首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MreB, the bacterial actin homologue, is thought to function in spatially co-ordinating cell morphogenesis in conjunction with MreC, a protein that wraps around the outside of the cell within the periplasmic space. In Caulobacter crescentus, MreC physically associates with penicillin-binding proteins (PBPs) which catalyse the insertion of intracellularly synthesized precursors into the peptidoglycan cell wall. Here we show that MreC is required for the spatial organization of components of the peptidoglycan-synthesizing holoenzyme in the periplasm and MreB directs the localization of a peptidoglycan precursor synthesis protein in the cytosol. Additionally, fluorescent vancomycin (Van-FL) labelling revealed that the bacterial cytoskeletal proteins MreB and FtsZ, as well as MreC and RodA, were required for peptidoglycan synthetic activity. MreB and FtsZ were found to be required for morphogenesis of the polar stalk. FtsZ was required for a cell cycle-regulated burst of peptidoglycan synthesis early in the cell cycle resulting in the synthesis of cross-band structures, whereas MreB was required for lengthening of the stalk. Thus, the bacterial cytoskeleton and cell shape-determining proteins such as MreC, function in concert to orchestrate the localization of cell wall synthetic complexes resulting in spatially co-ordinated and efficient peptidoglycan synthetic activity.  相似文献   

2.
The tremendous diversity of bacterial cell shapes and the targeting of proteins and macromolecular complexes to specific subcellular sites strongly suggest that cellular organization provides important advantages to bacteria in their environment. Key advances have been made in the understanding of the mechanism and function of polarity and cell shape by studying the aquatic bacterium Caulobacter crescentus, whose cell cycle progression involves the ordered synthesis of different polar structures, and culminates in the biosynthesis of a thin polar cell envelope extension called the stalk. Recent results indicate that the important function of polar development is to maximize cell attachment to surfaces and to improve nutrient uptake by nonmotile and attached cells. Major progress has been made in understanding the regulatory network that coordinates polar development and morphogenesis and the role of polar localization of regulatory proteins.  相似文献   

3.
How Darwin's “endless forms most beautiful” have evolved remains one of the most exciting questions in biology. The significant variety of bacterial shapes is most likely due to the specific advantages they confer with respect to the diverse environments they occupy. While our understanding of the mechanisms generating relatively simple shapes has improved tremendously in the last few years, the molecular mechanisms underlying the generation of complex shapes and the evolution of shape diversity are largely unknown. The emerging field of bacterial evolutionary cell biology provides a novel strategy to answer this question in a comparative phylogenetic framework. This relatively novel approach provides hypotheses and insights into cell biological mechanisms, such as morphogenesis, and their evolution that would have been difficult to obtain by studying only model organisms. We discuss the necessary steps, challenges, and impact of integrating “evolutionary thinking” into bacterial cell biology in the genomic era.  相似文献   

4.
The endosomal sorting complexes required for transport (ESCRT) drive multivesicular body (MVB) biogenesis and cytokinetic abscission. Originally identified through genetics and cell biology, more recent work has begun to elucidate the molecular mechanisms of ESCRT-mediated membrane remodeling, with special focus on the ESCRT-III complex. In particular, several light and electron microscopic studies provide high-resolution imaging of ESCRT-III rings and spirals that purportedly drive MVB morphogenesis and abscission. These studies highlight unifying principles to ESCRT-III function, in particular: (1) the ordered assembly of the ESCRT-III monomers into a heteropolymer, (2) ESCRT-III as a dynamic complex, and (3) the role of the AAA ATPase Vps4 as a contributing factor in membrane scission. Mechanistic comparisons of ESCRT-III function in MVB morphogenesis and cytokinesis suggest common mechanisms in membrane remodeling.  相似文献   

5.
Biological tubes are a prevalent structural design across living organisms. They provide essential functions during the development and adult life of an organism. Increasing progress has been made recently in delineating the cellular and molecular mechanisms underlying tubulogenesis. This review aims to introduce ascidian notochord morphogenesis as an interesting model system to study the cell biology of tube formation, to a wider cell and developmental biology community. We present fundamental morphological and cellular events involved in notochord morphogenesis, compare and contrast them with other more established tubulogenesis model systems, and point out some unique features, including bipolarity of the notochord cells, and using cell shape changes and cell rearrangement to connect lumens. We highlight some initial findings in the molecular mechanisms of notochord morphogenesis. Based on these findings, we present intriguing problems and put forth hypotheses that can be addressed in future studies.  相似文献   

6.
Levin M 《Bio Systems》2012,109(3):243-261
Establishment of shape during embryonic development, and the maintenance of shape against injury or tumorigenesis, requires constant coordination of cell behaviors toward the patterning needs of the host organism. Molecular cell biology and genetics have made great strides in understanding the mechanisms that regulate cell function. However, generalized rational control of shape is still largely beyond our current capabilities. Significant instructive signals function at long range to provide positional information and other cues to regulate organism-wide systems properties like anatomical polarity and size control. Is complex morphogenesis best understood as the emergent property of local cell interactions, or as the outcome of a computational process that is guided by a physically encoded map or template of the final goal state? Here I review recent data and molecular mechanisms relevant to morphogenetic fields: large-scale systems of physical properties that have been proposed to store patterning information during embryogenesis, regenerative repair, and cancer suppression that ultimately controls anatomy. Placing special emphasis on the role of endogenous bioelectric signals as an important component of the morphogenetic field, I speculate on novel approaches for the computational modeling and control of these fields with applications to synthetic biology, regenerative medicine, and evolutionary developmental biology.  相似文献   

7.
Embryonic morphogenesis requires the execution of complex mechanisms that regulate the local behaviour of groups of cells. The orchestration of such mechanisms has been mainly deciphered through the identification of conserved families of signalling pathways that spatially and temporally control cell behaviour. However, how this information is processed to control cell shape and cell dynamics is an open area of investigation. The framework that emerges from diverse disciplines such as cell biology, physics and developmental biology points to adhesion and cortical actin networks as regulators of cell surface mechanics. In this context, a range of developmental phenomena can be explained by the regulation of cell surface tension.  相似文献   

8.
Most commonly studied bacteria grow symmetrically and divide by binary fission, generating two siblings of equal morphology. An exception to this rule are budding bacteria, in which new offspring emerges de novo from a morphologically invariant mother cell. Although this mode of proliferation is widespread in diverse bacterial lineages, the underlying mechanisms are still incompletely understood. Here, we report the first molecular‐level analysis of growth and morphogenesis in the stalked budding alphaproteobacterium Hyphomonas neptunium. Peptidoglycan labeling shows that, in this species, buds originate from a stalk‐like extension of the mother cell whose terminal segment is gradually remodeled into a new cell compartment. As a first step toward identifying the machinery mediating the budding process, we performed comprehensive mutational and localization studies of predicted peptidoglycan biosynthetic proteins in H. neptunium. These analyses identify factors that localize to distinct zones of dispersed and zonal growth, and they suggest a critical role of the MreB‐controlled elongasome in cell morphogenesis. Collectively, our work shows that the mechanism of growth in H. neptunium is distinct from that in related, polarly growing members of the order Rhizobiales, setting the stage for in‐depth analyses of the molecular principles regulating the fascinating developmental cycle of this species.  相似文献   

9.
Notch signaling is an evolutionarily conserved intercellular signaling pathway that plays numerous crucial roles in vascular development and physiology. Compelling evidence indicates that Notch signaling is vital for vascular morphogenesis including arterial and venous differentiation and endothelial tip and stalk cell specification during sprouting angiogenesis and also vessel maturation featured by mural cell differentiation and recruitment. Notch signaling is also required for vascular homeostasis in adults by keeping quiescent phalanx cells from re-entering cell cycle and by modulating the behavior of endothelial progenitor cells. We will summarize recent advances of Notch pathway in vascular biology with special emphasis on the underlying molecular mechanisms.  相似文献   

10.
The discovery that the bacterial cell shape determinant MreB is related to actin spurred new insights into bacterial morphogenesis and development. The trafficking and mechanical roles of the eukaryotic cytoskeleton were hypothesized to have a functional ancestor in MreB based on evidence implicating MreB as an organizer of cell wall synthesis. Genetic, biochemical and cytological studies implicate MreB as a coordinator of a large multi-protein peptidoglycan (PG) synthesizing holoenzyme. Recent advances in microscopy and new biochemical evidence, however, suggest that MreB may function differently than previously envisioned. This review summarizes our evolving knowledge of MreB and attempts to refine the generalized model of the proteins organizing PG synthesis in bacteria. This is generally thought to be conserved among eubacteria and the majority of the discussion will focus on studies from a few well-studied model organisms.  相似文献   

11.
The rigid cell wall peptidoglycan (murein) is a single giant macromolecule whose shape determines the shape of the bacterial cell. Insight into morphogenetic mechanism(s) responsible for determining the shape of the murein sacculus itself has begun to emerge only in recent years. The discovery that MfreB and Mbl are cytoskeletal actin homologues that form helical structures extending from pole to pole in rod-shaped cells has opened an exciting new field of microbial cell biology. MreB (in Gram-negative rods) and Mbl (in Gram-positive species) are essential for murein synthesis along the lateral wall and hence, the rod shape of the cell. Known members of the morphogenetic system include MreB (or Mbl), MreC, MreD and PBP2, but Rod A and murein biosynthetic enzymes involved in peptidoglycan precursor synthesis and assembly are likely to be recruited to the same multimolecular apparatus. However, the actual role of MreB in assembly of the morphogenetic complex is still not clear and little is known about regulatory mechanisms controlling the switch from lateral murein elongation to septa1 murein synthesis at the time of cell division.  相似文献   

12.
Bacterial cell growth and division require the co‐ordinated action of peptidoglycan biosynthetic enzymes and cell morphogenesis proteins. However, the regulatory mechanisms that allow generating proper bacterial shape and thus preserving cell integrity remain largely uncharacterized, especially in ovococci. Recently, the conserved eukaryotic‐like Ser/Thr protein kinase of Streptococcus pneumoniae (StkP) was demonstrated to play a major role in cell shape and division. Here, we investigate the molecular mechanisms underlying the regulatory function(s) of StkP and show that it involves one of the essential actors of septal peptidoglycan synthesis, Penicillin‐Binding Protein 2x (PBP2x). We demonstrate that StkP and PBP2x interact directly and are present in the same membrane‐associated complex in S. pneumoniae. We further show that they both display a late‐division localization pattern at the division site and that the positioning of PBP2x depends on the presence of the extracellular PASTA domains of StkP. We demonstrate that StkP and PBP2x interaction is mediated by their extracellular regions and that the complex formation is inhibited in vitro in the presence of cell wall fragments. These data suggest that the role of StkP in cell division is modulated by an interaction with PBP2x.  相似文献   

13.
A protective organelle that is essential for viability under most conditions, the cell wall is a dynamic structure that is continuously remodelled with the growth of the bacterial cell. Because the cell wall also moulds the bacterium, the mechanisms of cell wall homeostasis can be deciphered using cell shape as a convenient proxy. In this issue of Molecular Microbiology, Foulquier et al. illuminate a connection between cell shape regulation and metabolism in Bacillus subtilis. They find that the putative NAD(P)‐binding enzyme YvcK organizes into helical subcellular structures that exert shape control by directing the cell wall biosynthetic enzyme PBP1 along the cell cylinder and to the septum, a function shared with the MreB actin cytoskeleton. Unlike MreB, however, the role of YvcK in cell shape control is manifested only on certain carbon sources, presumably by way of a previously unknown metabolic feed that taps into cell morphogenesis.  相似文献   

14.
Summary: Bacterial cells utilize three-dimensional (3D) protein assemblies to perform important cellular functions such as growth, division, chemoreception, and motility. These assemblies are composed of mechanoproteins that can mechanically deform and exert force. Sometimes, small-nucleotide hydrolysis is coupled to mechanical deformations. In this review, we describe the general principle for an understanding of the coupling of mechanics with chemistry in mechanochemical systems. We apply this principle to understand bacterial cell shape and morphogenesis and how mechanical forces can influence peptidoglycan cell wall growth. We review a model that can potentially reconcile the growth dynamics of the cell wall with the role of cytoskeletal proteins such as MreB and crescentin. We also review the application of mechanochemical principles to understand the assembly and constriction of the FtsZ ring. A number of potential mechanisms are proposed, and important questions are discussed.  相似文献   

15.
Epithelia form the building blocks of many tissue and organ types. Epithelial cells often form a contiguous 2-dimensional sheet that is held together by strong adhesions. The mechanical properties conferred by these adhesions allow the cells to undergo dramatic three-dimensional morphogenetic movements while maintaining cell–cell contacts during embryogenesis and post-embryonic development. The Drosophila Folded gastrulation pathway triggers epithelial cell shape changes that drive gastrulation and tissue folding and is one of the most extensively studied examples of epithelial morphogenesis. This pathway has yielded key insights into the signaling mechanisms and cellular machinery involved in epithelial remodeling. In this review, we discuss principles of morphogenesis and signaling that have been discovered through genetic and cell biological examination of this pathway. We also consider various regulatory mechanisms and the system?s relevance to mammalian development. We propose future directions that will continue to broaden our knowledge of morphogenesis across taxa.  相似文献   

16.
Adherens junctions and their core molecular components, classic cadherins, make major contributions to animal morphogenesis. Although the significance of cadherins in development is generally accepted, the mechanisms regulating adherens junction function during morphogenesis remain a subject of intense research. Adherens junctions are involved in the organization of simple cellular patterns, and more complex cell shape changes and cell movements that depend on the dynamic modulation of adherens junctions.  相似文献   

17.
18.
The shape of bacteria is determined by their cell wall and can be very diverse. Even among genera with the suffix 'cocci', which are the focus of this review, different shapes exist. While staphylococci or Neisseria cells, for example, are truly round-shaped, streptococci, lactococci or enterococci have an ovoid shape. Interestingly, there seems to be a correlation between the shape of an organism and its set of penicillin-binding proteins--the enzymes that assemble the peptidoglycan, the main constituent of the cell wall. While only one peptidoglycan biosynthesis machinery seems to exist in staphylococci, two of these machineries are proposed to function in ovoid-shaped bacteria, reinforcing the intrinsic differences regarding the morphogenesis of different classes of cocci. The present review aims to integrate older ultra-structural data with recent localization studies, in order to clarify the relation between the mechanisms of cell wall synthesis and the determination of cell shape in various cocci.  相似文献   

19.
A fundamental question in developmental biology is how morphogenesis is coordinated with cell cycle progression. In Caulobacter crescentus, each cell cycle produces morphologically distinct daughter cells, a stalked cell and a flagellated swarmer cell. Construction of both the flagellum and stalk requires the alternative sigma factor RpoN (sigma(54)). Here we report that a sigma(54)-dependent activator, TacA, is required for cell cycle regulated stalk biogenesis by collaborating with RpoN to activate gene expression. We have also identified the first histidine phosphotransferase in C. crescentus, ShpA, and show that it too is required for stalk biogenesis. Using a systematic biochemical technique called phosphotransfer profiling we have identified a multicomponent phosphorelay which leads from the hybrid histidine kinase ShkA to ShpA and finally to TacA. This pathway functions in vivo to phosphorylate and hence, activate TacA. Finally, whole genome microarrays were used to identify candidate members of the TacA regulon, and we show that at least one target gene, staR, regulates stalk length. This is the first example of a general method for identifying the connectivity of a phosphorelay and can be applied to any organism with two-component signal transduction systems.  相似文献   

20.
Organelles with specialized form and function occur in diverse bacteria. Within the Alphaproteobacteria, several species extrude thin cellular appendages known as stalks, which function in nutrient uptake, buoyancy and reproduction. Consistent with their specialization, stalks maintain a unique molecular composition compared with the cell body, but how this is achieved remains to be fully elucidated. Here we dissect the mechanism of localization of StpX, a stalk‐specific protein in Caulobacter crescentus. Using a forward genetics approach, we identify a penicillin‐binding‐protein, PbpC, which is required for the localization of StpX in the stalk. We show that PbpC acts at the stalked cell pole to anchor StpX to rigid components of the outer membrane of the elongating stalk, concurrent with stalk synthesis. Stalk‐localized StpX in turn functions in cellular responses to copper and zinc, suggesting that the stalk may contribute to metal homeostasis in Caulobacter. Together, these results identify a novel role for a penicillin‐binding‐protein in compartmentalizing a bacterial organelle it itself helps create, raising the possibility that cell wall‐synthetic enzymes may broadly serve not only to synthesize the diverse shapes of bacteria, but also to functionalize them at the molecular level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号