首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conditions for tryptophan synthesis from pyruvic acid, indole and NH4Cl by Enterobacter aerogenes AHU 1540 having a high tryptophanase activity, were investigated using a reaction mixture containing 1.7% of pyruvic acid. Under optimum conditions, 16.4g/liter of tryptophan was accumulated after 24 hr of incubation.

Agaricus campestris AHU 9382 produced pyruvic acid in amounts of 22 ~ 26.5 g/liter from 5% of glucose after 3-days shaking culture. When E. aerogenes was added to this fermentation broth together with indole and NH4Cl, pyruvic acid produced was rapidly converted to tryptophan and yields of tryptophan as high as 15 g/liter were obtained after 12 hr of incubation. Furthermore, pyruvic acid fermentation by Saccharomyces exiguus AHU 3110 or Corynebacterium sp. 37-3A could also be used as a pyruvic acid source for subsequent tryptophan production.  相似文献   

2.
The black yeast-like fungus Rhinocladiella mansonii NRRL Y-6272 elaborates an extracellular polysaccharide composed of N-acetyl D -glucosamine and N-acetyl D -glucosaminuronic acid residues in a 2:1 molar ratio. Production of this polymer was studied in 300 ml flasks and 20 liter fermentors. On the basis of glucose utilized, 13% conversion to polymer was obtained in four days at 25°C in medium containing yeast autolysate paste, K2HPO4, MgSO4, ZnSO4, L -asparagine or urea, and D -glucose. Nitrogen sources, aeration, agitation, temperature, and salts affected yields. The polymer in diluted fermentation broths was precipitated with ethanol in the presence of an electrolyte and collected by centrifugation. The viscosities of aqueous resolutions containing 1 and 1.5% of the polymer were 9400 cP and 21,500 cP, respectively.  相似文献   

3.
During the study on the sugar metabolism of molds, several strains of Pullularia pullulans were found to produce large amounts of gluconic acid from glucose. Thirty seven strains of P. pullulans were then tested for their acid-producing abilities. Seven strains did not produce any amount of gluconic acid. However, all of the other strains were shown to be capable of producing this acid. The superior strains produced yiclds of gluconic acid as high as about 90%, based on glucose available, in shaking cultures at 30°C after 2 days. The yields were increased up to approximately 100% during later stages. In addition to high yields, gluconic acid was produced exclusively by these strains. Glutamic acid and inorganic ammonium salts, such as (NH4)2SO4, NH4Cl and (NH4)2HPO4, were favorable nitrogen sources for acid production. In the case of (NH4)2SO4, the optimum concentration was 0.05%. The addition of CaCO3 was essential for gluconic acid production by P. pullulans and a 3% concentration of CaC03 appeared to be desirable for the maximum conversion to gluconic acid in a medium containing 10% glucose.  相似文献   

4.
A new process for tryptophan production was established using a lipoic acid auxotrophic mutant, Enterobacter aerogenes l-12, which has both pyruvic acid productivity and tryptophanase activity. The process consists of the production of pyruvic acid from glucose by the washed cells and the subsequent conversion of the acid to tryptophan by the tryptophanase itself in the presence of indole and NH4C1.

To prepare washed cells of which the tryptophanase activity and the pyruvic acid productivity were both high, it was best to culture the strain in a medium containing 1 % Polypepton, 0.2 % glucose, 3 μg/1 dl-lipoic acid, 0.05 % l-tryptophan, and mineral salts. The optimum composition of the reaction mixture for the pyruvic acid production by the washed cells was established. Under these conditions, 17 g/1 of pyruvic acid was accumulated from 5 % glucose after 36 hr of incubation. Thus, the conversion of the pyruvic acid to tryptophan was done by adding indole, NH4C1, pyridoxal-5′-phosphate, Triton X-100, and KOH to adjust the pH to 9.0 to the above reaction mixture. As a result, the pyruvic acid was rapidly converted to tryptophan, and the concentration of 14 g/1 was obtained after 36 hr (total 72 hr).  相似文献   

5.
Gellan gum is a water-soluble exopolysaccharide, it has applications in the food, pharmaceutical and chemical industries. In this study, a gellan gum producing strain was isolated from rice root, and this strain was identified be the species of Sphingomonas azotifigens. The Plackett-Burman design was applied to investigate the main factors affecting gellan gum production by S. azotifigens GL-1 in a molasses and cheese whey based medium; the medium compositions were optimized by response surface methodology. The optimum cheese whey based medium consisted of cheese whey 68.34 g/L, Na2HPO4 14.58 g/L and KH2PO4 7.66 g/L, and the maximum gellan gum production that using this medium was 33.75 ± 1.55 g/L. 14.75 ± 0.65 g/L gellan gum was obtained with an optimized molasses medium, which consisted of molasses 50 g/L, Na2HPO4 9.71 g/L and KH2PO4 5.92 g/L. The molecular weight of gellan gum obtained from two medias were 1.06 × 106 and 0.89 × 106 Da, respectively. The cheese whey-derived gellan gum showed a higher rhamnose, lower glucuronic acid and higher glycerate content compared to the molasses-derived gellan gum. S. azotifigens GL-1 has a high gellan gum production capacity in a cheap medium suggesting it has great potential as an industrial gellan gum producer.  相似文献   

6.
An F1-ATPase-defective mutant, TBLA-1, was constructed by the transduction of a defective gene for the a subunit of F1-ATPase, atpA401, into Escherichia coli W1485lip2, a lipoic acid-requiring pyruvic acid producer. The pyruvic acid production of the strain TBLA-1 was found to be improved markedly compared with that of strain W1485lip2. In cultures using a jar fermentor, the strain W1485lip2 consumed 50 g/liter of glucose and produced 25 g/liter of pyruvic acid after culture for 32 h, while strain TBLA-1 consumed the same amount of glucose, and produced more than 30 g/liter of pyruvic acid in a 24-h culture. A revertant, No. 63–1, derived from the strain TBLA-1, had a normal level of F1-ATPase activity, and showed a similar pattern of pyruvic acid production to that of strain W1485lip2.  相似文献   

7.
Xanthomonas campestris pv. translucens IFO13599 could produce xanthan gum (18.5 mg/100 mg, lactose) with lactose as the growth substrate in spite of a low level of β-galactosidase. This productivity corresponded to one-fifth that with glucose. This strain could also produce ice-nucleating material having an ice-nucleating temperature, T 50, of −2.8 °C with xanthan gum in the culture broth. We found that this strain produced both materials in whey medium from which the insoluble components had been removed. The production of xanthan with ice-nucleating material reached a maximum after cultivation for 168 h under optimum conditions. Furthermore, the xanthan obtained had a low viscosity because of its variant structure revealed, by TLC and HPLC analyses, to be lacking pyruvic acid. Furthermore, we concluded that this mixture had considerable potential as a regeneratic agent, when compared to other regeneratic agents such as carboxymethylcellulose. Received: 29 August 1997 / Received revision: 17 November 1997 / Accepted: 18 November 1997  相似文献   

8.
Curdlan gum is a neutral water-insoluble bacterial exopolysaccharide composed primarily of linear β-(1,3) glycosidic linkages. Recently, there has been increasing interest in the applications of curdlan and its derivatives. Curdlan is found to inhibit tumors and its sulfated derivative possess anti-HIV activity. Curdlan is biodegradable, non-toxic towards human, environment and edible which makes it suitable as drug-delivery vehicles for sustained drug release. The increasing demand for the growing applications of curdlan requires an efficient high yield fermentation production process so as to satisfy the industrial needs. In this perspective, the present work is aimed to screen and isolate an efficient curdlan gum producing bacteria from rhizosphere of ground nut plant using aniline-blue agar. High yielding isolate was selected based on curdlan yield and identified as Bacillus cereus using gas-chromatography fatty acid methyl ester analysis. B. cereus PR3 curdlan gum was characterized using FT-IR spectroscopy, SEM, XRD and TGA. Fermentation time for curdlan production using B. cereus PR3 was optimized. Media constituents like carbon, nitrogen and mineral sources were screened using Plackett–Burman design. Subsequent statistical analysis revealed that Starch, NH4NO3, K2HPO4, Na2SO4, KH2SO4 and CaCl2 were significant media constituents and these concentrations were optimized for enhancement of curdlan production up to 20.88?g/l.  相似文献   

9.
Acetobacter xylinum is a bacterium that can synthesize cellulose when grown in an undefined medium containing glucose. We developed a defined minimal medium for A. xylinum that contains 1% glucose, 0.1% NH4Cl, 0.115% citric acid, 0.33% Na2HPO4, 0.01% KCl, 0.025% MgSO4. 7H2O, and 7.5 mg of nicotinamide per liter which both allows cellulose synthesis and can be used to isolate a variety of auxotrophic mutants.  相似文献   

10.
The effect of the component concentrations of a synthetic medium on acetone and butanol fermentation by Clostridium acetobutylicum ATCC 824 was investigated. Cell growth was dependent on the presence of Mg, Fe, and K in the medium. Mg and Mn had deleterious effects when in excess. Ammonium acetate in excess caused acid fermentation. The metabolism was composed of two phases: an acid phase and a solvent one. Low concentrations of glucose allowed the first phase only. The theoretical ratio of the conversion of glucose to solvents, which was 28 to 33%, was obtained with the following medium: MgSO4, 50 to 200 mg/liter; MnSO4, 0 to 20 mg/liter; KCl, 0.015 to 8 g/liter (an equivalent concentration of K+ was supplied in the form of KH2PO4 and K2HPO4); FeSO4, 1 to 50 mg/liter; ammonium acetate, 1.1 to 2.2 g/liter; para-aminobenzoic acid, 1 mg/liter; biotin, 0.01 mg/liter; glucose, 20 to 60 g/liter.  相似文献   

11.
A defined medium was developed in which Alcaligenes faecalis var. myxogenes 10C3 mutant K produced a large quantity of β-glucan 10C3K. The medium contained 4% glucose together with 0.1% citrate, succinate or fumarate as the carbon source, 0.15% (NH4)2HPO4 as the nitrogen source and mineral salts. When NaNH4HPO4, KNO3 or urea was used at a concentration of 0.03% nitrogen as the sole nitrogen source, salts of organic acid were not needed in addition to glucose.

In culture medium containing phosphate buffer (M/15, pH 6.5~8.0) large amounts of polysaccharide were formed and its yield from the 4% glucose added was about 50%. Thus, it was shown that polysaccharide production is enhanced greatly if a suitable pH for polysaccharide production is maintained during incubation.  相似文献   

12.
The detection of Listeria monocytogenes from food is currently carried out using a double enrichment. For the ISO methodology, this double enrichment is performed using half-Fraser and Fraser broths, in which the overgrowth of L. innocua can occur in samples where both species are present. In this study, we analyzed the induction of phages and phage tails of Listeria spp. in these media and in two brain heart infusion (BHI) broths (BHIM [bioMérieux] and BHIK [Biokar]) to identify putative effectors. It appears that Na2HPO4 at concentrations ranging from 1 to 40 g/liter with an initial pH of 7.5 can induce phage or phage tail production of Listeria spp., especially with 10 g/liter of Na2HPO4 and a pH of 7.5, conditions present in half-Fraser and Fraser broths. Exposure to LiCl in BHIM (18 to 21 g/liter) can also induce phage and phage tail release, but in half-Fraser and Fraser broths, the concentration of LiCl is much lower (3 g/liter). Low phage titers were induced by acriflavine and/or nalidixic acid. We also show that the production of phages and phage tails can occur in half-Fraser and Fraser broths. This study points out that induction of phages and phage tails could be triggered by compounds present in enrichment media. This could lead to a false-negative result for the detection of L. monocytogenes in food products.  相似文献   

13.
Xanthan with various pyruvic acid and acetate contents has been prepared from a single commercial polysaccharide sample using optimised chemical conditions (acid and alkali hydrolysis, respectively) for removal of acetal and acyl groups. The only significant change found on analysis of the modified xanthans was loss of pyruvic acid and/or acetate; no low moleculur weight carbohydrate-containing material was released. Contrary to some previous reports, evidence is presented to show that the pyruvic acid acetal and o-acetyl contents of xanthan do not affect solution viscosity. The viscosities of native, pyruvate-free and pyruvate/acetate-free xanthan solutions (0·3% w/v) were similar at shear rates 8·8–88·3 s?1 in both distilled water and 1% KCl. Over the concentration range 0·2-1·5%, the viscosities of native and pyruvate-free xanthan at 10 s?1 were similar. The viscosity increase on addition of 1% KCl to salt-free xanthan solutions was independent of pyruvic acid acetal substitution. Our results suggest that xanthan samples with various pyruvic acid acetal and o-acetal contents, prepared under different fermentation conditions of Xanthomonas campestri should not normally be used for assessing the contribution of these groups to solution viscosity.  相似文献   

14.
Effects of various factors including incubation time, water content of airdried cells, concentration and pH of KH2PO4–K2HPO4 mixture, d-glucose concentration, MgSO4 concentration, GMP concentration, cell concentration, aeration and various kinds of carbohydrates on the fermentative production of GDP-mannose, GDP and GTP from 5′-GMP by air-dried cells of baker’s yeast were investigated. The water content of air-dried cells was the most important factor in the fermentation. When the air-dried cells of baker’s yeast (100 mg/ml) were incubated with 5′-GMP (20 μmoles/ml), d-glucose (800 μmoles/ml), potassium phosphate buffer (360 μmoles/ml, pH 7.0), and MgSO4 (20 μmoles/ml), 2-hr incubation gave GDP in 20% yield and GTP in 61.1% yield, GDP-mannose being produced in 45% yield after 8-hr incubation. The phosphorylation of 5′-AMP, 5′-dAMP, 5′-dGMP 5′-CMP and 5′-UMP was also observed in high yields under the same conditions.  相似文献   

15.
To improve xanthan gum productivity, a strategy of adding hydrogen peroxide (H2O2) was studied. The method could intensify oxygen supply through degradation of H2O2 to oxygen (O2). In shake flask testing, the xanthan gum yield reached 2.8% (improved by 39.4%) when adding 12.5 mM H2O2 after 24 h of fermentation. In fermentor testing, it was obvious that the oxygen conditions varied with the H2O2 addition time. Eventually, gum yield of 4.2% (w/w) was achieved (increased by 27.3%). Compared with the method of intense mixing and increasing the air flow rate, adding H2O2 to improve the dissolved oxygen concentration was more effective and much better. Moreover, addition of H2O2 improved the quality of xanthan gum; the pyruvate content of xanthan was 4.4% (w/w), higher than that of the control (3.2%).  相似文献   

16.
Summary A new strain, Pseudomonas sp. GSP-910 has been isolated from soil and has been found to produce large quantities of an extracellular, highly viscous polysaccharide in a simple salt medium. Good polymer production (6.16 g·l-1) occurs on a sucrose-containing medium (2%) at high phosphate concentration (80 mM·l-1) and 0.5 g·l-1 of nitrogen source NH4Cl. The relative proportions of sugars in the polymer are: glucuronic acid 8.8%, glucose 28.07%, galactose 56.8%, and it is partially acetylated (6.32%). The isolated polymer exhibits higher viscosity at dilute concentrations than xanthan gum and it is stable at different temperatures, over a wide range of pH and in the presence of monovalent salt. In the presence of divalent cation (CaCl2 0.5%), 910-gum in aqueous solution (1%) solidifies to a resilient gel.  相似文献   

17.
Indigoidine is a bacterial natural product with antioxidant and antimicrobial activities. Its bright blue color resembles the industrial dye indigo, thus representing a new natural blue dye that may find uses in industry. In our previous study, an indigoidine synthetase Sc-IndC and an associated helper protein Sc-IndB were identified from Streptomyces chromofuscus ATCC 49982 and successfully expressed in Escherichia coli BAP1 to produce the blue pigment at 3.93 g/l. To further improve the production of indigoidine, in this work, the direct biosynthetic precursor l-glutamine was fed into the fermentation broth of the engineered E. coli strain harboring Sc-IndC and Sc-IndB. The highest titer of indigoidine reached 8.81 ± 0.21 g/l at 1.46 g/l l-glutamine. Given the relatively high price of l-glutamine, a metabolic engineering technique was used to directly enhance the in situ supply of this precursor. A glutamine synthetase gene (glnA) was amplified from E. coli and co-expressed with Sc-indC and Sc-indB in E. coli BAP1, leading to the production of indigoidine at 5.75 ± 0.09 g/l. Because a nitrogen source is required for amino acid biosynthesis, we then tested the effect of different nitrogen-containing salts on the supply of l-glutamine and subsequent indigoidine production. Among the four tested salts including (NH4)2SO4, NH4Cl, (NH4)2HPO4 and KNO3, (NH4)2HPO4 showed the best effect on improving the titer of indigoidine. Different concentrations of (NH4)2HPO4 were added to the fermentation broths of E. coli BAP1/Sc-IndC+Sc-IndB+GlnA, and the titer reached the highest (7.08 ± 0.11 g/l) at 2.5 mM (NH4)2HPO4. This work provides two efficient methods for the production of this promising blue pigment in E. coli.  相似文献   

18.
Carbon and nitrogen limitations on soybean seedling development   总被引:2,自引:2,他引:0       下载免费PDF全文
Carbon and nitrogen limitations on symbiotically grown soybean seedlings (Glycine max [L.] Merr.) were assessed by providing 0.0, 1.0, or 8.0 millimolar NH4NO3 and 320 or 1,000 microliters CO2/liter for 22 days after planting. Maximum development of the Rhizobium-soybean symbiosis, as determined by acetylene reduction, was measured in the presence of 1.0 millimolar NH4NO3 under both levels of CO2. Raising NH4NO3 from 0.0 to 8.0 millimolar under 320 microliters CO2/liter increased plant dry weight by 251% and Kjeldahl N content by 287% at 22 days after planting. Increasing NH4NO3 from 1.0 to 8.0 millimolar under 320 microliters CO2/liter increased total dry weight and Kjeldahl N by 100 and 168%, respectively, on day 22. Raising CO2 from 320 to 1,000 microliters CO2/liter during the same period had no significant effect on Kjeldahl N content of plants grown with 0.0 or 1.0 millimolar NH4NO3. The maximum CO2 treatment effects were observed in plants supplied with 8.0 millimolar NH4NO3, where dry weight and Kjeldahl N content were increased 64% and 20%, respectively. An increase in shoot CO2-exchange rate associated with the CO2-enrichment treatment was reflected in a significant increase in leaf dry weight and starch content for plants grown with 1,000 microliters CO2/liter under all combined N treatments. These data show directly that seedling growth in symbiotically grown soybeans was limited primarily by N availability. The failure of the CO2-enrichment treatment to increase total plant N significantly in Rhizobium-dependent plants indicates that root nodule development and functioning in such plants was not limited by photosynthate production.  相似文献   

19.
Sphagnum peat extracts or hydrolysates have been obtained and used as a culture medium for the production of Candida utilis biomass as single cell proteins. Acid hydrolysis of ground peat (4–60 mesh) in an autoclave operated under a set of conditions for acid strength (0.3-1.5 (v/v) H2SO4), holding time (1–4 hr), temperature (100–165°C), and weight ratio of dry peat to solution (3.3–16.7 g dry peat/100 g solution) yielded carbohydrate-rich extracts of different concentrations (1–34g/liter). The best yield (mg total carbohydrate/g dry peat) was obtained for a holding time of I hr and a temperature of 152°C. Low peat concentratio (4.1 g dry peat/100 g solution)resulted in high yield(280mg total carbohydrate/gdry peat) with a corresponding low carbohydrate content in hydrolysate (13 g/liter), while a lower yield with a higher carbohydrate content (34 g/liter)in hydrolysate were found when increasing peat concentration (16.7 g dry peat/100 g solution). Shake-fladk experiments using peat hydrolysates as the culture medium together with NH4OH (~4.8 g/liter) and K2HPO4(5 g/liter) as nitrogen and phosphate supplement, respectively, gave a maximum biomass concentration of 7.5 g/liter after 60 hr at 30°C and 200rpm. Batch cultivation in a fermentor under controlled conditions for aeration (4.2 liter/min), agitation (500rpm), temperature (30°C), and pH (5.0) produced a maximum biomass of 10 g/liter after 20 hr with a specific growth rate of 0.13 hr?1. For the continuous cultivation, a maximal biomass productivity of 1.24 g/gliter-he was obtained at a dilution rate of 0.125 hr ?1. Monod's equation's equation has been used for the estimation of the coefficients μMax, Ks, and Y. It was found that the yield coefficient Y is not constant during the progress of batch cultivation.  相似文献   

20.
In order to elucidate the possibility of artificial production ofP. ferulae by solid-state culture, the optimization of culture conditions was carried out. When NH4H2PO4 and CaCO3 were used in the cultures using test tube with 30 g ofPopulus sawdust at 25°C±1 in the dark, the favored mycelial growth was observed with 1% of NH4H2PO4 and the production of polysaccharide was 7.85 mg/100 mg of mycelium with 1% of CaCO3. The mixtures of 80% ofPopulus sawdust and 20% of rice bran at 60% of water content were determined to be optimal for the production of fruiting bodies in the sawdust culture. When three treatments containing various ratios of garlic powder were conducted, yields of fruiting bodies were drastically higher than those of synthetic mixture without garlic powder. The highest yield (143 g/bag) was obtained with 7% garlic powder. The yield of synthetic mixture containing 7% of garlic powder was 83% higher than that of sawdust culture. The reason why garlic powder did support growth was not clear but it is possible that garlic powder might contain effective components for the formation of fruiting body. The optimal synthetic mixture composition consisted of cotton seed 77%, lime 6.4%, K2HPO4 0.2%, KH2PO4 0.2%, CaHPO4, 0.2%, corn flour 4%, wheat flour 5%, and garlic powder 7%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号