首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Eleven alternative fermentation schemes for ethanol production are compared. Conventional batch, continuous, cell recycle, and immobilized cell processes, as well as membrane, extraction, and vacuum processes which remove ethanol from the broth selectively as it is produced, are considered. The processes are compared on identical bases using a consistent model for the yeast metabolism. Both molasses and cellulose hydrolyzate are considered as feeds. Optimized ethanol plants, including feed preparation, fermentation, and product recovery sections are designed and total costs are projected.  相似文献   

2.
Cell recycle and vacuum fermentation systems were developed for continuous ethanol production. Cell recycle was employed in both atmospheric pressure and vacuum fermentations to achieve high cell densities and rapid ethanol fermentation rates. Studies were conducted with Saccharomyces cerevisiae (ATCC No. 4126) at a fermentation temperature of 35°C. Employing a 10% glucose feed, a cell density of 50 g dry wt/liter was obtained in atmospheric-cell recycle fermentations which produced a fermentor ethanol productivity of 29.0 g/liter-hr. The vacuum fermentor eliminated ethanol inhibition by boiling away ethanol from the fermenting beer as it was formed. This permitted the rapid and complete fermentation of concentrated sugar solutions. At a total pressure of 50 mmHg and using a 33.4% glucose feed, ethanol productivities of 82 and 40 g/liter-hr were achieved with the vacuum system with and without cell recycle, respectively. Fermentor ethanol productivities were thus increased as much as twelvefold over conventional continuous fermentations. In order to maintain a viable yeast culture in the vacuum fermentor, a bleed of fermented broth had to be continuously withdrawn to remove nonvolatile compounds. It was also necessary to sparge the vacuum fermentor with pure oxygen to satisfy the trace oxygen requirement of the fermenting yeast.  相似文献   

3.
Summary A two-stage fermentation process has been developed for continuous ethanol production by immobilized cells of Zymomonas mobilis. About 90–92 kg/m3 ethanol was produced after 4 h of residence time. Entrapped cells of Zymomonas mobilis have a capability to convert glucose to ethanol at 93% of the theoretical yield. The immobilized cell system has functioned for several weeks, and experience indicates that the carrageenan gel apparently facilitates easy diffusion of glucose and ethanol.The simplicity and the high productivity of the plug-flow reactor employing immobilized cells makes it economically attrative. An evaluation of process economics of an immobilized cell system indicates that at least 4 c/l of ethanol can be saved using the immobilized cell system rather than the conventional batch system. The high productivity achieved in the immobilized cell reactor results in the requirement for only small reactor vessels indicating low capital cost. Consequently, by switching from batch to immobilized processing, the fixed capital investment is substantially reduced, thus increasing the profitability of ethanol production by fermentation.  相似文献   

4.
L-Lysine is produced commercially by fermentation. As is typical for fermentation processes, a large amount of liquid waste is generated. To minimize the waste, which is mostly the broth effluent from the cation exchange column used for l-lysine recovery, we investigated a strategy of recycling a large fraction of this broth effluent to the subsequent fermentation. This was done on a labscale process with Corynebacterium glutamicum ATCC 21253 as the l-lysine-producing organism. Broth effluent from a fermentation in a defined medium was able to replace 75% of the water for the subsequent batch; this recycle ratio was maintained for three sequential batches without affecting cell mass and l-lysine production. Broth effluent was recycled at 50% recycle ratio in a fermentation in a complex medium containing beet molasses. The first recycle batch had an 8% lower final l-lysine level, but 8% higher maximum cell mass. In addition to reducing the volume of liquid waste, this recycle strategy has the additional advantage of utilizing the ammonium desorbed from the ion-exchange column as a nitrogen source in the recycle fermentation. The major problem of recycling the effluent from the complex medium was in the cation-exchange operation, where column capacity was 17% lower for the recycle batch. The loss of column capacity probably results from the buildup of cations competing with l-lysine for binding. (c) 1996 John Wiley & Sons, Inc.  相似文献   

5.
The production of ethanol from cheese whey lactose has been demonstrated using a single-stage continuous culture fermentation with 100% cell recycle. In a two-step process, an aerobic fed batch operation was used initially to allow biomass buildup in the absence of inhibitory ethanol concentrations. In the anaerobic ethanol-producing second step, a strain of Kluyveromyces fragilis selected on the basis of batch fermentation data had a maximum productivity of 7.1 g ethanol/L/h at a dilution rate of 0.15 h(-1), while achieving the goal of zero residual sugar concentration. The fermentation productivity diminished when the feed sugar concentation exceeded 120 g/L despite the inclusion of a lipid mixture previous shown to enhance batch fermentation productivities.  相似文献   

6.
Distiller's wet grain (DWG) and 95% ethanol were produced from corn in a farm-scale process involving batch cooking-fermentation and continuous distillation-centrifugation. The energy balance was 2.26 and the cost was $1.86/gal (1981 cost). To improve the energy balance and reduce costs, various modifications were made in the plant. The first change, back-end (after liquefaction) serial recycling of stillage supernatant at 20 and 40% strengths, produced beers with 0.2 and 0.4% (v/v) more ethanol, respectively, than without recycling. This increased the energy balance by 0.22-0.43 units and reduced costs by $0.07-$0.10/gal. The DWGs from back-end recycling had increased fat. The second change, increasing the starch content from 17-19% to 27.5%, increased the ethanol in the beer from 10.5-14.9% at a cost saving of $0.41/gal. The energy balance increased by 1.08 units. No significant change was seen in DWG composition. The third change, using continuous cascade rather than batch fermentation, permitted batch-levels of ethanol (10%) in the beer but only at low dilution rates. Both the cost and energy balance were decreased slightly. The DWG composition remained constant. The last change, replacing part of the corn and all of the tap water in the mash with whole whey and using Kluyveromyces fragilis instead of Saccharomyces cerevisiae during fermentation, resulted in an energy balance increase of 0.16 units and a $0.27/gal cost reduction. Here, 10% ethanolic beers were produced and the DWGs showed increased protein and fat. Recommendations for farm-scale plants are provided.  相似文献   

7.
A novel acetone-butanol production process was developed which integrates a repeated fed-batch fermentation with continuous product removal and cell recycle. The inhibitory product concentrations of the fermentation by Clostridium acetobutylicum were reduced by the simultaneous extraction process using polyvinylpyridine (PVP) as an adsorbent. Because of the reduced inhibition effect, a higher specific cell growth rate and thus a higher product formation rate was achieved. The cell recycle using membrane separation increased the total cell mass density and, therefore, enhanced the reactor productivity. The repeated fed-batchoperation overcame the drawbacks typically associated with a batch operation such as down times, long lag period, and the limitation on the maximum initial substrate concentration allowed due to the substrate inhibition. Unlike a continuous operation, the repeated fed-batch operation could beoperated for a long time at a relatively higher substrate concentration without sacrificing the substrate loss in the effluent. As a result, the integrated process reached 47.2 g/L in the equivalent solvent concentration (including acetone, butanol, and ethanol) and 1.69 g/L . h in the fermentor productivity, on average, over a 239.5-h period. Compared with a controlled traditional batch acetone-butanol fermentation, the equivalent solvent concentration and the tormentor productivity were increased by 140% and 320%, respectively. (c) 1995 John Wiley & Sons Inc.  相似文献   

8.
Rapid fermentation of bagasse hydrolysate to ethanol under anaerobic conditions by a strain of Saccharomyces cerevisiae has been studied in batch and continuous cultures at pH 4.0 and 30°C temperature with cell recycle. By using a 23.6 g/liter cell concentration, a concentation of 9.7% (w/v)ethanol was developed in a period of 6 hr. The rate of fermentation was found to increase with supplementation of yeast vitamins in the hydrolysate. In continuous culture employing cell recycle and a 0.127 v/v/m air flow rate, a cell mass concentration of 48.5 g/liter has been achieved. The maximum fermentor productivity of ethanol obtained under these conditions was 32.0 g/liter/hr, which is nearly 7.5 times higher than the normal continuous process without cell recycle and air sparging. The ethanol productivity was found to decrease linearly with ethanol concentration. Conversion of glucose in the hydrolysate to ethanol was achieved with a yield of 95 to 97% of theoretical.  相似文献   

9.
Economical production of second generation ethanol from Ponderosa pine is of interest due to widespread mountain pine beetle infestation in the western United States and Canada. The conversion process is limited by low glucose and high inhibitor concentrations resulting from conventional low‐solids dilute acid pretreatment and enzymatic hydrolysis. Inhibited fermentations require larger fermentors (due to reduced volumetric productivity) and low sugars lead to low ethanol titers, increasing distillation costs. In this work, multiple effect evaporation (MEE) and nanofiltration (NF) were evaluated to concentrate the hydrolysate from 30 g/l to 100, 150, or 200 g/l glucose. To ferment this high gravity, inhibitor containing stream, traditional batch fermentation was compared with continuous stirred tank fermentation (CSTF) and continuous fermentation with cell recycle (CSTF‐CR). Equivalent annual operating cost (EAOC = amortized capital + yearly operating expenses) was used to compare these potential improvements for a local‐scale 5 MGY ethanol production facility. Hydrolysate concentration via evaporation increased EAOC over the base process due to the capital and energy intensive nature of evaporating a very dilute sugar stream; however, concentration via NF decreased EAOC for several of the cases (by 2 to 15%). NF concentration to 100 g/l glucose with a CSTF‐CR was the most economical option, reducing EAOC by $0.15 per gallon ethanol produced. Sensitivity analyses on NF options showed that EAOC improvement over the base case could still be realized for even higher solids removal requirements (up to two times higher centrifuge requirement for the best case) or decreased NF performance. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:946–956, 2015  相似文献   

10.
Summary In cooperation with the company Copersucar (Brazil), several variants of a fermentation system for the continuous production of butanol and acetone from high-test or invert molasses were developed. These fermentation systems involve a relatively economic batch fermentation requiring little investment, using a continuous culture as the inoculation culture, as well as a modern two-stage continuous culture with cell recycling. For example, 13.3 g·1–1 of solvent (acetone and butanol) are produced with a productivity of 3.3 g·1–1 ·h–1 by two-stage continuous molasses fermentation with cell recycling in the second stage. High-test molasses is converted completely into the products. Butanol and acetone production from molasses is economic in Brazil and the construction of a production plant is planned.Offprint requests to: A. S. Afschar  相似文献   

11.
采用固定化生长细胞方法,以柱式生物反应器连续发酵甜菜糖蜜酒精。酒精能力为39.45g/L凝胶/h,停留时间1.8小时。生物反应器具有良好的稳定性,连续工作50天,发酵醪酒精含量在8.5%(v/v)以上。系统研究了最适固定化条件,用L_(16)(4~5)正交试验确定了最佳发酵条件。  相似文献   

12.
A laboratory process was established for ethanol production by fermentation of sugar beet molasses with the bacterium Zymomonas mobilis. Sucrose in the molasses was hydrolyzed enzymatically to prevent levan formation. A continuous system was adopted to reduce sorbitol formation and a two-stage fermentor was used to enhance sugar conversion and the final ethanol concentration. This two-stage fermentor operated stably for as long as 18 d. An ethanol concentration of 59.9 g/l was obtained at 97% sugar conversion and at high ethanol yield (0.48 g/g, 94% of theoretical). The volumetric ethanol productivity (3.0 g/l·h) was superior to that of batch fermentation but inferior to that of a single-stage continuous system with the same medium. However, the thanol concentration was increased to a level acceptable for economical recovery. The process proposed in this paper is the first report of successful fermentation of sugar beet molasses in the continuous mode using the bacterium Z. mobilis.  相似文献   

13.
Fuel ethanol (95%) was produced from fodder beets in two farm-scale processes. In the first process, involving conventional submerged fermentation of the fodder beets in a mash, ethanol and a feed (PF) rich in protein, fat, and fiber were produced. Ethanol yields of 70 L/metric ton (7 gal/ton) were obtained; however, resulting beers had low ethanol concentrations [3-5% (v/v)]. The high viscosity of medium and low sugar, beet mashes caused mixing problems which prevented any further increase of beet sugar in the mash. The severely limited the maximum attainable ethanol concentration during fermentation, thereby making the beer costly to distill into fuel ethanol and the process energy inefficient. In order to achieve distillably worthwhile ethanol concentrations of 8-10% (v/v), we developed and tested a solid-phase fermentation process (continuous). In preliminary trials, this system produced fermented pulp with over 8% (v/v) ethanol corresponding to an ethanol yield of 87 L/metric ton (21 gal/ton). Production costs with this novel process are $0.47/L ($1.77/gal) and the energy balance is 2.11. These preliminary cost estimates indicate that fodder beets are potentially competitive with corn as an ethanol feedstock. Additional research, however, is warranted to more precisely refine individual costs, energy balances and the actual value of the PF.  相似文献   

14.
Inhibition by secondary feed components can limit productivity and restrict process options for the production of ethanol by fermentation. New fermentation processes (such as vacuum or extractive fermentation), while selectively removing ethanol, can concentrate nonmetabolized feed components in the remaining broth. Stillage recycle to reduce stillage waste treatment results in the buildup of nonmetabolized feed components. Continuous culture experiments are presented establishing an inhibition order: CaCl(2), (NH(4))(2)xSO(4) > NaCl, NH(4)Cl > KH(2)PO(4) > xylose, MgCl(2) > MgSO(4) > KCl. Reduction of the water activity alone is not an adequate predictor of the variation in inhibitory concentration among the different components tested. As a general trend, specific ethanol productivity increases and cell production decreases as inhibitors are added at higher concentration. We postulate that these results can be interpreted in terms of an increase in energy requirements for cell maintenance under hypertonic (stressed) conditions. Ion and carbohydrate transport and specific toxic effects are reviewed as they relate to the postulated inhibition mechanism. Glycerol production increases under hypertonic conditions and glycerol is postulated to function as a nontoxic osmoregulator. Calcium was the most inhibitory component tested, causing an 80%decline in cell mass production at 0.23 mol Ca(2+)/L and calcium is present at substantial concentration in many carbohydrate sources. For a typical final cane molasses feed, stillage recycle must be limited to less than onethird of the feed rate; otherwise inhibitory effects will be observed.  相似文献   

15.
High-level yeast inocula was investigated as a means of overcoming the toxicity problem in ethanol fermentation of acid hydrolyzate of wood cellulose. When the inoculum level exceeded 10(8) initial cells/mL, 50% of the yeast cells survived the initial cell death period during which furfural and HMF were depleted. The fermentation thus proceeded to completion by virtue of cell regrowth. The specific ethanol productivity in batch fermentation on the basis of viable cells was comparable to that of pure glucose fermentation. Continuous fermentation with cell recycle was superior to batch fermentation in that there was no overall cell decline and the ethanol yield was substantially higher. The maximum ethanol productivity in continuous fermentation was 4.9 g/L h and it occurred at a dilution rate of 0.24 hr(-1).  相似文献   

16.
Six thermotolerant yeasts were isolated at 37 degrees C from over-ripe grapes by serial dilution technique using glucose yeast extract medium. Purified yeast cultures were screened for ethanol production at 37 degrees C by batch fermentation, using cane molasses containing 20% sugars. Sugar conversion efficiency of these isolates varied from 66.0 to 88.5% and ethanol productivity from 1.11 to 1.73 ml/l/h. The highest ethanol producing isolate was exposed to UV radiations and 13 mutants were picked up from the UV treatment exhibiting 0.1 to 1.0%, survival. The UV mutants varied in cell size from parent as well as among themselves. Determination of ethanol produced by all the mutants revealed that only five mutants resulted in 4.5 to 6.2% increase in sugar conversion and 8.25 to 18.56% increase in ethanol concentration coupled with maximum ethanol productivity of 2.4 ml/l/h in 48 h of batch fermentation of cane molasses (20% sugars) at 37 degrees C temperature.  相似文献   

17.
Continuous ethanol fermentation of concentrated glucose and molasses solutions was coupled with membrane distillation using a PTFE ethanol stripping module. Experimental results indicated that the PTFE module can remove a high concentration of ethanol from the fermentation broth and thus maintain a low ethanol concentration in the broth, thereby alleviating the problem of product inhibition. Accordingly, the product yield and the specific ethanol production rate increased. During the continuous fermentation runs, long-time operation using the PTFE module was found to be possible (i.e. 430 h using the glucose medium and 695 h using the molasses medium) and no significant change in the ethanol separation performance of the PTFE module was observed. Although cell flocculation became undetectable when a concentrated molasses medium containing 316 g/l sugar solution was used, the ethanol separation performance of the ethanol stripper was not adversely affected by the presence of the free cells. This suggests that clogging of the membrane pores by cells or other particulates is not a major problem when using the PTFE module in continuous ethanol fermentation.  相似文献   

18.
Fresh, defrosted and delignified brewer's spent grains (BSG) were used as yeast supports for alcoholic fermentation of molasses. Glucose solution (12%) with and without nutrients was used for cell immobilization on fresh BSG, without nutrients for cell immobilization on defrosted and with nutrients for cell immobilization on delignified BSG. Repeated fermentation batches were performed by the immobilized biocatalysts in molasses of 7, 10 and 12 initial Baume density without additional nutrients at 30 and 20 degrees C. Defrosted BSG immobilized biocatalyst was used only for repeated fermentation batches of 7 initial Baume density of molasses without nutrients at 30 and 20 degrees C. After immobilization, the immobilized microorganism population was at 10(9) cells/g support for all immobilized biocatalysts. Fresh BSG immobilized biocatalyst without additional nutrients for yeast immobilization resulted in higher fermentation rates, lower final Baume densities and higher ethanol productivities in molasses fermentation at 7, 10 and 12 initial degrees Be densities than the other above biocatalysts. Adaptation of defrosted BSG immobilized biocatalyst in the molasses fermentation system was observed from batch to batch approaching kinetic parameters reported in fresh BSG immobilized biocatalyst. The results of this study concerning the use of fresh or defrosted BSG as yeast supports could be promising for scale-up operation.  相似文献   

19.
Tamarind wastes such as tamarind husk, pulp, seeds, fruit and the effluent generated during tartaric acid extraction were used as supplements to evaluate their effects on alcohol production from cane molasses using yeast cultures. Small amounts of these additives enhanced the rate of ethanol production in batch fermentations. Tamarind fruit increased ethanol production (9.7%, w/v) from 22.5% reducing sugars of molasses as compared to 6.5% (w/v) in control experiments lacking supplements after 72 h of fermentation. In general, the addition of tamarind supplements to the fermentation medium showed more than 40% improvement in ethanol production using higher cane molasses sugar concentrations. The direct fermentation of aqueous tamarind effluent also yielded 3.25% (w/v) ethanol, suggesting its possible use as a diluent in molasses fermentations. This is the first report, to our knowledge, in which tamarind-based waste products were used in ethanol production. Received 2 April 1998/ Accepted in revised form 13 November 1998  相似文献   

20.
Butanol has been acknowledged as an advanced biofuel, but its production through acetone–butanol–ethanol (ABE) fermentation by clostridia is still not economically competitive, due to low butanol yield and titer. In this article, update progress in butanol production is reviewed. Low price and sustainable feedstocks such as lignocellulosic residues and dedicated energy crops are needed for butanol production at large scale to save feedstock cost, but processes are more complicated, compared to those established for ABE fermentation from sugar- and starch-based feedstocks. While rational designs targeting individual genes, enzymes or pathways are effective for improving butanol yield, global and systems strategies are more reasonable for engineering strains with stress tolerance controlled by multigenes. Compared to solvent-producing clostridia, engineering heterologous species such as Escherichia coli and Saccharomyces cerevisiae with butanol pathway might be a solution for eliminating the formation of major byproducts acetone and ethanol so that butanol yield can be improved significantly. Although batch fermentation has been practiced for butanol production in industry, continuous operation is more productive for large scale production of butanol as a biofuel, but a single chemostat bioreactor cannot achieve this goal for the biphasic ABE fermentation, and tanks-in-series systems should be optimized for alternative feedstocks and new strains. Moreover, energy saving is limited for the distillation system, even total solvents in the fermentation broth are increased significantly, since solvents are distilled to ~ 40% by the beer stripper, and more than 95% water is removed with the stillage without phase change, even with conventional distillation systems, needless to say that advanced chemical engineering technologies can distil solvents up to ~ 90% with the beer stripper, and the multistage pressure columns can well balance energy consumption for solvent fraction. Indeed, an increase in butanol titer with ABE fermentation can significantly save energy consumption for medium sterilization and stillage treatment, since concentrated medium can be used, and consequently total mass flow with production systems can be reduced. As for various in situ butanol removal technologies, their energy efficiency, capital investment and contamination risk to the fermentation process need to be evaluated carefully.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号