首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
The optimum temperature operation mode required to achieve constant outlet glucose conversion is determined for immobilized glucose isomerase continuous packed bed reactor. The reactor design equation assumes reversible Michaelis-Menten kinetics with both enzyme deactivation and substrate protection. An increasing temperature profiles are determined for different operating periods, residence times and glucose conversions. The temperature increase with time is very small at low degree of glucose conversion and at relatively long residence time. The temperature rise with time increases at high degree of conversion and at relatively short residence time.  相似文献   

2.
The determination of an optimum feeding profile of a fed-batch fermentation requires the solution of a singular optimum control problem, which is often complicated by changes in the process kinetics during the fermentation. The procedure of optimization may be sufficiently simple, if the feeding part of fermentation is carried out in the quasi-steady state. In this work an algorithm for operating a fed-batch fermentation using mentioned regime is offered. The algorithm supposes a periodical correction of the feeding strategy. Applying to fed-batch lysine fermentation demonstrate efficacy of this algorithm over frequently used strategies.  相似文献   

3.
西索米星发酵工艺的优化控制   总被引:1,自引:0,他引:1  
在用橄榄星孢小单孢菌M-41发酵生产西索米星的过程中,通过优化控制种子期菌丝的生长形态、培养基中有机氮源质量和磷酸盐含量、pH、温度、搅拌速度、通气质量等条件,可以使西索米星发酵达到适应工业化生产的水平。在此条件下,西索米星的发酵效价可达到545u/ml左右。  相似文献   

4.
本课题组从香港海域红树林中筛选获得的一株真菌菌株,代号1893,初步研究发现其粗提物对许多重要害虫具有很高的毒杀活性,具有开发成新型杀虫剂的良好前景。为得到该菌株产生较高杀虫活性物质的最佳培养条件,采用单因素法对影响其生长和所产代谢产物活性的温度、起始pH、发酵时间、装液量等因素进行了测定,利用SAS软件进行模拟优化,得出该真菌的最适发酵条件为:温度26.8℃,起始pH6.5,培养时间17天,当在500mL三角瓶中接种生长一致的直径5mm菌饼一块时,其装液量以200mL为最佳。同时发现发酵液pH值和杀虫活性具有相同的变化趋势,二者的相关性系数R^2达到0.93972,由于pH值的检测要比杀虫活性的检测简单快捷得多,建议在实际培养该菌的过程中,可以通过检测发酵液的pH值来预估发酵液的杀虫活性大小。该研究为进一步将红树林真菌1893研发成高效、广谱、无公害、低成本的新型海洋生物杀虫剂打下基础。  相似文献   

5.
6.
Effect of operating conditions on solid substrate fermentation   总被引:3,自引:0,他引:3  
In this work the effects of environmental parameters on the performance of solid substrate fermentation (SSF) for protein production are studied. These parameters are (i) air flow rate, (ii) inlet air relative humidity, (iii) inlet air temperature, and (iv) the heat transfer coefficient between the outer wall of the fermentor and the air in the incubator. The air flow is supplied to effect cooling of the fermented mass by evaporation of water. A dynamic model is developed, which permits estimation of biomass content, total dry matter, moisture content, and temperature of the fermented matter. The model includes the effects of temperature and moisture content on both the maximum specific growth rate and the maximum attainable biomass content. The results of the simulation are compared with actual experimental data and show good agreement with them. The most important conclusions are that (i) the evaporative cooling of the biomass is very effective for temperature control and (ii) the air flow rate and the heat transfer coefficient have strong effects but they affect the biomass morphology and are not controllable easily. Also, a simple technique for the determination of the optimum temperature and moisture content profile for cell protein production is applied. The simulated biomass production increases considerably employing the optimum temperature and moisture content profiles. The ultimate goal is to implement the determined effects of the environmental parameters on the SSF biomass production and the temperature and moisture variation profiles to effectively control the SSF and optimize the biomass production. (c) 1993 John Wiley & Sons, Inc.  相似文献   

7.
Pichia stipitis NRRL Y-7124 is a xylose-fermenting yeast able to accumulate ca. 57 g/L ethanol. Because optimum process conditions are important, data were collected to determine the effects of temperature and pH on growth and fermentation rates and product accumulations. Temperatures (26-35 degrees C) providing optimum biomass and ethanol productivities did not necessarily provide maximum ethanol accumulation. Xylitol and residual xylose concentrations increased with temperature. Maximum ethanol selectivity was achieved at 25-26 degrees C with minimal sacrifice to production rates. The temperature optimum for xylose could not be generalized to glucose fermentations, in which ethanol productivity and accumulation were optimum at 34 degrees C. The optimum pH range for growth and fermentation on xylose was 4-7 at 25 degrees C.  相似文献   

8.
Ohta S  Miyamoto K  Miura Y 《Plant physiology》1987,83(4):1022-1026
Dark anaerobic fermentation in the green algae Chlamydomonas MGA 161, Chlamydomonas reinhardtii, Chlorella pyrenoidosa, and Chlorococcum minutum was studied. Our isolate, Chlamydomonas MGA 161, was unusual in having high H2 but almost no formate. The fermentation pattern in Chlamydomonas MGA 161 was altered by changes in the NaCl or NH4Cl concentration. Glycerol formation increased at low (0.1%) and high (7%) NaCl concentrations; starch degradation, and formation of ethanol, H2, and CO2 increased with the addition of NH4Cl to above 5 millimolar in N-deficient cells. C. reinhardtii and C. pyrenoidosa exhibited a very similar anaerobic metabolism, forming formate, acetate and ethanol in a ratio of about 2:2:1. C. minutum was also unusual in forming acetate, glycerol, and CO2 as its main products, with H2, formate, and ethanol being formed in negligible amounts. In the presence of CO, ethanol formation increased twofold in Chlamydomonas MGA 161 and C. reinhardtii, but the fermentation pattern in C. minutum did not change. An experiment with hypophosphite addition showed that dark H2 evolution of the Escherichia coli type could be ruled out in Chlamydomonas MGA 161 and C. reinhardtii. Among the green algae investigated, three fermentation types were identified by the distribution pattern of the end products, which reflected the consumption mode of reducing equivalents in the cells.  相似文献   

9.
Experimental studies of spatiotemporal characteristics of radiation from a negative corona operating in the Trichel-pulse mode in the point-to-sphere electrode geometry have revealed two emission zones. In addition to the well-known glow near the point electrode, there is also an anode glow, whose intensity depends substantially on the shape of the anode. It is found that the anode glow is delayed with respect to the beginning of the Trichel pulse by a time that depends on the gap length and gap voltage. The emission spectrum of the anode glow in the wavelength range 300–400 nm is identified as the spectrum of the second positive system of nitrogen (the C 3Π u -B 3Π g transition).  相似文献   

10.
11.
Optimization methods based on the continuous maximum principle and the calculus of variations were used to calculate optimum temperature profiles for batch penicillin fermentations. These methods were first applied to several general models to develop effective techniques for the numerical solution of the equations. Subsequently, these methods were applied to two particular models, derived from experimental data, and the optimum temperature profiles were determined. The results indicated that an improvement, in penicillin yield of about 15% was possible if the optimum temperature profiles were followed.  相似文献   

12.
The optimum temperature operation mode required to achieve high fructose productivity is studied for immobilized glucose isomerase (GI) packed bed reactor. In this study, the reactor design equation based on reversible Michaelis-Menten kinetics assumes both thermal enzyme deactivation and substrate protection. The optimization problem is formulated as a discretized constrained nonlinear programming problem (NLP). The formulation is expressed in terms of maximization of fructose productivity as the objective function subject to reactor design equation, kinetic parameter equations, substrate protection factor equation and feasibility constraints. The constraints are discretized along the reactor operating period by employing piecewise polynomial approximations. Approximately 7% improvement in terms of fructose productivity is achieved when running the reactor at the optimum decreasing temperature operation mode as compared to the constant optimum isothermal operation.  相似文献   

13.
A class of cumulant plot statistics of use in assessing mode and asymmetry of transmission of a quantitative trait within a nuclear family is introduced. Various models for transmission modes involving continuous parameterization are described. Behavior of the cumulant plots under the differing transmission modes is delineated with use made of results from theoretical and simulation studies. Application to the analysis of specific data sets is given.  相似文献   

14.
A self-designed novel solid-state fermentation (SSF) bioreactor named “gas double-dynamic solid-state fermentation bioreactor (GDSFB)” showed great success in processes for the production of several valuable products. For the present study, a simple GDSFB (2 L in volume) was designed to investigate the impact of exhaust time on SSF performance. Both air pressure and vent aperture significantly influenced the exhaust time. The production of cellulase by Penicillium decumbens JUA10 was studied in this bioreactor. When the vent aperture was maintained at 0.2 cm, the highest FPA activity of 17.2 IU/g dry solid-state medium was obtained at an air pressure of 0.2 MPa (gauge pressure). When the air pressure was maintained at 0.2 MPa, a vent aperture of 0.3 cm gave the highest FPA activity of 18.0 IU/g dry solid-state medium. Further analysis revealed that the exhaust time was a crucial indicator of good performance in GDSFB.  相似文献   

15.
Pleurotus citrinopileatus polysaccharides ware extracted from fermentation liquid by acetone under the conditions of different solvent concentration, extracting duration and temperature. The optimal design of extraction was analysed by using orthogonal test. The results showed that under the condition of acetone concentration of 75%, extraction duration of 1.5h, and temperature of 70℃, the highest yield of Pleurotus citrinopileatus polysaccharides was obtained.  相似文献   

16.
以液体深层发酵法培养金顶侧耳,发酵液以丙酮为提取剂在不同的浓度﹑时间﹑温度条件下提取多糖,利用正交设计试验分析,得到了一种优化方案。试验结果表明:发酵液多糖提取最优方案是提取温度为70℃、丙酮浓度为75%、提取时间为1.5h。  相似文献   

17.
The performance of the simulated moving bed (SMB) technology and its modification, the Varicol process, was optimized using an experimentally verified model for the enantioseparation of SB-553261 racemate. Single and multiobjective optimizations have been carried out for both existing as well as design stage and their efficiencies were compared. The optimization problem involves a relatively large number of decision variables, both continuous variables such as flow rates, switching time and length of the columns, as well as discrete variables like number and distribution of columns. A state-of-the-art new optimization technique based on a genetic algorithm (nondominated sorting genetic algorithm with jumping genes) was utilized which allows handling of these complex optimization problems. The optimization results showed that significant improvement could be made to the chiral drug separation process using both the SMB and the Varicol process. It was found that the performance of a Varicol process is superior to that of a SMB process in terms of treating more feed using less desorbent or increasing productivity while at the same time achieving better product quality. Optimum results were explained using equilibrium theory by locating them in the pure separation region.  相似文献   

18.
Based upon the general characteristics of the optimal feed rate profiles presented in an earlier article, efficient computational algorithms have been developed for fed-batch fermentation processes described by four or less mass balance equations. These algorithms make computations of optimal substrate feed rate profiles straight forward and simple for various fed-batch cultures for such products as antibiotics, amino acids, enzymes, alcohols, and cell mass. Numerical examples of penicillin fermentation and bacterial cell mass production are given in detail, illustrating the use of these algorithms.  相似文献   

19.
A two-stage continuous system in combination with a temperature-sensitive expression system were used as model systems to maximize the productivity of a cloned gene and minimize the problem associated with the plasmid instability for a high-expression recombinant. In order to optimize the two-stage fermentation process, the effects of such operational variables as temperature and dilution rate on productivity of cloned gene were studied using the model systems and a recombinant, Escherichia coli K12 DeltaH1 Deltatrp/pPLc23trp A1. When the expression of cloned gene is induced by raising the operating temperature above 38 degrees C, a significant decrease in the colony-forming-units (CFU) of the plasmid-harboring cell was observed, and the decrease was related to the product concentration. In order to describe this phenomenon, a new kinetic parameter related to the metabolic stress (metabolic stress factor) was introduced. It is defined as the ratio of the rate of change of pheno-type from colony-forming to non-colony-forming cells to the product accumulation per unit cell mass. At a fixed temperature of 40 degrees C, the varying dilution rate D in the range of 0.35-0.90 h(-1) did not affect the metabolic stress factor significantly. At a fixed dilution rate of D = 0.35 h(-1), this factor remained practically constant up to 41 degrees C but increased rapidly beyond 41 degrees C. The effects of temperature and dilution rate in the second stage on the specific production rate were also studied while maintaining the apparent specific growth rate (mu(2) (app)) of the second stage constant at or near mu(2) (app) = 0.26 h(-1). Under a constant dilution rate, D(2) = 0.35 h(-1), the maximum specific production rate obtained was about q(p, max) = 38 units TrpA/mg cell/h at 41 degrees C. At a constant temperature, T(2) = 40 degrees C, specific production rate increased with decreasing dilution rate with in the dilution rate range of D(2) = 0.35-0.90 h(-1). Based on the results of our study, the optimal operating conditions found were dilution rate D(2) = 0.35 h(-1) and operating temperature T(2) = 41 degrees C at the apparent specific growth rate of 0.26 h(-1). Under the optimal operating conditions, about threefold increase in productivity was achieved compared to the best batch culture result. In addition, the fermentation period could be extended for more than 100 h.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号