共查询到20条相似文献,搜索用时 15 毫秒
1.
Dihydropyridine-sensitive Ca2+ channels from skeletal muscle are hetero-oligomeric proteins. Little is known about the functional roles of the various subunits, except that the alpha 1 subunit is the essential channel unit. We have reconstituted both partially purified holomeric channels and the separated subunits into liposomes and measured their properties using an assay based on the Ca2+ indicator dye fluo-3. The holomeric channels exhibited Ca2+ influx that was sensitive to membrane potential achieved by the addition of valinomycin in the presence of a K+ gradient. Dissipation of the K+ gradient resulted in the loss of the valinomycin-sensitive Ca2+ flux. In addition, the reconstituted channels were: 1) activated by the dihydropyridine Ca2+ channel activator Bay K 8644 in a dose-dependent manner with a Kd of 20 nM; 2) inhibited by various types of Ca2+ channel inhibitors including the dihydropyridine (+)-PN 200-110, the phenylalkylamine verapamil, and the benzothiazepine d-cis-diltiazem; and 3) modulated in a stereoselective manner by the enantiomers of the dihydropyridine S-202-791. The purified channels used in this work possessed an alpha 1 subunit of 165 kDa and did not appear to contain a larger alpha 1 subunit of approximately 210 kDa, suggesting that channel activity with properties similar to those observed in intact cells can be supported with an alpha 1 subunit of 165 kDa. Reconstituted channels that were 85% depleted in the alpha 2/delta subunits showed a significant decrease in the initial rate of Ca2+ influx induced by valinomycin, but retained responsiveness to Bay K 8644 and (+)-PN 200-110. When the separated alpha 2 and delta subunits were added back to the alpha 1 subunit-containing preparation, the channels exhibited their normal rate of Ca2+ influx. These results demonstrated that the dihydropyridine-sensitive Ca2+ channels from skeletal muscle require the presence of the alpha 2.gamma complex in stoichiometric amounts to exhibit full activity. 相似文献
2.
Dihydropyridine-sensitive calcium channels in cardiac and skeletal muscle membranes: studies with antibodies against the alpha subunits 总被引:2,自引:0,他引:2
Polyclonal antibodies (PAC-2) against the purified skeletal muscle calcium channel were prepared and shown to be directed against alpha subunits of this protein by immunoblotting and immunoprecipitation. These polypeptides have an apparent molecular weight of 162,000 without reduction of disulfide bonds. Under conditions where the functional properties of the purified skeletal muscle calcium channel are retained, beta subunits (Mr 50,000) and gamma subunits (Mr 33,000) are coprecipitated, demonstrating specific noncovalent association of these three polypeptides in the purified skeletal muscle channel. PAC-2 immunoprecipitated cardiac calcium channels labeled with [3H]isopropyl 4-(2,1,3-benzoxadiazol-4-yl)-1,4-dihydro-2,6-dimethyl-5- (methoxycarbonyl)pyridine-3-carboxylate ([3H]PN200-110) at a 3-fold higher concentration than skeletal muscle channels. Preincubation with cardiac calcium channels blocked only 49% of the immunoreactivity of PAC-2 toward skeletal muscle channels, indicating that these two proteins have both homologous and distinct epitopes. The immunoreactive component of the cardiac calcium channel was identified by immunoprecipitation and polyacrylamide gel electrophoresis as a polypeptide with an apparent molecular weight of 170,000 before reduction of disulfide bonds and 141,000 after reduction, in close analogy with the properties of the alpha 2 subunits of the skeletal muscle channel. It is concluded that these two calcium channels have a homologous, but distinct, alpha subunit as a major polypeptide component. 相似文献
3.
Dihydropyridine-sensitive skeletal muscle Ca channels in polarized planar bilayers. 2. Effects of phosphorylation by cAMP-dependent protein kinase. 下载免费PDF全文
The effects of phosphorylation on the voltage-dependent properties of dihydropyridine-sensitive Ca channels of skeletal muscle were studied. Single channel currents were recorded upon incorporation of transverse tubule membranes into planar bilayers that were kept polarized at near physiological resting potential and subjected to depolarizing pulses under voltage clamp. Studies were conducted to analyze the properties of the channels at both the single channel and macroscopic level, using methods introduced in the preceding paper (Ma et al., 1991. Biophys. J. 60: 890-901.). Addition of the catalytic subunit of cAMP-dependent protein kinase to the cis (intracellular) side of the bilayers containing channels resulted in: (a) an increase in open channel probability at all voltages above -50 mV; (b) a leftward shift (by 7 mV) in the curve describing the voltage-dependence of activation; (c) an approximate twofold decrease in the rate of inactivation; and (d) an increase in the availability of the channel. These findings provide new insights at the single channel level into the mechanism of modulation of the dihydropyridine-sensitive Ca channels of skeletal muscle by signal transduction events that involve elevation in cAMP and activation of the cAMP-dependent protein kinase. 相似文献
4.
Dihydropyridine-sensitive skeletal muscle Ca channels in polarized planar bilayers. 3. Effects of phosphorylation by protein kinase C. 下载免费PDF全文
The effects of protein kinase C (PKC) were studied on dihydropyridine (DHP)-sensitive Ca channels from rabbit skeletal muscle T tubule membranes. To determine which channel subunits become phosphorylated under the conditions used for electrophysiological studies, we first performed biochemical studies of phosphorylation. T tubular membranes were fused with vesicles of the lipid mixture used in the planar bilayers, and phosphorylation was assessed using the same concentrations of PKC, adenosine 5''-triphosphate, and buffers as were used in the electrophysiological experiments. The alpha 1 subunit of the DHP receptors was phosphorylated by PKC to an extent of 1 mol phosphate/mol protein. The beta subunit was also phosphorylated but to a significantly lesser extent. The DHP-sensitive Ca channel activity was studied after fusing T tubule membranes with planar bilayers (Ma, J., C. Mundiña-Weilenmann, M. M. Hosey, and E. Ríos. 1991. Biophys. J. 60:890-901). The bilayers were held at -80 mV and activated by depolarizing voltage clamp pulses. The observed Ca channels exhibited two open states (tau o1 = 5 ms and tau o2 = 25 ms). On addition of purified PKC to the intracellular side, the proportion of the longer open state increased threefold. The average open probability during a 2-s, maximally activating pulse (Pmax) increased from 10 to 15%. The voltage dependence of activation was not changed by PKC; the Boltzmann parameters were V1 = -20.5 mV and K = 10.5 mV, which were not significantly different from the reference channels. The deactivation (closing) time constant was increased from 7 to 12 ms after PKC. The inactivation time constant during the pulse was slightly increased(from 1.2 to 1.6 s), and the channel availability at the holding potential was decreased from 76 to 71%. Taken together, the results revealed that PKC increased Pmax largely through a shift in the voltage independent open-close equilibrium of the fully activated channels.This is in contrast with the effect of phosphorylation by PKA (Mundir''a-Weilenmann, C., J. Ma, E. Rios, and M. M. Hosey. 1991. Biophys.J. 60:902-909), which also increases Pmax but mostly by increasing the availability of channels and slowing inactivation during the pulse. 相似文献
5.
6.
Functional expression of the calcium release channel from skeletal muscle ryanodine receptor cDNA 总被引:7,自引:0,他引:7
Combined patch-clamp and fura-2 measurements were performed to study the calcium release properties of Chinese hamster ovary (CHO) cells transfected with the rabbit skeletal muscle ryanodine receptor cDNA carried by an expression vector. Both caffeine (1-50 mM) and ryanodine (100 microM) induced release of calcium from intracellular stores of transformed CHO cells but not from control (non-transfected) CHO cells. The calcium responses to caffeine and ryanodine closely resembled those commonly observed in skeletal muscle. Repetitive applications of caffeine produced characteristic all-or-none rises in intracellular calcium. Inositol 1,4,5-trisphosphate (IP3) neither activated the ryanodine receptor channel nor interfered with the caffeine-elicited calcium release. These results indicate that functional calcium release channels are formed by expression of the ryanodine receptor cDNA. 相似文献
7.
Cyclic AMP-dependent phosphorylation of two size forms of alpha 1 subunits of L-type calcium channels in rat skeletal muscle cells 总被引:2,自引:0,他引:2
Y Lai M J Seagar M Takahashi W A Catterall 《The Journal of biological chemistry》1990,265(34):20839-20848
Skeletal muscle dihydropyridine-sensitive calcium channels are in vitro substrates for cAMP-dependent protein kinase. In the present work, alpha 1 subunits were isolated from cultured skeletal muscle cells by immunoprecipitation with a specific monoclonal antibody under conditions where proteolysis and dephosphorylation were prevented. Two forms of alpha 1 subunit, 200 and 160 kDa, were identified by back phosphorylation in vitro with cAMP-dependent protein kinase, specific immunoprecipitation, and phosphopeptide mapping. Treatment of cells with forskolin, isoproterenol, calcitonin gene-related peptide, or 8-bromo-cAMP to increase intracellular cAMP reduced 32P incorporation into all phosphopeptides in vitro by 60-80% indicating that increases in cAMP caused endogenous phosphorylation of all sites on both alpha 1(200) and alpha 1(160) to nearly maximal levels. The extents of basal and stimulated phosphorylation in vivo were estimated by back phosphorylation methods to be 35-40% and 83-86%, respectively. In muscle cells metabolically labeled with 32P, 3 mol of phosphate were incorporated into alpha 1 subunits. Forskolin stimulated 32P incorporation into alpha 1 subunits 1.6-fold. Taken together, our results show that skeletal muscle cells contain two forms of the alpha 1 subunit which both are basally phosphorylated on cAMP-dependent phosphorylation sites and are further phosphorylated in response to agents that increase intracellular cAMP. 相似文献
8.
The voltage-sensitive sodium channel from rabbit skeletal muscle. Chemical characterization of subunits 总被引:7,自引:0,他引:7
The alpha and beta subunits of the rabbit skeletal muscle sodium channel have been separated and isolated preparatively under denaturing conditions. In this sodium channel, the beta subunit is not linked covalently to the alpha subunit. The isolated subunits have been subjected to amino acid and carbohydrate analysis. Both subunits are heavily glycosylated (alpha = 26.5%, beta = 29.7% carbohydrate by weight) with N-acetylneuraminic acid and N-acetylhexosamines representing the predominant monosaccharides in each. Enzymatic deglycosylation with neuraminidase and endoglycosidase F yielded single core peptides of approximately 209 kDa for the alpha subunit and 26.5 kDa for the beta subunit. Based on the known carbohydrate composition, the molecular masses for the glycosylated subunits are, therefore, 285 and 37.5 kDa for alpha and beta, respectively. Using the isolated subunits, we calibrated our protein-labeling system on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and determined the subunit stoichiometry for the rabbit skeletal muscle channel; in the native preparation, the molar ratio of alpha:beta is 1 : 1. 相似文献
9.
Fast activation of dihydropyridine-sensitive calcium channels of skeletal muscle. Multiple pathways of channel gating 下载免费PDF全文
《The Journal of general physiology》1996,108(3):221-232
Dihydropyridine (DHP) receptors of the transverse tubule membrane play two roles in excitation-contraction coupling in skeletal muscle: (a) they function as the voltage sensor which undergoes fast transition to control release of calcium from sarcoplasmic reticulum, and (b) they provide the conducting unit of a slowly activating L-type calcium channel. To understand this dual function of the DHP receptor, we studied the effect of depolarizing conditioning pulse on the activation kinetics of the skeletal muscle DHP-sensitive calcium channels reconstituted into lipid bilayer membranes. Activation of the incorporated calcium channel was imposed by depolarizing test pulses from a holding potential of -80 mV. The gating kinetics of the channel was studied with ensemble averages of repeated episodes. Based on a first latency analysis, two distinct classes of channel openings occurred after depolarization: most had delayed latencies, distributed with a mode of 70 ms (slow gating); a small number of openings had short first latencies, < 12 ms (fast gating). A depolarizing conditioning pulse to +20 mV placed 200 ms before the test pulse (-10 mV), led to a significant increase in the activation rate of the ensemble averaged-current; the time constant of activation went from tau m = 110 ms (reference) to tau m = 45 ms after conditioning. This enhanced activation by the conditioning pulse was due to the increase in frequency of fast open events, which was a steep function of the intermediate voltage and the interval between the conditioning pulse and the test pulse. Additional analysis demonstrated that fast gating is the property of the same individual channels that normally gate slowly and that the channels adopt this property after a sojourn in the open state. The rapid secondary activation seen after depolarizing prepulses is not compatible with a linear activation model for the calcium channel, but is highly consistent with a cyclical model. A six- state cyclical model is proposed for the DHP-sensitive Ca channel, which pictures the normal pathway of activation of the calcium channel as two voltage-dependent steps in sequence, plus a voltage-independent step which is rate limiting. The model reproduced well the fast and slow gating models of the calcium channel, and the effects of conditioning pulses. It is possible that the voltage-sensitive gating transitions of the DHP receptor, which occur early in the calcium channel activation sequence, could underlie the role of the voltage sensor and yield the rapid excitation-contraction coupling in skeletal muscle, through either electrostatic or allosteric linkage to the ryanodine receptors/calcium release channels. 相似文献
10.
Immunoaffinity isolation of Na+ channels from rat skeletal muscle. Analysis of subunits 总被引:4,自引:0,他引:4
Polyclonal antiserum and monoclonal antibodies raised against the sodium channel from rat skeletal muscle sarcolemma have been immobilized on Sepharose and used to immunoaffinity purify this channel directly from skeletal muscle without the intervening purification of surface membranes. These antibodies isolate a approximately 260-kDa protein from whole muscle, although each purifies predominantly a 150-kDa component when isolated sarcolemmal membranes are used as starting material. A 45-kDa band is also found in the material purified from sarcolemma but not that obtained from whole muscle. In addition, these immunoaffinity columns isolate a 38-kDa band from both whole muscle and sarcolemma that copurifies with the 260-kDa protein. In some preparations this component appears as two closely spaced bands of 37 and 39 kDa. These small subunits coelute with the 260-kDa subunit when thiocyanate gradients are used to displace protein bound to the immunoaffinity columns and behave as integral components of the sodium channel. Estimates of stoichiometry were made for the large and small subunits of the muscle channel protein. After correction for labeling efficiency, values consistent with a ratio of one 260-kDa subunit to one 38-kDa subunit were obtained. We conclude that the rat skeletal muscle sodium channel contains a large alpha subunit of approximately 260 kDa that is sensitive to proteolytic nicking during the isolation of sarcolemmal membranes. In addition, at least one 38-kDa beta subunit is associated with each alpha subunit in the native channel. 相似文献
11.
In skeletal muscle, dihydropyridine receptors (DHPRs) in the plasma membrane interact with the type 1 ryanodine receptor (RyR1) at junctions with the sarcoplasmic reticulum. This interaction organizes junctional DHPRs into groups of four termed tetrads. In addition to the principle alpha1S subunit, the beta1a subunit of the DHPR is also important for the interaction with RyR1. To probe this interaction, we measured fluorescence resonance energy transfer (FRET) of beta1a subunits labeled with cyan fluorescent protein (CFP) and/or yellow fluorescent protein (YFP). Expressed in dysgenic (alpha1S-null) myotubes, YFP-beta1a-CFP and CFP-beta1a-YFP were diffusely distributed in the cytoplasm and highly mobile as indicated by fluorescence recovery after photobleaching. Thus, beta1a does not appear to bind to other cellular proteins in the absence of alpha1S. FRET efficiencies for these cytoplasmic beta1a subunits were approximately 6-7%, consistent with the idea that <10 nm separates the N and C termini. After coexpression with unlabeled alpha1S (in dysgenic or beta1-null myotubes), both constructs produced discrete fluorescent puncta, which correspond to assembled DHPRs in junctions and that did not recover after photobleaching. In beta1-null myotubes, FRET efficiencies of doubly labeled beta1a in puncta were similar to those of the same constructs diffusely distributed in the cytoplasm and appeared to arise intramolecularly, since no FRET was measured when mixtures of singly labeled beta1a (CFP or YFP at the N or C terminus) were expressed in beta1-null myotubes. Thus, DHPRs in tetrads may be arranged such that the N and C termini of adjacent beta1a subunits are located >10 nm from one another. 相似文献
12.
Dihydropyridine-sensitive skeletal muscle Ca channels in polarized planar bilayers. 1. Kinetics and voltage dependence of gating. 下载免费PDF全文
Rabbit skeletal muscle transverse tubule (T) membranes were fused with planar bilayers. Ca channel activity was studied with a "cellular" approach, using solutions that were closer to physiological than in previous studies, including asymmetric extracellular divalent ions as current carriers. The bilayer was kept polarized at -80 mV and depolarizing pulses were applied under voltage clamp. Upon depolarization the channels opened in a steeply voltage-dependent manner, and closed rapidly at the end of the pulses. The activity was characterized at the single-channel level and on macroscopic ensemble averages of test-minus-control records, using as controls the null sweeps. The open channel events had one predominant current corresponding to a conductance of 9 pS (100 mM Ba2+). The open time histogram was fitted with two exponentials, with time constants of 5.8 and 30 ms (23 degrees C). Both types of events were virtually absent at -80 mV. The average open probability (fractional open time) increased sigmoidally from 0 to a saturation level of 0.08, following a Boltzmann function centered at -25 mV and with a steepness factor of 7 mV. Ensemble averages of test-minus-control currents showed a sigmoidal activation followed by inactivation during the pulse and deactivation (closing) after the pulse. The ON time course was well fitted with "m3h" kinetics, with tau m = 120 ms and tau h = 1.2 s. Deactivation was exponential with tau = 8 ms. This study demonstrates a technique for obtaining Ca channel events in lipid bilayers that are strictly voltage dependent and exhibit most of the features of the macroscopic ICa. The technique provides a useful approach for further characterization of channel properties, as exemplified in the accompanying paper, that describes the consequences on channel properties of phosphorylation by cAMP dependent protein kinase. 相似文献
13.
The development of specific pharmacological agents that modulate different types of ion channels has prompted an extensive effort to elucidate the molecular structure of these important molecules. The calcium channel blockers that specifically modulate the L-type calcium channel activity have aided in the purification and reconstitution of this channel from skeletal muscle transverse tubules. The L-type calcium channel from skeletal muscle is composed of five subunits designated alpha 1, alpha 2, beta, gamma, and sigma. The alpha 1-subunit is the pore-forming polypeptide and contains the ligand binding and phosphorylation sites through which channel activity can be modulated. The role of the other subunits in channel function remains to be studied. The calcium channel components have also been partially purified from cardiac muscle. The channel consists of at least three subunits that have properties related to the subunits of the calcium channel from skeletal muscle. A core polypeptide that can form a channel and contains ligand binding and phosphorylation sites has been identified in cardiac preparations. Here we summarize recent biochemical and molecular studies describing the structural features of these important ion channels. 相似文献
14.
Terence G Favero Jason Webb Maria Papiez Erin Fisher Robert J Trippichio Michael Broide Jonathan J Abramson 《Journal of applied physiology》2003,94(4):1387-1394
We have previously demonstrated that H2O2 at millimolar concentrations induces Ca(2+) release from actively loaded sarcoplasmic reticulum (SR) vesicles and induces biphasic [(3)H]ryanodine binding behavior. Considering that hypochlorous acid (HOCl) is a related free radical and has been demonstrated to be a more effective oxidant of proteins, we evaluated the effects of HOCl on sarcoplasmic reticulum Ca(2+)-channel release mechanism. In a concentration-dependent manner, HOCl activates the SR Ca(2+) release channel and induces rapid release of Ca from actively loaded vesicles. HOCl-induced Ca(2+) release is inhibited in the presence of millimolar concentrations of DMSO. High-affinity [(3)H]ryanodine binding is also enhanced at concentrations from 10 to 100 microM. At HOCl concentrations of >100 microM, equilibrium binding is inhibited. HOCl stimulation of binding is inhibited by the addition of dithiothreitol. The direct interaction between HOCl and the Ca(2+) release mechanism was further demonstrated in single-channel reconstitution experiments. HOCl, at 20 microM, activated the Ca(2+) release channel after fusion of a SR vesicle to a bilayer lipid membrane. At 40 microM, Ca(2+)-channel activity was inhibited. Pretreatment of SR vesicles with HOCl inhibited the fluorescence development of a fluorogenic probe specific to thiol groups critical to channel function. These results suggest that HOCl at micromolar concentrations can modify SR Ca(2+) handling. 相似文献
15.
Functional expression of the L-type calcium channel in mice skeletal muscle during prenatal myogenesis 下载免费PDF全文
The densities of skeletal muscle intramembrane charge movement and macroscopic L-type Ca(2+) current have been shown to increase during prenatal development. In the present work, the electrophysiological characteristics of L-type Ca(2+) channels were analyzed over the embryonic period E14 to E19 using the whole-cell and cell-attached procedures. At the macroscopic level, the whole-cell L-type Ca(2+) conductance increased 100% between E14 and E19. This enhancement was accompanied by a small negative shift of the voltage dependence and a marked acceleration of the inactivation kinetics. At the single-channel level, the unitary conductance decreased significantly from 13.2 +/- 0.1 pS (n = 8) at E14 to 10.7 +/- 0.3 pS (n = 7) at E18 and the open probability was multiplied by 2. No significant change of the density of functional channels was observed during the same period. In contrast to the density of intramembrane charge movement, which, under the same conditions, has been shown to increase between 16 and 19 days, L-type Ca(2+) channels properties change mostly between 14 and 16 days. Taken together, these results suggest that the two functions of the dihydropyridine receptor are carried by two different proteins which could be differentially regulated by subunit composition and/or degree of phosphorylation. 相似文献
16.
C Mundi?a-Weilenmann C F Chang L M Gutierrez M M Hosey 《The Journal of biological chemistry》1991,266(7):4067-4073
We have examined the effects of cAMP elevating agents on the phosphorylation of dihydropyridine-sensitive Ca2+ channels in intact newborn chick skeletal muscle. In situ treatment with the beta-adrenergic receptor agonist isoproterenol resulted in the phosphorylation of the 170-kDa alpha 1 subunit in the intact cells, as evidenced by a marked decrease in the ability of the alpha 1 peptide to serve as a substrate in in vitro back phosphorylation reactions with [gamma-32P]ATP and the purified catalytic subunit of cAMP-dependent protein kinase. The phosphorylation of the 52-kDa beta subunit was not affected. The effects of isoproterenol were time- and concentration-dependent and were mimicked by other cAMP elevating agents but not by the Ca2+ ionophore A23187 or a protein kinase C activator. To test for functional effects of the observed phosphorylation, purified channels were reconstituted into liposomes containing entrapped fluo-3, and depolarization-sensitive and dihydropyridine-sensitive Ca2+ influx was measured. Channels from isoproterenol-treated muscle exhibited an increased rate and extent of Ca2+ influx compared to control preparations. The effects of isoproterenol pretreatment could be mimicked by phosphorylating the channels with cAMP-dependent protein kinase in vitro. These results demonstrate that the alpha 1 subunit of the dihydropyridine-sensitive Ca2(+)-channels is the primary target of cAMP-dependent phosphorylation in intact muscle and that the phosphorylation of this protein leads to activation of channel activity. 相似文献
17.
Internal and external effects of dihydropyridines in the calcium channel of skeletal muscle 总被引:4,自引:1,他引:4 下载免费PDF全文
The agonist effect of the dihydropyridine (DHP) (-)Bay K 8644 and the inhibitory effects of nine antagonist DHPs were studied at a constant membrane potential of 0 mV in Ca channels of skeletal muscle transverse tubules incorporated into planar lipid bilayers. Four phenylalkylamines (verapamil, D600, D575, and D890) and d-cis-diltiazem were also tested. In Ca channels activated by 1 microM Bay K 8644, the antagonists nifedipine, nitrendipine, PN200-110, nimodipine, and pure enantiomer antagonists (+)nimodipine, (-)nimodipine, (+)Bay K 8644, inhibited activity in the concentration range of 10 nM to 10 microM. Effective doses (ED50) were 2 to 10 times higher when HDPs were added to the internal side than when added to the external side. This sidedness arises from different structure-activity relationships for DHPs on both sides of the Ca channel since the ranking potency of DHPs is PN200-110 greater than (-)nimodipine greater than nifedipine approximately S207-180 on the external side while PN200-110 greater than S207-180 greater than nifedipine approximately (-)nimodipine on the internal side. A comparison of ED50's for inhibition of single channels by DHPs added to the external side and ED50's for displacement of [3H]PN200-110 bound to the DHP receptor, revealed a good quantitative agreement. However, internal ED50's of channels were consistently higher than radioligand binding affinities by up to two orders of magnitude. Evidently, Ca channels of skeletal muscle are functionally coupled to two DHP receptor sites on opposite sides of the membrane. 相似文献
18.
19.
20.
《The Journal of general physiology》1995,105(2):227-247
The purpose of this study was to use whole-cell and cell-attached patches of cultured skeletal muscle myotubes to study the macroscopic and unitary behavior of voltage-dependent calcium channels under similar conditions. With 110 mM BaCl2 as the charge carrier, two types of calcium channels with markedly different single-channel and macroscopic properties were found. One class was DHP-insensitive, had a single-channel conductance of approximately 9 pS, yielded ensembles that displayed an activation threshold near -40 mV, and activated and inactivated rapidly in a voltage-dependent manner (T current). The second class could only be well resolved in the presence of the DHP agonist Bay K 8644 (5 microM) and had a single-channel conductance of approximately 14 pS (L current). The 14-pS channel produced ensembles exhibiting a threshold of approximately -10 mV that activated slowly (tau act approximately 20 ms) and displayed little inactivation. Moreover, the DHP antagonist, (+)-PN 200-110 (10 microM), greatly increased the percentage of null sweeps seen with the 14-pS channel. The open probability versus voltage relationship of the 14-pS channel was fitted by a Boltzmann distribution with a VP0.5 = 6.2 mV and kp = 5.3 mV. L current recorded from whole-cell experiments in the presence of 110 mM BaCl2 + 5 microM Bay K 8644 displayed similar time- and voltage-dependent properties as ensembles of the 14-pS channel. Thus, these data are the first comparison under similar conditions of the single-channel and macroscopic properties of T current and L current in native skeletal muscle, and identify the 9- and 14-pS channels as the single-channel correlates of T current and L current, respectively. 相似文献