首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
New experimental data and a quantitative theoretical treatment are given for the kinetics of the thermal folding transition of ribonuclease A at pH 3.0. A three-species mechanism is used as a starting point for the analysis: U1 (slow) in equilibrium U2(fast) in equilibrium N, where U1 and U2 are two forms of the unfolded enzyme with markedly different rates of refolding and N is the native enzyme. This mechanism is based on certain facts established in previous studies of refolding. The kinetics of unfolding and refolding show two phases a fast phase and a slow phase, over a range of temperatures extending above the transition midpoint, Tm. The three-species mechanism can be used in this range. At higher temperatures a new much faster kinetic phase is also observed corresponding to the transient formation of a new intermediate (I). Although the general solution for a four-species mechanism is complex it is not difficult to extend the three-species analysis for the special case found here, in which the fast reaction (I in equilibrium N) is well separated from the other two reactions. At temperatures below the transition zone the slow phase of refolding becomes kinetically complex. No attempt has been made to extend the analysis to include this effect. The basic test of the three-state analysis is the prediction as a function of temperature of alpha2, the relative amplitude of the fast phase, both for unfolding and refolding. At temperatures above Tm for which the three-state analysis must be extended to include the new intermediate I, a crresponding quanitity alpha2(cor) is predicted and compared with measured values. Data used in the three-state prediction are values of tau2 and tau1, the time constants of the fast and slow kinetic phases, plus a single value of alpha2 measured when tau2 and tau1 are well separated. The observed and predicted values of alpha2 agree within experimental error. The analysis predicts correctly that, for these experiments, alpha2 should have the same value in unfolding as in refolding in the final conditions. The analysis also predicts satisfactorily the equilibrium transition curve from kinetic data alone. Four striking properties of the kinetics are explained or correlated by the analysis: (a) the drop in alpha2 to a minimum near Tm as well as the delayed rise in alpha2 above Tm;(b) the vanishing of alpha1 above the transition zone; (c) the sharp drop in tau1 inside the transition zone followed by a partial leveling off outside this zone; and (d) the passage of tau2 through a maximum near Tm. Through a comparison of observed and predicted values of alpha2, the analysis also rules out the alternative three-species mechanism U1 (slow) in equilibrium N (fast) in equilibrium U2. Finally, the temperature dependence of the amplitude for the fast reaction (I in equilibrium N) is discussed; the behavior of I is like that of U2 and I may be an unfolded species populated at equilibrium...  相似文献   

2.
The reversible unfolding and refolding kinetics of alpha-lactalbumin induced by concentration jump of guanidine hydrochloride were measured at pH 7.0 and 25 degrees C using tryptophan absorption at 292 nm, with varying concentrations of the denaturant and free Ca2+. The refolding reaction of alpha-lactalbumin from the fully unfolded (D) state occurs through the two stages: (1) instantaneous formation of a compact intermediate (the A state) that has a native-like secondary structure; (2) tight packing of the preformed secondary structure segments to lead finally to the native structure, this stage being the rate-determining step of the reaction and associated with acquisition of the specific structure necessary for strong Ca2+ binding. Under strongly native conditions, the observed kinetics of refolding is also complicated by the presence of a slow-folding species (10%) in the unfolded state. Considering these facts, the microscopic rate constants in folding and unfolding directions have been evaluated from the observed kinetics and from the equilibrium constants of the transitions among the native (N), A and D states. Close linear relationships have been found in the plots of the activation free energies, obtained from the microscopic rate constants, against the denaturant concentration. They are similar to the linear relationship between the free energy of unfolding and the denaturant concentration. It was demonstrated that the slope of the plots should be approximately proportional to a change in accessible surface area of the protein during the respective activation process, and that only a third of the difference in accessible surface area between A and N is buried in the critical activated state of folding. However, the selective effect of Ca2+ binding on the folding rate constant has been observed also, demonstrating that the specific Ca2+-binding substructure in the N state is already organized in the activated state. Thus, only a part of the protein molecule involving the Ca2+-binding region is organized in the activated state, with the other part of the molecule being left less organized, suggesting that the second stage of folding may be a sequential growing process of organized assemblage of the performed secondary structure segments.  相似文献   

3.
L.-N. Lin and J.F. Brandts recently proposed a simple model for the folding kinetics of ribonuclease A in which folding intermediates are not detectable. We have tested the basic assumption of the simple model for the major unfolded species, which is produced by a slow isomerization (the "X in equilibrium Y reaction" according to Lin and Brandts) after unfolding. The simple model assumes that in refolding the slow Y----X reaction must occur before any folding can take place. We have measured the Y----X reaction during folding. Tyrosine-detected folding occurs before the Y----X reaction; the difference in rate between the Y----X reaction and folding monitored by tyrosine absorbance becomes large when the stabilizing salt 0.56 M (NH4)2SO4 is added. The simple model predicts that the kinetic properties of the X in equilibrium Y reaction in unfolded ribonuclease are the same as those of tyrosine-detected folding. We find, however, that the kinetics of the X in equilibrium Y reaction in unfolded ribonuclease are independent of urea concentration, whereas the rate of tyrosine-detected folding decreases almost 100-fold between 0.3 and 5 M urea, as reported by Lin and Brandts. We point out that the kinetic properties of the X in equilibrium Y reaction in unfolded ribonuclease are characteristic of proline isomerization.  相似文献   

4.
The circular dichroism (CD) spectra of ribonuclease A, ribonuclease S, and N-acetyltyrosineamide were recorded as a function of pH in the presence of various concentrations of inorganic salts. Above pH 9.0 salting-in of tyrosine residues increases their intramolecular associations. This association enhances the contribution from these residues to the CD spectrum leading to an apparent titration curve that is shifted toward lower pH. The data indicate that unfolding of ribonuclease A and S by inorganic salts does not begin with disrupting existing electrostatic interactions. But, as the unfolding process progresses, disruption of electrostatic interactions may take place. This is consistent with our previous calorimetric studies which suggest that unfolding of ribonuclease A by salts proceeds initially by energetically favorable solvation of the folded protein. An increase in ellipiticity at 275 nm of partially unfolded protein in salt was observed as the pH was changed from 7.0 to 4.0. This observation may suggest that the isothermal unfolding of the protein by salts at low pH proceeds through an intermediate step which involves histidine residues and causes a conformational change in the tyrosine's asymmetric environment.  相似文献   

5.
Pressure-jump (p-jump)-induced relaxation kinetics was used to explore the energy landscape of protein folding/unfolding of Y115W, a fluorescent variant of ribonuclease A. Pressure-jumps of 40 MPa amplitude (5 ms dead-time) were conducted both to higher (unfolding) and to lower (folding) pressure, in the range from 100 to 500 MPa, between 30 and 50 degrees C. Significant deviations from the expected symmetrical protein relaxation kinetics were observed. Whereas downward p-jumps resulted always in single exponential kinetics, the kinetics induced by upward p-jumps were biphasic in the low pressure range and monophasic at higher pressures. The relative amplitude of the slow phase decreased as a function of both pressure and temperature. At 50 degrees C, only the fast phase remained. These results can be interpreted within the framework of a two-dimensional energy surface containing a pressure- and temperature-dependent barrier between two unfolded states differing in the isomeric state of the Asn-113-Pro-114 bond. Analysis of the activation volume of the fast kinetic phase revealed a temperature-dependent shift of the unfolding transition state to a larger volume. The observed compensation of this effect by glycerol offers an explanation for its protein stabilizing effect.  相似文献   

6.
The unfolding of ribonuclease A by urea, guanidine hydrochloride, lithium perchlorate, lithium chloride, and lithium bromide has been followed by circular dichroic and difference spectral measurements. All three abnormal tyrosyl residues are normalized in urea and guanidine hydrochloride (delta epsilon 287 = -2700), only two are normalized in lithium bromide and lithium perchlorate (delta epsilon 287 = -1700), and only one is exposed in lithium chloride solutions (delta epsilon 287 = -700). The Gibbs energies are 4.7 +/- 0.1 kcal mol-1 for urea- and guanidine hydrochloride-denaturation, 3.8 +/- 0.2 kcal mol-1 for lithium perchlorate-denaturation, and 12.7 +/- 0.2 kcal mol-1 for lithium chloride- and lithium bromide-denaturation of ribonuclease A. The latter results suggest that the mechanism of the unfolding process in urea and guanidine hydrochloride is quite different from that in lithium salts.  相似文献   

7.
The folding of ribonuclease A (RNase A) has been extensively studied by characterizing the disulfide containing intermediates using different experimental conditions and analytical techniques. So far, some aspects still remain unclear such as the role of the loop 65-72 in the folding pathway. We have studied the oxidative folding of a RNase A derivative containing at position 67 the substitution Asn --> isoAsp where the local structure of the loop 65-72 has been modified keeping intact the C65-C72 disulfide bond. By comparing the folding behavior of this mutant to that of the wild-type protein, we found that the deamidation significantly decreases the folding rate and alters the folding pathway of RNase A. Results presented here shed light on the role of the 65-72 region in the folding process of RNase A and also clarifies the effect of the deamidation on the folding/unfolding processes. On a more general ground, this study represents the first characterization of the intermediates produced along the folding of a deamidated protein.  相似文献   

8.
To investigate the pH dependence of the conformational stability of ribonucleases A and T1, urea and guanidine hydrochloride denaturation curves have been determined over the pH range 2-10. The maximum conformational stability of both proteins is about 9 kcal/mol and occurs near pH 4.5 for ribonuclease T1 and between pH 7 and 9 for ribonuclease A. The pH dependence suggests that electrostatic interactions among the charged groups make a relatively small contribution to the conformational stability of these proteins. The dependence of delta G on urea concentration increases from about 1200 cal mol-1 M-1 at high pH to about 2400 cal mol-1 M-1 at low pH for ribonuclease A. This suggests that the unfolded conformations of RNase A become more accessible to urea as the net charge on the molecule increases. For RNase T1, the dependence of delta G on urea concentration is minimal near pH 6 and increases at both higher and lower pH. An analysis of information of this type for several proteins in terms of a model developed by Tanford [Tanford, C. (1964) J. Am. Chem. Soc. 86, 2050-2059] suggests that the unfolded states of proteins in urea and GdnHCl solutions may differ significantly in the extent of their interaction with denaturants. Thus, the conformations assumed by unfolded proteins may depend to at least some extent on the amino acid sequence of the protein.  相似文献   

9.
Gaining a better understanding of the denatured state ensemble of proteins is important for understanding protein stability and the mechanism of protein folding. We studied the folding kinetics of ribonuclease Sa (RNase Sa) and a charge-reversal variant (D17R). The refolding kinetics are similar, but the unfolding rate constant is 10-fold greater for the variant. This suggests that charge-charge interactions in the denatured state and the transition state ensembles are more favorable in the variant than in RNase Sa, and shows that charge-charge interactions can influence the kinetics and mechanism of protein folding.  相似文献   

10.
The effect of guanidine hydrochloride concentration on the kinetics of the conformational change of Escherichia coli thioredoxin was examined by using fluorescence, absorbance, circular dichroic, and viscosity measurements. Native thioredoxin unfolds in a single kinetic phase whose time constant decreases markedly with increasing denaturant concentration in the denaturation base-line zone. This dependency merges with the time constant of the slowest refolding kinetic phase at the midpoint of the equilibrium transition in 2.5 M denaturant. The time constant of the slowest refolding phase becomes denaturant independent below 1 M denaturant in the native base-line region. The denaturant-independent slowest refolding phase has an activation energy of 16 kcal/mol and is generated in the denatured base-line zone in a denaturant-independent reaction having a time constant of 19 s at 25 degrees C. The fractional amplitude of the slowest refolding phase diminishes in the native base-line zone to a minimum value of 0.25. This decrease is accompanied by an increase in the fractional amplitudes of two faster refolding kinetic phases, an increase describing a sigmoidal transition centered at about 1.6 M denaturant. Manual multimixing measurements indicate that only the slowest refolding kinetic phase generates a product having the stability of the native protein. We suggest that the two faster refolding phases reflect the transient accumulation of folding intermediates which can contain a nonnative isomer of proline peptide 76.  相似文献   

11.
Frieden C 《Biochemistry》2003,42(43):12439-12446
The rate of stabilization of side chains during protein folding has never been carefully studied. Recent developments in labeling proteins with (19)F-labeled amino acids coupled with real-time NMR measurements have allowed such measurements to be made. This paper describes the application of this method to the study of several proteins using 6-(19)F-tryptophan as the reporting group. It is found that these side chains adopt their final stable state at the last stages of the folding process and that the stabilization of side chains into their final conformation is a highly cooperative process. It is also possible to show the presence of intermediates in which the side chains are not correctly packed. The technique should be applicable to many systems.  相似文献   

12.
The oxidative refolding of ribonuclease A has been investigated in several experimental conditions using a variety of redox systems. All these studies agree that the formation of disulfide bonds during the process occurs through a nonrandom mechanism with a preferential coupling of certain cysteine residues. We have previously demonstrated that in the presence of glutathione the refolding process occurs through the reiteration of two sequential reactions: a mixed disulfide with glutathione is produced first which evolves to form an intramolecular S-S bond. In the same experimental conditions, protein disulfide isomerase (PDI) was shown to catalyze formation and reduction of mixed disulfides with glutathione as well as formation of intramolecular S-S bonds. This paper reports the structural characterization of the one-disulfide intermediate population during the oxidative refolding of Ribonuclease A under the presence of PDI and glutathione with the aim of defining the role of the enzyme at the early stages of the reaction. The one-disulfide intermediate population occurring at the early stages of both the uncatalyzed and the PDI-catalyzed refolding was purified and structurally characterized by proteolytic digestion followed by MALDI-MS and LC/ESIMS analyses. In the uncatalyzed refolding, a total of 12 disulfide bonds out of the 28 theoretical possible cysteine couplings was observed, confirming a nonrandom distribution of native and nonnative disulfide bonds. Under the presence of PDI, only two additional nonnative disulfides were detected. Semiquantitative LC/ESIMS analysis of the distribution of the S-S bridged peptides showed that the most abundant species were equally populated in both the uncatalyzed and the catalyzed process. This paper shows the first structural characterization of the one-disulfide intermediate population formed transiently during the refolding of ribonuclease A in quasi-physiological conditions that mimic those present in the ER lumen. At the early stages of the process, three of the four native disulfides are detected, whereas the Cys26-Cys84 pairing is absent. Most of the nonnative disulfide bonds identified are formed by nearest-neighboring cysteines. The presence of PDI does not significantly alter the distribution of S-S bonds, suggesting that the ensemble of single-disulfide species is formed under thermodynamic control.  相似文献   

13.
The guanidinium chloride-unfolded state of ribonuclease A was found to be an equilibrium mixture of slow- and fast-refolding forms of the protein chain, as has been suggested. Both forms appear to have the same spectroscopic observables as judged by the relative changes in fluorescence emission and polarization. The equilibrium between them is thermally dependent, with deltaHapp equal to -1.4 kcal/mol. The activation energy Ea is equal to 18 kcal/mol. These findings are consistent with the proposal that cis-trans isomerism of peptide bonds that are NH2-terminal to proline residues is responsible for the slow phase of RNase A refolding. However, the actual dependence of the magnitude of the slow reaction on initial, prefolding temperature cannot be explained by a model in which the proline configurations of the fast refolding form must be identical to those of the native protein, as has been suggested. Instead, the data reveal that, although the native structure of RNase A contains two cis prolines, cis isomers need not be present in the fast-refolding form in order for folding to occur.  相似文献   

14.
Fluorescent molecular rotors belong to a group of twisted intramolecular charge transfer complexes (TICT) whose photophysical characteristics depend on their environment. In this study, the influence of solvent polarity and viscosity on several representative TICT compounds (three Coumarin derivatives, 4,4-dimethylaminobenzonitrile DMABN, 9-(dicyanovinyl)-julolidine DCVJ), was examined. While solvent polarity caused a bathochromic shift of peak emission in all compounds, this shift was lowest in the case of molecular rotors. Peak intensity was influenced strongly by solvent viscosity in DMABN and the molecular rotors, but polarity and viscosity influences cannot be separated with DMABN. Coumarins, on the other hand, did not show viscosity sensitivity. This study shows the unique suitability of molecular rotors as fluorescent viscosity sensors.  相似文献   

15.
16.
17.
18.
Bovine pancreatic ribonuclease A loses almost completely its activity in 2-3 M guanidine, whereas only very slight conformational changes can be detected when following its unfolding by changes in its intrinsic fluorescence at 305 nm and ultraviolet absorbance at 287 nm. Reactivation on diluting out the denaturant is a time-dependent process, indicating that the inactivation is not due to inhibition by a reversible association of the enzyme with guanidine. The kinetic method of following the substrate reaction, in the presence of the denaturant previously proposed for use in the study of rapid inactivation reactions (Tian, W.X. and Tsou, C.-L. (1982) Biochemistry 21, 1028-1032), is applied to examine the inactivation rates of this enzyme during guanidine denaturation, and these have been compared with the unfolding rates as followed by fluorescence and absorbance changes. It is shown that during the unfolding of this enzyme in guanidine, the inactivation of the enzyme occurs within the dead time of mixing in a stopped-flow apparatus and is at least several orders of magnitude faster than the unfolding reaction as detected by the optical parameters. It appears that, as in the case of creatine kinase reported previously, the active site of a small enzyme stabilized by multiple disulfide linkages, such as ribonuclease A, is also situated in a region which is much more liable to being perturbed by denaturants than is the molecule as a whole.  相似文献   

19.
Moderate temperatures or low concentrations of denaturants diminish the catalytic activity of some enzymes before spectroscopic methods indicate protein unfolding. To discriminate between possible reasons for the inactivation of ribonuclease A, we investigated the influence of temperature and guanidine hydrochloride on its proteolytic susceptibility to proteinase K by determining the proteolytic rate constants and fragment patterns. The results were related to changes of activity and spectroscopic properties of ribonuclease A. With thermal denaturation, the changes in activity and in the rate constants of proteolytic degradation coincide and occur slightly before the spectroscopically observable transition. In the case of guanidine hydrochloride-induced denaturation, however, proteolytic resistance of ribonuclease A initially increases accompanied by a drastic activity decrease far before unfolding of the protein is detected by spectroscopy or proteolysis. In addition to ionic effects, a tightening of the protein structure at low guanidine hydrochloride concentrations is suggested to be responsible for ribonuclease A inactivation.  相似文献   

20.
The significant contribution of disulfide bonds to the conformational stability of proteins is generally considered to result from an entropic destabilization of the unfolded state causing a faster escape of the molecules to the native state. However, the introduction of extra disulfide bonds into proteins as a general approach to protein stabilization yields rather inconsistent results. By modeling studies, we selected positions to introduce additional disulfide bonds into ribonuclease A at regions that had proven to be crucial for the initiation of the folding or unfolding process, respectively. However, only two out of the six variants proved to be more stable than unmodified ribonuclease A. The comparison of the thermodynamic and kinetic data disclosed a more pronounced effect on the unfolding reaction for all variants regardless of the position of the extra disulfide bond. Native-state proteolysis indicated a perturbation of the native state of the destabilized variants that obviously counterbalances the stability gain by the extra disulfide bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号