首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Optical rotatory dispersion (ORD) and circular dichroism (CD) of 17 amino acid hydantoins were measured between 190 and 600 nm. Most of hydantoins exhibited the negative Cotton effect which showed the trough between 238 and 245 nm. The negative trough of CD was also observed between 212 and 236 nm. The Cotton effect of hydantoins was attributable to n→π* transition of carbonyl group at C-4 of hydantoin ring.  相似文献   

2.
To study the effect of metal ions on the conformation of hyaluronic acid, circular dichroism (CD) and optical rotatory dispersion (ORD), along with viscosity measurements of the Na, Li, Ca, and Mg salts of the polymer, were carried out. With divalent cations, the results show a decrease in CD minima at 210 nm and an increase in ORD troughs at 220 nm, as compared to monovalent ions. To account for this behavior, the ORD in the visible range corresponding to the observed CD bands was directly calculated from the Moscowitz equation using Kronig-Kramer's transform. The background rotation was found to be more levorotatory in bivalent than in monovalent cations. The ORD spectra of various metal hyaluronates differ significantly from each other in the far ultraviolet region, especially at lower pH values. The values of intrinsic viscosities of these hyaluronates, on the other hand, are almost the same in the pH range of 1–3. These results indicate a local conformation variation rather than any appreciable change in the chain conformation of the molecule in the presence of different counterions.  相似文献   

3.
P W Staskus  W C Johnson 《Biochemistry》1988,27(5):1522-1527
The chiroptical transition of hyaluronic acid (HA) in aqueous-organic solvent has been investigated by circular dichroism (CD) spectroscopy into the vacuum ultraviolet region. The CD of HA changes dramatically, monitoring a cooperative transition as the dielectric constant of an aqueous solution is reduced by adding organic solvents. This transition results in a high-intensity CD band at 188 nm, indicating an ordered structure in the mixed solvent. Heating HA in the mixed solvent also causes a cooperative transition, reducing the CD to that found for the polymer in aqueous solution. In contrast, heating HA in aqueous solution results in small, noncooperative changes in the CD spectrum. This indicates an unordered structure in aqueous solution. The CD as the dielectric constant is reduced exhibits isodichroic points, showing that there are only two environments for chromophores contributing to the CD. This is confirmed by singular value decomposition of CD spectra recorded as a function of solvent composition, which shows the spectra to contain only two principal components. The data describing the thermally induced transition of HA in mixed solvent are not consistent with infinite cooperativity. The van't Hoff relation yields thermodynamic parameters for the conformational transition in terms of the cooperative unit of -60 kcal mol-1 for delta H degrees and -180 eu mol-1 for delta S degrees.  相似文献   

4.
The chiroptical, viscosity and titration studies of hyaluronic acid in mixed organic/water solvent show a reversible conformational transition of the molecule depending upon pH, solvent composition, temperature, and molecular weight. Neither methylhyaluronate nor chondroitin undergoes conformational transition of this type. These results indicate that hydrogen bonding between the protonated carboxylic group and carbonyl oxygen of the acetamido group is directly involved in the conformational change. Results with chondroitin provide further support for the 4-fold helical structure that we have proposed for hyaluronic acid in mixed organic/water solvent. The thermal stability of the conformation has been studied under various pH values and solvent compositions.  相似文献   

5.
A diamide, N-acetyl-L -proline-N,N-dimethylamide (AcProDMA), in water solution has optical rotatory dispersion (ORD) and circular dichroism (CD) spectra very similar to those of poly-L -proline II and the fibrous protein collagen. In contrast, AcProDMA in cyclohexane solution has optical activity resembling that of poly-L -proline I. Conformational analysis shows that AcProDMA is confined by steric constraints to either of two narrow regions of conformational space. The trans isomer of AcProDMA assumes conformations near those of polyproline II and collagen nearest neighbors, while cis-AcProDMA assumes conformations near that of polyproline I nearest neighbors. Nuclear magnetic resonance (NMR) experiments show that an equilibrium mixture of the cis and trans isomers of AcProDMA is present in solution. The trans isomer predominates in aqueous solution, but the equilibrium shifts to favor the cis isomer in nonpolar organic solvents such as cyclohexane. Analysis of the ORD spectra in terms of two basic spectra reveals a solvent dependent isomerization which parallels that observed by NMR. The optical activity of the pure isomers of AcProDMA can be derived from the ORD, CD and NMR data. A comparison of component cotton effects confirms the similarity in optical activity of trans-AcProDMA, polyproline II, and collagen on the one hand, and of cis-AcProDMA and Polyproline I on the other.  相似文献   

6.
Poly(ortho-, meta-, and para-γ-nitrobenzyl-L -glutamates) were studied by circular dichroism (CD) and optical rotatory dispersion (ORD) in two helicogenic solvents, hexafluoroisopropanol (HFIP) and dichloroethane (EDC), and two non-helicogenic solvents, dichloracetic acid (DCA) and trifluoroacetic acid (TFA). The corresponding glutamates were also studied in DCA and TFA. The symmetric nitrobenzylic chromophore is optically active when the polymers are in solution in DCA and TFA. The corresponding glutamates are also optically active under the same conditions. Thus, it was not possible to explain the origin of the optical activity of the side-chain chromophore when the polymer is in solution in a helicogenic solvent. Nevertheless, from a side-chain dichroic band, a helix–coil transition curve was determined and the stability of each poly(γ-nitrobenzyl-L -glutamate) given; this stability depends on the position of the nitro substituent on the aromatic ring.  相似文献   

7.
Circular dichroism studies of glycosaminoglycan including chemically transformed heparins at various pH values reveal that carboxyl chromophore plays an important role in the dichroic behavior of the polymers. With decreasing pH, iduronic acid-containing glycosaminoglycans show increased negative ellipticity near 220 nm whereas the polymers containing glucuronic acid display enhanced negative dichroism near 230 nm and decreased negative dichroism around 210 nm. The pH-dependent optical properties have been utilized to determine the pKa values of uronic acid moieties. The acid strengths of the iduronic acid-containing glycosaminoglycans are inherently smaller than those of corresponding glucuronic acid-containing polymers. Glycosaminoglycans in which the amino sugars are linked with iduronic acid display a very weak n → π* amide transition, or none. The rotational strength at 210 nm of these polymers is largely due to iduronic acid moieties. The CD variations above 200 nm with change in pH do not indicate any major conformational transition of the molecules but the difference between dermatan sulfate and heparin can be attributed to difference either in iduronic acid conformation or in intersaccharide linkages.  相似文献   

8.
R S Lord  D J Cox 《Biopolymers》1973,12(10):2359-2373
Oligopeptides containing glycine and one or two L -alanyl or L -glutamyl residues have been studied by circular dichroism (CD) and optical rotatory dispersion (ORD) in aqueous solution at pH 1.0, pH 6.0, and pH 10.0 and in aqueous ethanol. Two glycyl residues are required to remove effects of α-carboxyl or amino titration on the optical activity of the internal alanyl or glutamyl residues. The CD spectra of the alanyl and protonated glutamyl residues are similar, having two regions of negative ellipticity around 215 nm resulting in a spectrum reassembling that of poly-α-L -glutamic acid (PGA) at high pH. Another large positive band below 190 nm was observed for gly2-glu2-gly2 in water at pH 6 and 10 and for several peptides in aqueous ethanol. Residue ellipticities were approximately additive in every case except for peptides containing intrenal glutamyl residu at pH 6.0.  相似文献   

9.
The conformation of poly-L-alanine in hexafluoroisopropanol   总被引:2,自引:0,他引:2  
J R Parrish  E R Blout 《Biopolymers》1972,11(5):1001-1020
High-molecular-weight poly-L -alanine dissolved in hexafluoroisopropanol exhibits infrared, ultraviolet, circular dichroism, and optical rotatory dispersion spectra which are unique and unlike any other previously reported polypeptide spectra. Strong evidence that a helical conformation is present is shown by the high degree of hypochromism in the 187mμ absorption peak and by the positions of the amide infrared bands. The CD and ORD spectra are also similar to those of α-helical polypeptides, though important qualitative and qualitative differences are observed. To explain the novel spectra, which are not mixtures of the spectra of previously reported polypeptide conformations, a new α-helix-like conformation is proposed. The postulated conformation (a doubly hydrogen-bonded helix) is a distorted α-helix in which the peptide carbonyl groups point slightly out from the helix axis and are hydrogen bonded simul taneously both to the NH of the fourth peptide residue to the carboxyl terminal side (as in the classical α-helix), as well as to a solvent molecule's hydroxyl hydrogen.  相似文献   

10.
Abstract

The present work describes the enzymatic properties of Penicillium chrysogenum lipase and its behavior in the presence of organic solvents. The temperature and pH optima of the purified lipase was found to be 55?°C and pH 8.0 respectively. The lipase displayed remarkable stability in both polar and non-polar solvents upto 50% (v/v) concentrations for 72?h. A structural perspective of the purified lipase in different organic solvents was gained by using circular dichroism and intrinsic fluorescence spectroscopy. The native lipase consisted of a predominant α-helix structure which was maintained in both polar and non-polar solvents with the exception of ethyl butyrate where the activity was decreased and the structure was disrupted. The quenching of fluorescence intensity in the presence of organic solvents indicated the transformation of the lipase microenviroment P. chrysogenum lipase offers an interesting system for understanding the solvent stability mechanisms which could be used for rationale designing of engineered lipase biocatalysts for application in organic synthesis in non-aqueous media.  相似文献   

11.
Hemin, having two carboxyl groups, was coupled with monomethoxypolyethylene glycol, PEG, through the ester bond formed with carbodiimide. The PEG-modified hemin was readily soluble not only in neutral aqueous solution but also in organic solvents. Its absorption spectrum in 1,1,1-trichloroethane showed a sharp Soret band at 398 nm. The modified hemin catalyzed the peroxidase-reaction in organic solvent and in aqueous solution using hydrogen peroxide or peroxidized linolenic acid as hydrogen acceptor and o-phenylene diamine as hydrogen donor. The activity of PEG-hemin in 1,1,1-trichloroethane was greater than that in an aqueous solution; k1 values in 1,1,1-trichloroethane were 2.3 X 10(3) M-1 sec-1 with hydrogen peroxide and 7.0 X 10(2) M-1 sec-1 with peroxidized linolenic acid, and the value in an aqueous solution was 3.0 X 10 M-1 sec-1 with hydrogen peroxide.  相似文献   

12.
The properties of apomyoglobin were examined in aqueous solutions and various helix- and random-coil-forming solvents by solvent perturbation, optical rotation, circular dichroism, and viscosity measurements. The solvent perturbation data obtained in neutral aqueous solutions suggest 25–40% exposure of the two tryptophyl residues and 50–60% exposure of the three tyrosyls. The estimates of burial of these groups are in the ranges expected for myoglobin based on its X-ray structure. In the helicogenic alcohols, methanol, ethanol, 2-chloroethanol, trifluoroethanol, and 1-propyl alcohol, as well as in acidic solutions, 8 M urea and 6M guanidine hydrochloride, essentially all the tryptophyl and tyrosyl residues are found to be exposed to solvent based on this method. Analysis of the ORD and CD data indicates that in the alcohols the α-helix content of apomyoglobin has in most cases changed from 58–59% to about 80–95%. Analysis of the intrinsic viscosity data based on the equations of Simha and Kirkwood and Auer indicates that the polypeptide chain in these solvents has the dimensions of fully extended α-helical rods, with lengths of 221–251 Å and mean diameters of 12.8–13.6 Å. It is concluded that apomyoglobin in the various alcohols must have an extended but somewhat irregular rodlike structure, having a few bend or irregular sequences between the α-helical segments due largely to the presence of the four proline residues, 37, 88, 100, and 120 in the amino acid sequence.  相似文献   

13.
Vacuum ultraviolet circular dichroism spectra are reported for poly(galacturonic acid) solution and film, sodium polygalacturonate solution and film, and calcium polygalacturonate gel. In addition to the positive c.d. band near 208 nm previously observed, we find a pair of higher energy bands at 170 180 nm (negative) and 145 nm (positive). The low energy band, assigned to an n-π1 carboxyl transition, is blue-shifted upon gelation or film formation.  相似文献   

14.
The study of the Cu(II)-hyaluronate complexes by absorption and CD spectra, as well as by acid–base titration and viscosity, provides information about the nature of ligands and the conformation of the polymer. Three different complexes have been identified. The first (complex I), which is formed between pH 3 and 6, involves mainly the carboxyl groups of the polymer as ligands and is characterized by a strong absorption band at 238 nm. In this complex formation, the CD properties of hyaluronate do not charge appreciably. The second (complex II) forms between pH 6 and 8 bad shows a major change in CD properties. The changes include (1) a new positive CD band at 250 nm and a strong negative on in the π → π* amide transition region and (2) the disappearance of the negative n → π* amide CD band near 210 nm. A sharp increase in absorbance at 238 nm from complex I to II has been attributed to a conformational transition which is also manifested in the CD features of hyaluronate. Complex II involves, in addition to the carboxyl group, the nitrogen atom of the deprotonated acetamido group coordinated to Cu(II). The absorption at 230–280 nm is associated with the optically active charge-transfer transitions involving ligands to metal ion. At higher concentrations of the polymer or at higher pH, complex II aggregates to a gel, complex III. Chondroitin, differing from hyaluronic acid in the C-4 hydroxyl group configuration of the glucosamine moiety, does not show any CD change in the presence of Cu(II).The results provide further support to our fourfold helical structure of Cu(II)–hyaluronate complex at pH between 6 and 8. Intrinsic viscosities of hyaluronate in the presence of the cupric ion is lower than in the presence of other monovalent or bivalent cations, indicating a compact conformation of the polymer when it is complexed with Cu(II).  相似文献   

15.
H Yamamoto  T Hayakawa  J T Yang 《Biopolymers》1974,13(6):1117-1125
Poly(Nδ-carbobenzoxy, Nδ-benzyl-L -ornithine) (PCBLO) was prepared by the standard NCA method. PCBLO was converted into poly(Nδ-benzyl-L -ornithine) (PBLO) through decarbobenzoxylation with hydrogen bromide. The monomer Nδ-benzyl-L -ornithine was synthesized by reacting L -ornithine with benzaldehyde, followed by hydrogenation. The conformation of the two polypeptides was studied by optical rotatory dispersion and circular dichroism. PCBLO forms a right-handed helix in helix-promoting solvents. In mixed solvents of chloroform and dichloroacetic acid (DCA) it undergoes a sharp helix–coil transition at 12% (v/v) DCA at 25°C, as compared with 36% for poly(Nδ-carbobenzoxy-L -ornithine) (PCLO). Like PCLO, the helix–coil transition is “inverse,” that is, high temperature favors the helical form. PBLO is soluble in water at pH below 7 and has a “coiled” conformation. In 88% (v/v) 1-propanol above pH (apparent) 9.6 it is completely helical. In 50% 1-propanol the transition pH (apparent) is about 7.4; this compares with a pHtr of about 10 for poly-L -ornithine in the same solvent.  相似文献   

16.
The linear tripeptides tBoc-L-Prolyl-D-alanyl-L-leucine and tBoc-L-prolyl-D-alanyl-L-valine have been shown, from circular dichroism (CD) and infrared spectral data, to take up the 4 → 1 hydrogen bonded β-turn conformation in organic solvents. The CD spectra of these tripeptides in trifluoroethanol exhibit a positive n → π band around 220 nm contrary to the usual negative band observed for the type II β-turn. The observed CD spectra of the tripeptides provide the first examples of those predicted theoretically by Woody for peptides containing L,D sequences and adopting the Venkatachalam type 13 β-turn. This conformation is seen to revert to the type II β-turn when the N-terminal protecting group is acetyl or when the C-terminal residue is glycine. These data are shown to have a direct bearing on the interpretation of the CD spectra of globular proteins.  相似文献   

17.
A strong Cotton effect, which practically govern the sign of the optical rotation at 589 nm ([M]d), was studied in phenyl 1-thio-α (and β)-d-glycopyranosides with our new chiroptical technique. The proposal optical rotatory dispersion (ORD) method, with calculations based on a one term Drude equation, showed the presence of a strong Cotton effect at 200–210 nm. Circular dichroism (CD), with accumulation technique, also gave the same Cotton effect. Agreement in these two methods suggests the usefulness of the proposed ORD calculation method. The rotational strengths and the signs were shown to reflect the anomeric configurations and conformations (α-anomer gave positive and β-anomer gave negative signs; axial gave strong and equatorial gave weak bands). This result is an extension of the ring oxygen helicity rule of alkyl and alkyl thioglycosides to phenyl 1-thioglycopyranosides, and probably to other aromatic glycosides.  相似文献   

18.
The molar optical rotation at 220 nm and ellipticity values at 210 nm of both sodium hyaluronate and hyaluronic acid are greatly enhanced in comparison to the values for the monomeric units and oligosaccharides indicating a degree of preferred order. With increasing hydrogen ion concentration, there is no appreciable change in the 210 nm circular dichroic band, but the second circular dichroic band below pH 4 changes abruptly to the positive side and reaches a maximum value at pH 2·5. This positive circular dichroic band of hyaluronic acid is temperature and concentration dependent. The major change in sign and position of the second circular dichroic band of hyaluronic acid below pH 4 is attributed to the conformational change of a single polysaccharide chain or to a chain-chain interaction. The results indicate that increase in concentration or decrease in temperature and in the ionization of carboxyl group promotes the formation of ordered cross-link regions. The conformational changes found in solution have been interpreted as an order-disorder transition in the crosslink regions based on the interconversion of random coil and double helix.  相似文献   

19.
Halophiles have been perceived as potential source of novel enzymes in recent years. The interest emanates from their ability to catalyze efficiently under high salt and organic solvents. Marinobacter sp. EMB8 α-amylase was found to be active and stable in salt and organic solvents. A study was carried out using circular dichroism (CD), fluorescence spectroscopy, and bioinformatics analysis of similar protein sequence to ascertain molecular basis of salt and solvent adaptability of α-amylase. Structural changes recorded in the presence of varying amounts of NaCl exhibited an increase in negative ellipticity as a function of salt, confirming that salt stabilizes the protein and increases the secondary structure, making it catalytically functional. The data of intrinsic and extrinsic fluorescence (using 1-anilinonaphthalene 8-sulfonate [ANS] as probe) further confirmed the role of salt. The α-amylase was active in the presence of nonpolar solvents, namely, hexane and decane, but inactivated by ethanol. The decrease in the activity was correlated with the loss of tertiary structure in the presence of ethanol. Guanidine hydrochloride and pH denaturation indicated the molten globule state at pH 4.0. Partial N-terminal amino acid sequence of the purified α-amylase revealed the relatedness to Pseudoalteromonas sp. α-amylase. “FVHLFEW” was found as the N-terminal signature sequence. Bioinformatics analysis was done using M. algicola α-amylase protein having the same N-terminal signature sequence. The three-dimensional structure of Marinobacter α-amylase was deduced using the I-TASSER server, which reflected the enrichment of acidic amino acids on the surface, imparting the stability in the presence of salt. Our study clearly indicate that salt is necessary for maintaining the secondary and tertiary structure of halophilic protein, which is a necessary prerequisite for catalysis.  相似文献   

20.
Fukuyama T  Matsuo K  Gekko K 《Chirality》2011,23(Z1):E52-E58
The electronic circular dichroism (ECD) spectra of three L-hydroxy acids (L-lactic acid, (+)-(S)-2-hydroxy-3-methylbutyric acid, and (-)-(S)-2-hydroxyisocaproic acid) were measured down to 160 nm in aqueous solution using a vacuum-ultraviolet ECD spectrophotometer. To assign the two positive peaks around 210 and 175 nm and the one negative peak around 190 nm in the observed spectra, the ECD spectrum of L-lactic acid was calculated using time-dependent density functional theory (DFT) for the optimized structures by DFT and a continuum model. The observed ECD spectrum was successfully reproduced as the average spectrum for four optimized structures with seven water molecules that localized around the COO(-) and OH groups of L-lactic acid. The positive peak around 210 nm and the negative peak around 185 nm in the calculated spectrum were attributable to the nπ* transition of the carboxyl group, with the latter peak also being influenced by the ππ* transition of the carboxyl group; however, the positive peak around 165 nm involved unassignable higher energy transitions. The comparison of the calculated ECD spectra for L-lactic acid and L-alanine revealed that the network with loose hydrogen bonding around the COO(-) and OH groups is responsible for the flexible conformation of hydroxy acids and complicated side-chain dependence of ECD spectra relative to amino acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号