when it was cultivated in a medium containing methanol as a sole source of carbon and energy. The methylotrophic bacterium was identified as Brevibacillus sp. Its cultivation in media containing other substrates, such as ethanol and glucose, resulted in little production of the enzyme. Aldehyde oxidase purified from a cell-free extract of the bacterium was a hetero-trimeric protein comprised of large, medium, and small subunits with molecular masses of 87, 35, and 19 kDa, respectively. Its UV/visible spectrum and the presence of molybdenum, 5′-CMP, flavin adenine dinucleotide, iron, and acid-labile sulfur suggested that the enzyme belonged to the xanthine oxidase family. The enzyme acted on a wide range of aliphatic and aromatic aldehydes. The K m value for formaldehyde was 32 mM, whereas those for the other aldehydes tested were below 0.2 mM. When 10 mM glutaraldehyde was treated with 2.0 units of the enzyme ml−1 in the presence of 100 units ml−1 catalase for 120 min, the concentration of the aldehyde decreased to below a detectable level.  相似文献   

16.
Summary Formaldehyde dismutase was greatly stabilized by immobilization in a urethane prepolymer (PU-6). The immobilized enzyme exhibited stochiometrical dismutation of formaldehyde to methanol and formate in several repeated reactions. Conversion of methanol to formate occurred in a reaction with an immobilized enzyme system consisting of alcohol oxidase, catalase and formaldehyde dismutase, and with an intact cell-mixture of Hansenula polymorpha and Pseudomonas putida. Furthermore, the stability of the cell-mixture during repeated reactions was greatly improved by the immobilization, the 600 mM methanol added periodically being converted to formate in a 75% yield in 12 h. The immobilized cellsystem was also effective for the conversion of several aliphatic alcohols, C1 to C4, to the corresponding acids.  相似文献   

17.
A simple and direct assay method for glucose oxidase (EC 1.1.3.4) from Aspergillus niger and Penicillium amagasakiense was investigated by Fourier transform infrared spectroscopy. This enzyme catalyzed the oxidation of d-glucose at carbon 1 into d-glucono-1,5-lactone and hydrogen peroxide in phosphate buffer in deuterium oxide ((2)H(2)O). The intensity of the d-glucono-1,5-lactone band maximum at 1212 cm(-1) due to CO stretching vibration was measured as a function of time to study the kinetics of d-glucose oxidation. The extinction coefficient epsilon of d-glucono-1,5-lactone was determined to be 1.28 mM(-1)cm(-1). The initial velocity is proportional to the enzyme concentration by using glucose oxidase from both A. niger and P. amagasakiense either as cell-free extracts or as purified enzyme preparations. The kinetic constants (V(max), K(m), k(cat), and k(cat)/K(m)) determined by Lineweaver-Burk plot were 433.78+/-59.87U mg(-1) protein, 10.07+/-1.75 mM, 1095.07+/-151.19s(-1), and 108.74 s(-1)mM(-1), respectively. These data are in agreement with the results obtained by a spectrophotometric method using a linked assay based on horseradish peroxidase in aqueous media: 470.36+/-42.83U mg(-1) protein, 6.47+/-0.85 mM, 1187.77+/-108.16s(-1), and 183.58 s(-1)mM(-1) for V(max), K(m), k(cat), and k(cat)/K(m), respectively. Therefore, this spectroscopic method is highly suited to assay for glucose oxidase activity and its kinetic parameters by using either cell-free extracts or purified enzyme preparations with an additional advantage of performing a real-time measurement of glucose oxidase activity.  相似文献   

18.
NAD-specific glutamate dehydrogenase (NAD-GluDH; EC 1.4.1.2) was purified to homogeneity from Sporosarcina ureae DSM 320; the native enzyme (M r 250,000±25,000) is composed of subunits identical in molecular mass (M r 42,000±3,000), suggesting a hexameric structure. In cell-free extracts and in its purified form, the enzyme was heat-stable, retaining 50% activity after 15 min incubation at temperatures up to 82°C. When exposed to low temperatures at pH values between 7.0 and 9.0. cell-free extracts and purified preparations lost enzyme activity rapidly and irreversibly. The addition of substrates, glycerol, or sodium chloride improved the stability of the enzyme with respect to cold lability and heat stability.Abbreviation NAD-GluDH nicotinamide-adenine-dinucleotide-specific glutamate dehydrogenase  相似文献   

19.
Paecilomyces variotii IRI017 was isolated as a formaldehyde-resistant fungus from wastewater containing formaldehyde. The fungus grew in a medium containing 0.5% formaldehyde and had consumed formaldehyde completely after 5 days. Alcohol oxidase was purified from the fungus grown on methanol. A 20-fold purification was achieved with a yield of 44%. The molecular mass of the purified enzyme was estimated to be 73 and 450 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration chromatography, respectively, suggesting that the enzyme consists of six identical subunits. The N-terminal amino acid sequence of the subunit was TIPDEVDIII. The enzyme showed an absorption spectrum typical of a flavoprotein and had a noncovalently bound flavin different from FAD, FMN, and riboflavin. The pH optimum of the enzyme activity was pH 6–10. The enzyme was stable in the pH range of pH 5–10. The enzyme retained full activity after incubation at 50°C for 30 min. The enzyme oxidized not only methanol but also lower primary alcohols and formaldehyde. The K m values for methanol, ethanol, and formaldehyde were 1.9, 3.8, and 4.9 mmol l−1, respectively.  相似文献   

20.
The alpha-methylserine aldolase gene from Variovorax paradoxus strains AJ110406, NBRC15149, and NBRC15150 was cloned and expressed in Escherichia coli. Formaldehyde release activity from alpha-methyl-L-serine was detected in the cell-free extract of E.coli expressing the gene from three strains. The recombinant enzyme from V. paradoxus NBRC15150 was purified. The Vmax and Km of the enzyme for the formaldehyde release reaction from alpha-methyl-L-serine were 1.89 micromol min(-1) mg(-1) and 1.2 mM respectively. The enzyme was also capable of catalyzing the synthesis of alpha-methyl-L-serine and alpha-ethyl-L-serine from L-alanine and L-2-aminobutyric acid respectively, accompanied by hydroxymethyl transfer from formaldehyde. The purified enzyme also catalyzed alanine racemization. It contained 1 mole of pyridoxal 5'-phosphate per mol of the enzyme subunit, and exhibited a specific spectral peak at 429 nm. With L-alanine and L-2-aminobutyric acid as substrates, the specific peak, assumed to be a result of the formation of a quinonoid intermediate, increased at 498 nm and 500 nm respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号