首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The twin-arginine translocation (Tat) system accomplishes the remarkable feat of translocating large – even dimeric – proteins across tightly sealed energy-transducing membranes. All of the available evidence indicates that it is unique in terms of both structure and mechanism; however its very nature has hindered efforts to probe the core translocation events. At the heart of the problem is the fact that two large sub-complexes are believed to coalesce to form the active translocon, and ‘capturing’ this translocation event has been too difficult. Nevertheless, studies on the individual components have come a long way in recent years, and structural studies have reached the point where educated guesses can be made concerning the most interesting aspects of Tat. In this article we review these studies and the emerging ideas in this field. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.  相似文献   

3.
In maturing seed cells, proteins that accumulate in the protein storage vacuoles (PSVs) are synthesized on the endoplasmic reticulum (ER) and transported by vesicles to the PSVs. Vacuolar sorting determinants (VSDs) which are usually amino acid sequences of short or moderate length direct the proteins to this pathway. VSDs identified so far are classified into two types: sequence specific VSDs (ssVSDs) and C-terminal VSDs (ctVSDs). We previously demonstrated that VSDs of α′ and β subunits of β-conglycinin, one of major storage proteins of soybean (Glycine max), reside in the C-terminal ten amino acids. Here we show that both types of VSDs coexist within this region of the α′ subunit. Although ctVSDs can function only at the very C-termini of proteins, the C-terminal ten amino acids of α′ subunit directed green fluorescent protein (GFP) to the PSVs even when they were placed at the N-terminus of GFP, indicating that an ssVSD resides in the sequence. By mutation analysis, it was found that the core sequence of the ssVSD is Ser-Ile-Leu (fifth to seventh residues counted from the C-terminus) which is conserved in the α and β subunits and some vicilin-like proteins. On the other hand, the sequence composed of the C-terminal three amino acids (AFY) directed GFP to the PSVs when it was placed at the C-terminus of GFP, though the function as a VSD was disrupted at the N-terminus of GFP, indicating that the AFY sequence is a ctVSD.  相似文献   

4.
The secretory and endocytic pathways of eukaryotic organelles consist of multiple compartments, each with a unique set of proteins and lipids. Specific transport mechanisms are required to direct molecules to defined locations and to ensure that the identity, and hence function, of individual compartments are maintained. The localisation of proteins to specific membranes is complex and involves multiple interactions. The recent dramatic advances in understanding the molecular mechanisms of membrane transport has been due to the application of a multi-disciplinary approach, integrating membrane biology, genetics, imaging, protein and lipid biochemistry and structural biology. The aim of this review is to summarise the general principles of protein sorting in the secretory and endocytic pathways and to highlight the dynamic nature of these processes. The molecular mechanisms involved in this transport along the secretory and endocytic pathways are discussed along with the signals responsible for targeting proteins to different intracellular locations.  相似文献   

5.
Abstract

Sorting of membrane proteins in eukaryotic cells is a complex yet vital task that involves several 10,000 molecular players. Sorting takes place not only along the early secretory pathway, i.e., between the endoplasmic reticulum and the Golgi apparatus, but also between other organelles, including exchange with the cell's plasma membrane. Traditionally, specific binary interactions between proteins have been made responsible for most of the protein sorting. A more active role of lipids, however, became visible in recent years. Not only do lipids in complex membranes show domain formation that may support/suppress sorting events, but also collective, membrane-mediated interactions have emerged as a robust physico-chemical mechanism to drive protein sorting. Here, we will review recent insights into these aspects.  相似文献   

6.
Summary The major function of the secretory pathway of eukaryotes is to maintain the compartmental organization of the endomembrane system and organelle-associated functions by proper distribution of newly synthesized molecules. Protein and lipid transport is mediated by vesicular intermediates that connect the various organelles throughout this pathway. This principle enables the eukaryotic cell to actively sort proteins and lipids at every level of this route, in both the anterograde and the retrograde direction. Here, we discuss the molecular mechanisms of nonclathrin (COPI and COPII)-coated-vesicle biogenesis and how transport vesicle formation is linked to protein and lipid sorting in the early secretory pathway.  相似文献   

7.
吴海歌  吴晨  姚子昂  高晨慧  李倩 《生命科学》2014,(10):1067-1072
肿瘤干细胞是指存在于肿瘤组织中的具有干细胞特性,即能够多向分化和自我更新的一类细胞群。随着肿瘤干细胞概念的提出,乳腺癌干细胞成为当今科研领域的一个研究热点。因此,了解如何分选乳腺癌干细胞及如何维持其"干性"对治疗及预防乳腺癌具有至关重要的意义。主要从乳腺癌干细胞分选、相关信号通路、上皮-间充质转换(EMT)等方面进行综述。  相似文献   

8.
9.
To evaluate the role of hydrophobic and electrostatic or other polar interactions for protein–ligand binding, we have studied the interactions of bovine serum albumin (BSA) with 2-alkylmalonic acid and 2-alkylbenzimidazole amphiphiles having different head group and alkyl chain length. The binding affinity for the protein–amphiphile interactions is found to depend predominantly on the length of hydrocarbon chain, suggesting the crucial role of hydrophobic forces, supported by polar interactions at the protein surface. The BSA fluorescence exhibits appreciable hypsochromic shift along with a reduction in fluorescence intensity and mean lifetime upon binding with 2-alkylmalonic acid. UV–visible, steady state and time-resolved fluorescence measurements were performed to compare the effects of amphiphiles on BSA as a function of the amphiphiles head group and alkyl chain length.  相似文献   

10.
Human urokinase-type plasminogen activator (uPA) is poorly secreted by yeast cells. Here, we have selected Hansenula polymorpha mutants with increased productivity of active extracellular uPA. Several of the obtained mutants also demonstrated a defect of sorting of carboxypeptidase Y to the vacuole and the mutant loci have been identified in six of them. All these mutations damaged genes involved in protein traffic between the Golgi apparatus and the vacuole, namely PEP3, VPS8, VPS10, VPS17, and VPS35. We have shown that inactivation of the VPS10 gene encoding the vacuolar protein sorting receptor does not increase uPA secretion but stimulates its proteolytic processing.  相似文献   

11.
Flow cytometry and fluorescence activated cell sorting techniques were designed to realize configurable classification and separation of target cells. A number of cell phenotypes with different functionalities have recently been revealed. Before simultaneous selective capture of cells, it is desirable to label different samples with the corresponding dyes in a multiplexing manner to allow for a single analysis. However, few methods to obtain multiple fluorescent colors for various cell types have been developed. Even when restricted laser sources are employed, a small number of color codes can be expressed simultaneously. In this study, we demonstrate the ability to manifest DNA nanostructure-based multifluorescent colors formed by a complex of dyes. Highly precise self-assembly of fluorescent dye-conjugated oligonucleotides gives anisotropic DNA nanostructures, Y- and tree-shaped DNA (Y-DNA and T-DNA, respectively), which may be used as platforms for fluorescent codes. As a proof of concept, we have demonstrated seven different fluorescent codes with only two different fluorescent dyes using T-DNA. This method provides maximum efficiency for current flow cytometry. We are confident that this system will provide highly efficient multiplexed fluorescent detection for bioanalysis compared with one-to-one fluorescent correspondence for specific marker detection.  相似文献   

12.
A kinetic proof-reading mechanism for protein sorting   总被引:1,自引:0,他引:1  
Resident proteins of the exocytic pathway are maintained at various levels through coatomer protein I (COPI)-mediated recycling. Sorting of cargo by COPI requires GTP hydrolysis by ADP-ribosylation factor 1 (ARF-1). This small GTPase recruits coatomer onto Golgi membranes and upon hydrolysis, is thought to release coatomer back into the cytosol. This step requires the activating protein, ARFGAP1. By coupling sorting to a cargo-induced sequestering of ARFGAP1, we have formulated a kinetic proof-reading model that explains how a GTP hydrolysis-driven coat release can yield an active sorting event. The sorting scheme predicts a dependency on the amount of ARFGAP1 and explains the recent experimental findings that ARF-1 and COPI detach with different time constants from the Golgi membrane in vivo .  相似文献   

13.
Lipid molecules bound to membrane proteins are resolved in some high-resolution structures of membrane proteins. An analysis of these structures provides a framework within which to analyse the nature of lipid-protein interactions within membranes. Membrane proteins are surrounded by a shell or annulus of lipid molecules, equivalent to the solvent layer surrounding a water-soluble protein. The lipid bilayer extends right up to the membrane protein, with a uniform thickness around the protein. The surface of a membrane protein contains many shallow grooves and protrusions to which the fatty acyl chains of the surrounding lipids conform to provide tight packing into the membrane. An individual lipid molecule will remain in the annular shell around a protein for only a short period of time. Binding to the annular shell shows relatively little structural specificity. As well as the annular lipid, there is evidence for other lipid molecules bound between the transmembrane α-helices of the protein; these lipids are referred to as non-annular lipids. The average thickness of the hydrophobic domain of a membrane protein is about 29 Å, with a few proteins having significantly smaller or greater thicknesses than the average. Hydrophobic mismatch between a membrane protein and the surrounding lipid bilayer generally leads to only small changes in membrane thickness. Possible adaptations in the protein to minimise mismatch include tilting of the helices and rotation of side chains at the ends of the helices. Packing of transmembrane α-helices is dependent on the chain length of the surrounding phospholipids. The function of membrane proteins is dependent on the thickness of the surrounding lipid bilayer, sometimes on the presence of specific, usually anionic, phospholipids, and sometimes on the phase of the phospholipid.  相似文献   

14.
15.
The polarized distribution of proteins and lipids at the surface membrane of epithelial cells results in the formation of an apical and a basolateral domain, which are separated by tight junctions. The generation and maintenance of epithelial polarity require elaborate mechanisms that guarantee correct sorting and vectorial delivery of cargo molecules. This dynamic process involves the interaction of sorting signals with sorting machineries and the formation of transport carriers. Here we review the recent advances in the field of polarized sorting in epithelial cells. We especially highlight the role of lipid rafts in apical sorting.  相似文献   

16.
17.
G. Emery  J. Gruenberg  M. Rojo 《Protoplasma》1999,207(1-2):24-30
Summary The p24 family of small transmembrane proteins was discovered recently in yeast and mammalian cells, and some of its members have been implicated in biosynthetic protein transport. The p24 proteins are proposed to act on transport vesicles as receptors for coat and/or cargo, but their precise function(s) remain controversial. Here, we describe this protein family, and we review the available experimental data concerning their localization and function. Finally, we hypothesize about a possible role of p24 proteins in organelle morphogenesis.Abbreviations CGN cis-Golgi network - COP coat protein - ER endoplasmic reticulum - VSV-G vesicular stomatitis virus glycoprotein G  相似文献   

18.
Protein contacts, inter-residue interactions and side-chain modelling   总被引:1,自引:0,他引:1  
Faure G  Bornot A  de Brevern AG 《Biochimie》2008,90(4):626-639
Three-dimensional structures of proteins are the support of their biological functions. Their folds are stabilized by contacts between residues. Inner protein contacts are generally described through direct atomic contacts, i.e. interactions between side-chain atoms, while contact prediction methods mainly used inter-Calpha distances. In this paper, we have analyzed the protein contacts on a recent high quality non-redundant databank using different criteria. First, we have studied the average number of contacts depending on the distance threshold to define a contact. Preferential contacts between types of amino acids have been highlighted. Detailed analyses have been done concerning the proximity of contacts in the sequence, the size of the proteins and fold classes. The strongest differences have been extracted, highlighting important residues. Then, we studied the influence of five different side-chain conformation prediction methods (SCWRL, IRECS, SCAP, SCATD and SCCOMP) on the distribution of contacts. The prediction rates of these different methods are quite similar. However, using a distance criterion between side chains, the results are quite different, e.g. SCAP predicts 50% more contacts than observed, unlike other methods that predict fewer contacts than observed. Contacts deduced are quite distinct from one method to another with at most 75% contacts in common. Moreover, distributions of amino acid preferential contacts present unexpected behaviours distinct from previously observed in the X-ray structures, especially at the surface of proteins. For instance, the interactions involving Tryptophan greatly decrease.  相似文献   

19.
Tissue-Specific Processing of the Neuroendocrine Protein VGF   总被引:1,自引:0,他引:1  
Abstract: VGF is a neuroendocrine-specific gene product that is up-regulated by nerve growth factor in the PC12 cell line. In rat neuroendocrine tissues two polypeptides of 90 and 80 kDa were detected by an antiserum to an N-terminal domain of VGF (from residues 4 to 240). In parallel, an antiserum directed against the C-terminal nonapeptide of VGF (from residues 609 to 617) revealed several additional posttranslational products. Peptides of apparent molecular sizes of 20, 18, and 10 kDa were prominent in nerve tissues and the hypophysis but absent in the adrenal medulla, and their relative abundance varied in distinct regions of the CNS. In PC12 cells VGF was proteolytically processed only after nerve growth factor treatment, and primary cultures of rat cerebellar granule cells accumulated the low-molecular-weight forms of VGF during in vitro maturation. In these cells the specific cleavages of VGF occurred in a postendoplasmic reticulum compartment; the processed forms were enriched in the secretory vesicles and were preferentially secreted upon cell membrane depolarization. Distinct differential distribution in the CNS and in vitro release of such posttranslational products indicate that these species may represent biologically relevant forms of VGF that play a role in neuronal communication.  相似文献   

20.
Previous work has showed that ergosterol and sphingolipids become sorted to secretory vesicles immunoisolated using a chimeric, artificial raft membrane protein as bait. In this study, we have extended this analysis to three populations of secretory vesicles isolated using natural yeast plasma membrane (PM) proteins: Pma1p, Mid2p and Gap1*p as baits. We compared the lipidomes of the immunoisolated vesicles with each other and with the lipidomes of the donor compartment, the trans-Golgi network, and the acceptor compartment, the PM, using a quantitative mass spectrometry approach that provided a complete lipid overview of the yeast late secretory pathway. We could show that vesicles captured with different baits carry the same cargo and have almost identical lipid compositions; being highly enriched in ergosterol and sphingolipids. This finding indicates that lipid raft sorting is a generic feature of vesicles carrying PM cargo and suggests a common lipid-based mechanism for their formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号