首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The dephosphorylation of ADP and ATP was characterized as the first-order rate constant in dependence on pH in the absence and presence of Cu2+, and together with Cu2+ and a second ligand. The reaction is strongly accelerated by Cu2+ and passes through pH optima at about 6.2 and 6.5 for the Cu2+ ?ADP and ?ATP systems, respectively (I = 0.1, NaClO4; 50°C). In the presence of 2,2′-bipyridyl (Bipy), ternary complexes are formed with the nucleotides ADP or ATP (NP), Cu(Bipy)(NP), which are very stable towards dephosphorylation over a large pH range. Similar stabilizing effects were observed in ternary complexes formed with imidazole or OH?. These results can easily be rationalized by taking into account that in the binary Cu2+ complexes macrochelates are formed by the interaction between the adenine moiety and the metal ion. This interaction is crucial for obtaining the labile species and hence, in the mixed-ligand complexes, where the macrophelate can not be formed, the phosphates are protected toward hydrolysis. In agreement with these results is the dephosphorylation behavior of Cu(CDP)? and Cu(CTP)2?; they are rather stable. This is in accord with the small coordination tendency of the cytosine moiety.By computing the pH dependence of the distribution of the several species, it is shown that the active species are Cu(ATP)2? and Cu(ADP)? and not the hydroxy complexes, [Cu(ATP)(OH)]26? and [Cu(ADP)(OH)24? as were suggested earlier. With the aid of the initial rate, ν0 = d[PO43?]dt, the rate laws of the ascending side of the pH optima were determined: ν0 = k[Cu(NP)][H+]. The descending side of the pH optima is attributed to the formation of Cu(NP)(OH), where the metal ion interaction with N-7 of the adenine moiety is inhibited.  相似文献   

2.
Abstract

Ground-water samples were collected from an uncontaminated and a contaminated site. Copper complexation was characterized by ion- selective electrode (ISE), fluorescence quenching (FQ), and cathodic stripping voltammetric (CSV) titrations. All of the samples were titrated at their natural pH values and some of the samples were also titrated at other pH values. For a total Cu concentration of 10?6 M, the free Cu2+ concentrations in the samples from the uncontaminated site were all less than 10?7 M, while free Cu2+ in the samples from the contaminated site were all less than 10?8 M. For a particular sample and total Cu concentration, the free Cu2+ concentration decreased as the pH increased. Relative to ISE, FQ underestimated and CSV overestimated the degree of Cu2+ binding. The Cu2+ -complexing properties of the ground waters are similar to many published results for the same pH and for ligand concentrations normalized to T.O.C. Chemical equilibrium computations indicate that organic complexes would dominate Cu speciation in the uncontaminated ground waters for 10?7 to 10?5 M total Cu. In the contaminated ground waters, sulfide complexes would be the predominant Cu species for total Cu less than the total S(?11) concentration. Organic complexes would dominate Cu speciation for total Cu greater than total S(?11).  相似文献   

3.
Equations are derived for predicting the effects of substrate concentration on the inactivation rate constants of tight-binding competitive and uncompetitive inhibitors. These relationships are used to study the inhibition of mitochondrial oxidative phosphorylation by efrapeptin. The results show that the apparent rate constant for efrapeptin inactivation of ATP synthesis decreases with increase in phosphate concentration. The reciprocal of the observed rate constant varies linearly with changes in the level of phosphate as predicted for a competitive inhibitor. The concentrations of ADP during ATP synthesis and of ATP during ATP hydrolysis, on the other hand, have no effect on the rate of inactivation by efrapeptin. This is in contrast to previous observations that adenine nucleotide substrates influence the level of efrapeptin bound at equilibrium (R. L. Cross, and W. E. Kohlbrenner, 1978, J. Biol. Chem.253, 4865–4873). The results suggest that efrapeptin interacts primarily at the phosphate binding site and that adenine nucleotides may influence equilibrium binding of efrapeptin by affecting the rate of dissociation of the inhibitor. Studies of efrapeptin inhibition of ATP synthesis under pseudo-first-order conditions show that the onset of inhibition is first order with respect to efrapeptin. The maximum apparent rate constant for efrapeptin binding, obtained by extrapolation to zero phosphate concentration, is 1.5 × 105m?1 s?1. Also described is a computer program for calculating the concentrations of complexes formed in a mixture of interacting species. The program may be used for most multiple-equilibrium calculations and permits the estimation of the levels of protonated complexes at any pH. The program was used to select Mg2+ concentrations which ensure that a large and relatively constant fraction of added ADP is present as MgADP. In the range of phosphate and ADP concentrations commonly used in studies of oxidative phosphorylation a 3 mm excess of Mg2+ relative to ADP was found sufficient to maintain high levels of MgADP at pH 8.0.  相似文献   

4.
For studies of interactions between Co2+ and adenosine 5'-diphosphate or adenosine 5'-triphosphate (ADPH4+ and ATPH5+ in strongly acidic medium) visible circular dichroism (d-d transitions of Co2+) and ultraviolet circular dichroism (adenine transitions) have proven to be very sensitive to structural changes. Drastic variation of spectra as a function of pH and concentration enabled us to show the existence of various species, to state their stoichiometry and eventually, their self-association. With ATPH22-, C.D. results are in agreement with recent N.M.R. results. With ligands bearing three negative charges, complexes (1 metal:2 nucleotides)n are formed in which bases of the two nucleotides of the molecule are self-associated. With ADP3-, the visible C.D. spectrum of this complex is intense and hides the spectra of the complexes formed with other protonated species of ADP; this self-associated complex is detected up to a lower limit of 5 X 10(-4) M concentration. With ATPH3-, a complex exhibiting the same characteristics as the one with ADP3- is formed but in about twenty times less amount which explains why it was not detected by potentiometry. With 0.1 M ATP4-, dimeric (or polymeric) complexes, of 1:2 and 1:1 stoichiometry are observed. With 0.01 M ATP4-, 1:1 monomeric and 2:1 dimeric (or polymeric) complexes are detected. The interactions between Mn2+ ions and ADP or ATP have been studied by C.D. on the UV range. The same species as with Co2+ ions have been found but the 1:2 complex formation with ADP3- was shown to occur to a lesser extent and was not observed below a 10(-2) M ADP concentration.  相似文献   

5.
From culture broth of Microsporum audouini, 5′-adenylic acid-deaminating enzyme has been purified to about 600-fold. The pH optimum was found to be 5.0 in acetate, 5.5 in succinate, 5.7 in citrate buffer. Velocity constant was 1.83×10?1 per minute. The optimal temperature was 40°C and activation energy was 15,000 calories. Michaelis-Menten constant was 6×10?4 m. This enzyme preparation removes amino groups of 5′- AMP, ADP and ATP quickly, of adenosine, 3′-AMP, 5′-deoxyAMP and NAD slowly, but adenine, 2,6-diaminopurine, 2′-AMP and NADP were not deaminated. The enzyme activity was inhibited with F?, pCMB, Fe+ + +, Cu+ + and Zn+ +  相似文献   

6.
The formation of complex between the Cu2+ ion and poly(α-L -glutamic acid) [poly(Glu)] in 150 mM NaCl solutions was studied by uv–visible absorption and equilibrium dialysis methods at the mixing ratios of Glu residues to Cu2+, R, of 32, 16, and 8 and in the pH range 4–7. The results showed that more than 90% of Cu2+ ions bind to the poly(Glu) at pH > 4.9, but the bound Cu(II) begins to dissociate with a decrease in pH. The absorption spectra of bound Cu(II) varied with pH and R in a complicated manner. Three different component spectra were disclosed from the analysis of the pH dependence of the bound spectra. We concluded that poly(Glu)–Cu(II) complexes fall into three classes in the pH range 4–7, with the proportions of these complexes varying with both pH and R. The three complexes predominate either in the helix or extended-coil region, in the helix–coil transition region, or in the helix-aggregate region. The stability constant and binding mode of each Cu(II)–Glu complex were estimated from the dialysis data. With these results, the possible structure of each complex is discussed.  相似文献   

7.
Absorption of copper, zinc, and manganese by sugarcane leaf tissue   总被引:2,自引:2,他引:0       下载免费PDF全文
Bowen JE 《Plant physiology》1969,44(2):255-261
The absorption of Cu2+, Zn2+, and Mn2+ by leaf tissue of 4-month old sugarcane plants (Saccharum officinarum L., var. H53-263) has been investigated. After the “apparent free space” fraction was desorbed, the absorption of Cu2+, Mn2+, and Zn2+ yielded a curve typical of many ion uptake processes when measured as a function of the external concentration. However, only 1 absorption mechanism was evident for each cation. The pH optimum for Cu2+ and Zn2+ uptake was 5.0 to 6.0, whereas that for Mn2+ absorption was 4.5 to 6.0. Absorption was competitively inhibited by H+, and this inhibition was reversible when 0.5 mm Ca2+ was present. Cu2+ and Zn2+ were absorbed through the same carrier sites, as concluded from their mutually competitive activities. Mn2+ was absorbed through a second, independent mechanism. Uptake of each cation was strongly inhibited by uncouplers of oxidative phosphorylation, by Amytal and Nembutal2, by 5 × 10−2m succinate, and by ADP and Pi. Absorption of Cu2+, Zn2+, and Mn2+ was concluded to be coupled to oxidative phosphorylation, and specifically to energy-conservation Site I.  相似文献   

8.
In newborn rat liver, the adenine nucleotide content (ATP + ADP + AMP) of mitochondria increases severalfold within 2 to 3 h of birth. The net increase in mitochondrial adenines suggests a novel mechanism by which mitochondria are able to accumulate adenine nucleotides from the cytosol (J. R. Aprille and G. K. Asimakis, 1980, Arch. Biochem. Biophys.201, 564.). This was investigated further in vitro. Isolated newborn liver mitochondria incubated with 1 mM ATP for 10 min at 30 °C doubled their adenine nucleotide content with effects on respiratory functions similar to those observed in vivo: State 3 respiration and adenine translocase activity increased, but uncoupled respiration was unchanged. The mechanism for net uptake of adenine nucleotides was found to be specific for ATP or ADP, but not AMP. Uptake was concentration dependent and saturable. The apparent Km′s for ATP and ADP were 0.85 ± 0.27 mM and 0.41 ± 0.20 mM, respectively, measured by net uptake of [14C]ATP or [14C]ADP. The specific activities of net ATP and ADP uptake averaged 0.332 ± 0.062 and 0.103 ± 0.002 nmol/min/mg protein, respectively. ADP was a competitive inhibitor of net ATP uptake. If Pi was omitted from the incubations, net uptake of ATP or ADP was reduced by 51%. Either mersalyl or N-ethylmaleimide severely inhibited the accumulation of adenine nucleotides. Net ATP uptake was stoichiometrically dependent on MgCl2, suggesting that Mg2+ is accumulated along with ATP (or ADP). Uptake was energy dependent as indicated by the following results: Net AdN uptake (especially ADP uptake) was stimulated by the addition of an oxidizable substrate (glutamate) and inhibited by FCCP (an uncoupler). Antimycin A had no effect on net ATP uptake but inhibited net ADP uptake, suggesting that ATP was able to serve as an energy source for its own accumulation. If carboxyatractyloside was added to inhibit the exchange translocase, thereby preventing rapid access of exogenous ATP to the matrix, net ATP uptake was inhibited; carboxyatractyloside had no effect on ADP uptake. It was concluded that the net uptake of adenine nucleotides from the extramitochondrial space occurs by a specific transport process distinct from the classic adenine nucleotide exchange translocase. The accumulation of adenine nucleotides may regulate matrix reactions which are allosterically affected by adenines or which require adenines as a substrate.  相似文献   

9.
1. Investigation of a number of reactions involving both internal and externally added adenine nucleotides of isolated liver mitochondria has revealed that atractylate and oligomycin differ markedly in the site of their inhibitory action. 2. Both atractylate and oligomycin inhibited the respiratory-chain-level phosphorylation of added ADP. Neither compound inhibited the substrate-level phosphorylation of internal (endogenous) ADP or the respiration-dependent accumulation of bivalent metal ions (Ca2+, Sr2+ or Mn2+). 3. Atractylate, but not oligomycin, inhibited the substrate-level phosphorylation of externally added ADP, the ATP- and carnitine-dependent reduction of nicotinamide nucleotide by palmitate and the ATP-induced activation of succinate oxidation. 4. Oligomycin, but not atractylate, inhibited the respiratory-chain-linked phosphorylation of internal ADP, and the dephosphorylation of internal ATP that occurred on the addition of antimycin. 5. The enhancement of arsenate-stimulated respiration by ADP was prevented by atractylate added either before or after the ADP. Oligomycin abolished both the arsenate and ADP stimulation. 6. It is suggested that atractylate prevents the passage of adenine nucleotides across the mitochondrial membrane, whereas oligomycin interferes with the formation of a `high-energy' phosphorylated intermediate.  相似文献   

10.
In the present report we describe an apyrase (ATP diphosphohydrolase, EC 3.6.1.5) in rat blood platelets. The enzyme hydrolyses almost identically quite different nucleoside di- and triphosphates. The calcium dependence and pH requirement were the same for the hydrolysis of ATP and ADP and the apparent Km values were similar for both Ca2+-ATP and Ca2+-ADP as substrates. Ca2+-ATP and Ca2+-ADP hydrolysis could not be attributed to the combined action of different enzymes because adenylate kinase, inorganic pyrophosphatase and nonspecific phosphatases were not detected under our assay conditions. The Ca2+-ATPase and Ca2+-ADPase activity was insensitive to ATPase, adenylate kinase and alkaline phosphatase classical inhibitors, thus excluding these enzymes as contaminants. The results demonstrate that rat blood platelets contain an ATP diphosphohydrolase involved in the hydrolysis of ATP and ADP which are vasoactive and platelet active adenine nucleotides.  相似文献   

11.
The diffusion rates of [3H] adenine nucleotides across bimolecular lipid membranes were shown to be directly related to their organic/water partition coefficients, the order being ATP > ADP > AMP. Nucleotide diffusion was stimulated by divalent metal ions with the order of stimulation being Cu+2 ? Zn+2 > Mg+2. The ability of a divalent metal ion to stimulate diffusion appears to be related to its ability to bind to the N-7 of the adenine ring. The divalent metal ions increase adenine nucleotide diffusion both by complexing with the nucleotide thus decreasing the charge on the nucleotide and by increasing the permeability of the lipid bilayer.  相似文献   

12.
1. Platelets containing adenine nucleotides labelled with 3H and 14C in vitro were aggregated biphasically with ADP and adrenaline. Amounts of ATP and ADP as well as the radioactivity of ATP, ADP, AMP, IMP, hypoxanthine and adenine were determined in platelets and plasma at different stages of aggregation. 2. ATP and ADP were released during the second aggregation phase and had a low specific radioactivity compared with the ATP and ADP retained by the cells. The specific radioactivity of intracellular nucleotides increased during release. The parameters observed with ADP and adrenaline as release inducers were the same as for collagen and thrombin. 3. Release induced by all four inducers was accompanied by conversion of cellular [3H]ATP into extracellular [3H]-hypoxanthine. By variation of temperature, inducer concentration, time after blood withdrawal and use of acetylsalicylic acid, the aggregation pattern caused by adrenaline and ADP could be made mono- or bi-phasic. Release or second-phase aggregation was intimately connected with the ATP–hypoxanthine conversion, whereas first phase aggregation was not. 4. The [3H]ATP–hypoxanthine conversion started immediately after ADP addition. With adrenaline it usually started with the appearance of the second aggregation phase. The conversion was present during first phase of ADP-induced aggregation only if a second phase were to follow. 5. When secondary aggregation took place while radioactive adenine was being taken up by the platelets, increased formation of labelled hypoxanthine still occurred, but there was either no change or an increase in the concentration of labelled ATP. 6. Biphasically aggregated platelets converted [3H]adenine more rapidly into [3H]-ATP and -hypoxanthine than non-aggregated platelets. Addition of [3H]adenine at different stages of biphasic aggregation showed that more [3H]hypoxanthine was formed during than after the release step. 7. We conclude that ADP and adrenaline, like thrombin and collagen, cause extrusion of non-metabolic granula-located platelet adenine nucleotides. During release metabolic ATP breaks down to hypoxanthine, and this process might reflect an ATP-requiring part of the release reaction.  相似文献   

13.
1. [14C]ADP is incorporated into washed broken chloroplasts in the light. The bound labelled nucleotides which cannot be removed by washing are almost exclusively related to coupling factor CF1. [14C]ADP binding exhibits a monophasic concentration curve with a Km of 2 μM.2. By illumination of the chloroplasts, previously incorporated labelled nucleotides are released. A fast release is obtained in the presence of unlabelled ADP and ATP, indicating an energy-dependent exchange. A slow and incomplete release is induced by light in the absence of unlabelled adenine nucleotides. Obviously, under those conditions, an adenine nucleotide depleted CF1 conformation is established.3. Re-binding of [14C]ADP by depleted membranes is an energy-independent process. Even after solubilization of adenylate-depleted CF1, [14C]ADP is incorporated into the protein. By re-binding of ADP in the dark, CF1 is converted to a non-exchangeable form.4. Energy-dependent adenine nucleotide exchange on CF1 is suggested to include three different conformational states of the enzyme: (1) a stable, non-exchangeable form which contains firmly bound nucleotides, is converted to (2), an unstable form containing loosely bound adenine nucleotides. This conformation allows adenylate exchange; it is in equilibrium with (3) a metastable, adenylate-depleted form. The transition from state (1) to state (2) is the energy-requiring step.  相似文献   

14.
This study assessed the effect of dissolved organic matter on the copper (Cu) bioavailability to mammalian cells, porcine oviductal epithelial cells (POEC), in order to imply its effect onto humans. Cu toxicity was investigated in the presence of with and without fulvic acid (FA). Dissociation and exchange rate constants were calculated by using competing ligand Chelex-100, and optical parameters were employed to help explain the complexation of their aromatic and aliphatic structures. Their morphological change was observed using transmission electron microscope (TEM), and Cu species were calculated using MINTEQA2 program. The results showed that the dissociation rate constant of Cu2+–FA was equal to 9.08?×?10?4?s?1, which was slower than the exchange rate at 1.95?×?10?3?s?1. Although Cu–FA was significantly absorbed into the cells higher than Cu2+, it showed less damage than tested with Cu2+. TEM and optical studies showed many aggregations around nucleus suggesting the amphipathic character of FA helped binging to the nuclear surfaces of both Cu–FA and FA treatments. Even though the MINTEQA2 calculations showed that there was free Cu2+ in the mixed solutions around 39.2%, it could not bind with the cell surface. This suggested that the effect of FA was strong and had a lot of influence on the living surface of POEC, modifying the effect of Cu toxicity.  相似文献   

15.
The uncoupled electron flux and the influence of adenine nucleotides on this flux in mitochondria isolated from hypocotyls of Vigna sinensis (L.) Savi cv. Seridó were examined. In order to avoid the functioning of other enzymes capable of utilizing adenine nucleotides the reaction medium was free of Mg2+. When an oxidizable NADH -linked substrate such as L-malate was used, a stimulatory of adenosine-5′-monophosphate (AMP) and adenosine-5′-diphosphate (ADP) on uncoupled respiration was manifested. The stimulatory effect of AMP and ADP could not be shown when succinate was the substrate. Atractyloside and carboxyatractyloside had no effect on the stimulatory role played respectively by AMP and ADP in the presence of carbonyl cyanide p-trifluoromethoxy-phenylhydrazone (FCCP).  相似文献   

16.
The presence of ATP or ADP in the incubation medium prevents the collapse of membrane potential induced by external Ca2+ and phosphate. The same adenine nucleotides are unable to restore collapsed membrane potential unless Mg2+ are also added. Bongkrekate is also able to prevent the effects of external Ca2+ and phosphate and when added after membrane potential has collapsed strongly potentiates the restorative action of ATP or ADP. Atractyloside has an opposite effect.  相似文献   

17.
The adenine nucleotides ADP and ATP are probably the most important endogenous inhibitors of the mitochondrial permeability transition (MPT). We studied the inhibitory effects of adenine nucleotides on brain MPT by measuring mitochondrial swelling and Ca2+ and cytochrome c release. We observed that in the presence of either ADP or ATP, at 250 μM, brain mitochondria accumulated more than 1 μmol Ca2+ × mg protein−1. ADP or ATP also prevented Ca2+-induced mitochondrial swelling and cytochrome c release. Interestingly, ATP lost most of its inhibitory effects on MPT when the experiments were carried out in the presence of ATP-regenerating systems. These results indicate that MPT inhibition observed in the presence of added ATP could be mainly due to hydrolysis of ATP to ADP. From mitochondrial swelling measurements, half-maximal inhibitory values (K i) of 4.5 and 98 μM were obtained for ADP and ATP, respectively. In addition, a delayed mitochondrial swelling sensitive to higher ADP concentrations was observed. Mitochondrial anoxia/reoxygenation did not interfere with the inhibitory effect of ADP on Ca2+-induced MPT, but oxidative phosphorylation markedly decreased this effect. We conclude that ADP is a potent inhibitor of brain MPT whereas ATP is a weaker inhibitor of this phenomenon. Our results suggest that ADP can have an important protective role against MPT-mediated tissue damage under conditions of brain ischemia and hypoglycemia.  相似文献   

18.
Wang  Peng  Menzies  Neal W.  Wang  Yi-Min  Zhou  Dong-Mei  Zhao  Fang-Jie  Kopittke  Peter M. 《Plant and Soil》2012,361(1-2):317-327
Background and aims

The pH of the growth medium influences Cu speciation in solution, the negativity of plasma membrane (PM) surface potential, and hence the rhizotoxicity of Cu.

Methods

Solution culture experiments were conducted with wheat (Triticum aestivum L.) seedlings to examine the toxicity of various Cu species at pH values ranging from 4.50 to 8.25. The toxic species of Cu was identified, giving particular consideration to the electrical properties at the plant cell membrane and ion activities at the PM surface.

Results

The solution culture studies showed that at pH?<?6.60 (i.e., free Cu2+ >95 % of total Cu), the addition of cations (Ca2+ or H+) decreased the toxic effects of Cu by decreasing the negativity of the PM surface potential (and hence decreasing the activity of Cu2+ at the PM surface). For solutions with pH values from 7.50 to 8.25 (CuCO 03 >50 % of total Cu), an increase in pH significantly enhanced the toxicity of Cu, whilst the addition of Ca had negligible influence on toxicity.

Conclusions

Root growth in solution cultures was influenced primarily by the surface activities of free Cu2+ and CuCO 03 . Across all experiments, the data indicate that it was CuCO 03 , rather than CuOH+, that contributed Cu toxicity over pH?>?7.00. Although our data do not explore the mechanism of toxicity, we propose that CuCO 03 has an important role in Cu rhizotoxicity in alkaline growth media.

  相似文献   

19.
In this study, ZnSe and ZnSe:Cu quantum dots (QDs) were synthesized using Na2SeO3 as the Se source by a rapid and room temperature photochemical (UV‐assisted) approach. Thioglycolic acid (TGA) was employed as the capping agent and UV illumination activated the chemical reactions. Synthesized QDs were successfully characterized using X‐ray diffraction (XRD), transmission electron microscopy (TEM), photoluminescence (PL) and UV–visible (UV–vis) spectroscopy, Fourier transform‐infrared (FT‐IR), and energy dispersive X‐ray spectroscopy (EDX). XRD analysis demonstrated the cubic zinc blend phase QDs. TEM images indicated that round‐shaped particles were formed, most of which had a diameter of about 4 nm. The band gap of the ZnSe QDs was higher than that for ZnSe in bulk. PL spectra indicated an emission with three peaks related to the excitonic, surface trap states and deep level (DL) states. The band gap and QD emission were tunable only by UV illumination time during synthesis. ZnSe:Cu showed green emission due to transition of electrons from the Conduction band (CB) or surface trap states to the 2T2 acceptor levels of Cu2+. The emission was increased by increasing the Cu2+ ion concentration, such that the optimal value of PL intensity was obtained for the nominal mole ratio of Cu:Zn 1.5%.  相似文献   

20.
During the course of the investigation on the production of nucleotide by fermentative processes, it was found that a large amount of ATP and ADP or GTP and GDP, in addition to a smaller amount of AMP or GMP, accumulated in the culture broth when Brevibacterium ammoniagenes ATCC 6872 was incubated in a medium containing adenine or guanine.

After treatment of the culture filtrate with charcoal, the nucleotides were isolated by ion-exchange chromatography on Dowex-1 × 2 (Cl?-form). They were identified by paper-chromatography, ultraviolet absorption spectra and analyses of base, ribose and phosphate. The ATP preparation from the broth had the same activity with that of authentic sample in the β-aspartokinase system from Corynebacterium glutamicum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号