首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The host cell cytoskeleton is known to play a vital role in the life cycles of several pathogenic intracellular microorganisms by providing the basis for a successful invasion and by promoting movement of the pathogen once inside the host cell cytoplasm. McCoy cells infected with Chlamydia trachomatis serovars E or L2 revealed, by indirect immunofluorescence microscopy, collocation of microtubules and Chlamydia -containing vesicles during the process of migration from the host cell surface to a perinuclear location. The vast majority of microtubule-associated Chlamydia vesicles also collocated with tyrosine-phosphorylated McCoy cell proteins. After migration, the Chlamydia -containing vesicles were positioned exactly at the centre of the microtubule network, indicating a microtubule-dependent mode of chlamydial redistribution. Inhibition of host cell dynein, a microtubule-dependent motor protein known to be involved in directed vesicle transport along microtubules, was observed to have a pronounced effect on C. trachomatis infectivity. Furthermore, dynein was found to collocate with perinuclear aggregates of C. trachomatis E and L2 but not C. pneumoniae VR-1310, indicating a marked difference in the cytoskeletal requirements for C. trachomatis and C. pneumoniae during early infection events. In support of this view, C. pneumoniae VR-1310 was shown to induce much less tyrosine phosphorylation of HeLa cell proteins during uptake than that seen for C. trachomatis .  相似文献   

2.
Chlamydia infections cause substantial morbidity worldwide and effective prevention will depend on a vaccine. Since Chlamydia immunity is T cell-mediated, a major impediment to developing a molecular vaccine has been the difficulty in identifying relevant T cell Ags. In this study, we used a combination of affinity chromatography and tandem mass spectrometry to identify 13 Chlamydia peptides among 331 self-peptides presented by MHC class II (I-A(b)) molecules from bone marrow-derived murine dendritic cells infected with Chlamydia muridarum. These MHC class II-bound peptides were recognized by Chlamydia-specific CD4 T cells harvested from immune mice and adoptive transfer of dendritic cells pulsed ex vivo with the peptides partially protected mice against intranasal and genital tract Chlamydia infection. The results provide evidence for lead vaccine candidates for a T cell-based subunit molecular vaccine against Chlamydia infection suitable for human study.  相似文献   

3.
Discordant views regarding host cell death induction by Chlamydia are likely owing to the different methods used for evaluation of apoptosis. Apoptotic and non-apoptotic death owing to both caspase-dependent and -independent activation of the Bax protein occur late in the productive growth cycle. Evidence also suggests that Chlamydia inhibits apoptosis during productive growth as part of its intracellular survival strategy. This is in part owing to proteolytic degradation of the BH3-only family of pro-apoptotic proteins in the mitochondrial pathway. Chlamydia also inhibits apoptosis during persistent growth or in phagocytes, but induces apoptosis in T cells, which suggests that apoptosis has an immunomodulatory role in chlamydial infections. The contribution of apoptosis in disease pathogenesis remains a focus for future research.  相似文献   

4.
Chlamydia trachomatis serovars D-K are sexually transmitted intracellular bacterial pathogens that replicate in epithelial cells lining the human reproductive tract. It is clear from knockout mice and T cell depletion studies using Chlamydia muridarum that MHC class II and CD4 T cells are critical for clearing bacteria from the murine genital tract. It is not clear how CD4 T cells interact with infected epithelial cells to mediate bacterial clearance in vivo. Previous work using an epithelial tumor cell line showed that a Chlamydia-specific CD4 T cell clone was able to inhibit C. muridarum replication in vitro via induction of epithelial NO production. We have previously shown that Chlamydia-specific CD4 T cell clones can recognize and be activated by infected reproductive tract epithelial cells and block Chlamydia replication in them. We extend those observations by investigating the mechanism used by a panel of CD4 T cell clones to control Chlamydia replication in epithelial cells. We found that Chlamydia-specific CD4 T cell clones were cytolytic, but that cytolysis was not likely critical for controlling C. muridarum replication. For one, CD4 T cell clone-induced epithelial NO production was critical for controlling replication; however, the most potent CD4 T cell clones were dependent on T cell degranulation for replication control with only a minor additional contribution from NO production. We discuss our data as they relate to existing knockout mouse studies addressing mechanisms of T cell-mediated control of Chlamydia replication and their implications for intracellular epithelial pathogens in mouse models.  相似文献   

5.
By comparison of proteome profiles of purified Chlamydia pneumoniae and whole lysates of C. pneumoniae infected HEp-2 cells, an N-terminal fragment of the previously uncharacterized chlamydial protein Cpn0796 was identified as a secreted protein. A 38 kDa cleavage product of Cpn0796 was present in infected cells, whereas only the 65 kDa full-length Cpn0796 could be detected in purified Chlamydia. Confocal immunofluorescence microscopy demonstrated that Cpn0796 was localized in the Chlamydia membrane in young inclusions. However, at 36 h post infection and later Cpn0796 was detected in the cytoplasm of C. pneumoniae infected HEp-2 and BHK cells. Furthermore, Cpn0796 was detected in the cytoplasm of infected cells in the lungs of C. pneumoniae infected C57Bl mice. When cleavage was inhibited, Cpn0796 was retained in the chlamydiae. We propose that Cpn0796 is an autotransporter the N-terminal of which is translocated to the host cell cytoplasm. This is the first example of secretion of a Chlamydia autotransporter passenger domain into the host cell cytoplasm. Cpn0796 is specific for C. pneumoniae, where five homologous proteins are encoded by clustered genes. None of these five proteins were found to be secreted.  相似文献   

6.
The Chlamydia protein CADD (Chlamydia protein associating with death domains) has been implicated in the modulation of host cell apoptosis via binding to the death domains of tumor necrosis factor family receptors. Transfection of CADD into mammalian cells induces apoptosis. Here we present the CADD crystal structure, which reveals a dimer of seven-helix bundles. Each bundle contains a di-iron center adjacent to an internal cavity, forming an active site similar to that of methane mono-oxygenase hydrolase. We further show that CADD mutants lacking critical metal-coordinating residues are substantially less effective in inducing apoptosis but retain their ability to bind to death domains. We conclude that CADD is a novel redox protein toxin unique to Chlamydia species and propose that both its redox activity and death domain binding ability are required for its biological activity.  相似文献   

7.
Intracellular pathogens have developed strategies to survive for extended periods inside their host cells. These include avoidance of host microbicidal effectors, often by sequestration in a protected subcompartment of the host cell. In some cases, the parasites exert also an antiapoptotic effect that prolongs the life of the infected host cell. Chlamydia utilizes both strategies, but the underlying molecular mechanisms are incompletely understood. Comparatively, little is known regarding the effects that Chlamydia exerts on the metabolism and distribution of the host cell lipids. The expression of fluorescently tagged C1 domains revealed that diacylglycerol is greatly accumulated in the immediate vicinity of Chlamydia inclusion vacuoles. The concentrated diacylglycerol recruits protein kinase Cdelta (PKCdelta), a proapoptotic effector, to the immediate vicinity of the vacuole. PKCdelta normally exerts its pro-apoptotic effects at the mitochondria and in the nucleus. We speculate that Chlamydia antagonizes the pro-apoptotic effect of PKCdelta by sequestering the enzyme on the inclusion vacuole away from its conventional target sites. Accordingly, we found that the ectopic expression of a catalytic fragment of PKCdelta that cannot be recruited by the vacuole, because it lacks a functional C1 domain, overcame the anti-apoptotic effect of the bacteria. The scavenging of pro-apoptotic factors may provide a novel mechanism whereby pathogens promote their own survival by extending the life of the host cells they infect.  相似文献   

8.
During its developmental cycle, the intracellular bacterial pathogen Chlamydia trachomatis remains confined within a protective vacuole known as an inclusion. Nevertheless, CD8(+) T cells that recognize Chlamydia Ags in the context of MHC class I molecules are primed during infection. MHC class I-restricted presentation of these Ags suggests that these proteins or domains from them have access to the host cell cytoplasm. Chlamydia products with access to the host cell cytoplasm define a subset of molecules uniquely positioned to interface with the intracellular environment during the pathogen's developmental cycle. In addition to their use as candidate Ags for stimulating CD8(+) T cells, these proteins represent novel candidates for therapeutic intervention of infection. In this study, we use C. trachomatis-specific murine T cells and an expression-cloning strategy to show that CT442 from Chlamydia is targeted by CD8(+) T cells. CT442, also known as CrpA, is a 15-kDa protein of undefined function that has previously been shown to be associated with the Chlamydia inclusion membrane. We show that: 1) CD8(+) T cells specific for an H-2D(b)-restricted epitope from CrpA are elicited at a significant level (approximately 4% of splenic CD8(+) T cells) in mice in response to infection; 2) the response to this epitope correlates with clearance of the organism from infected mice; and 3) immunization with recombinant vaccinia virus expressing CrpA elicits partial protective immunity to subsequent i.v. challenge with C. trachomatis.  相似文献   

9.
We investigated the hypothesis that the enhanced Ag-presenting function of IL-10-deficient dendritic cells (DCs) is related to specific immunoregulatory cytoskeletal molecules expressed when exposed to Ags. We analyzed the role of a prominent cytoskeletal protein, LEK1, in the immunoregulation of DC functions; specifically cytokine secretion, costimulatory molecule expression, and T cell activation against Chlamydia. Targeted knockdown of LEK1 expression using specific antisense oligonucleotides resulted in the rapid maturation of Chlamydia-exposed DCs as measured by FACS analysis of key activation markers (i.e., CD14, CD40, CD54, CD80, CD86, CD197, CD205, and MHC class II). The secretion of mostly Th1 cytokines and chemokines (IL-1a, IL-9, IL-12, MIP-1a, and GM-CSF but not IL-4 and IL-10) was also enhanced by blocking of LEK1. The function of LEK1 in DC regulation involves cytoskeletal changes, since the dynamics of expression of vimentin and actin, key proteins of the cellular cytoskeleton, were altered after exposure of LEK1 knockdown DCs to Chlamydia. Furthermore, targeted inhibition of LEK1 expression resulted in the enhancement of the immunostimulatory capacity of DCs for T cell activation against Chlamydia. Thus, LEK1 knockdown DCs activated immune T cells at least 10-fold over untreated DCs. These results suggest that the effect of IL-10 deficiency is mediated through LEK1-related events that lead to rapid maturation of DCs and acquisition of the capacity to activate an elevated T cell response. Targeted modulation of LEK1 expression provides a novel strategy for augmenting the immunostimulatory function of DCs for inducing an effective immunity against pathogens.  相似文献   

10.
Chlamydiae are obligate intracellular bacterial pathogens that have extensively reduced their genome in adapting to the intracellular environment. The chlamydial genome contains only three annotated cell division genes and lacks ftsZ. How this obligate intracellular pathogen divides is uncharacterized. Chlamydiae contain two high-molecular-weight (HMW) penicillin binding proteins (Pbp) implicated in peptidoglycan synthesis, Pbp2 and Pbp3/FtsI. We show here, using HMW Pbp-specific penicillin derivatives, that both Pbp2 and Pbp3 are essential for chlamydial cell division. Ultrastructural analyses of antibiotic-treated cultures revealed distinct phenotypes: Pbp2 inhibition induced internal cell bodies within a single outer membrane whereas Pbp3 inhibition induced elongated phenotypes with little internal division. Each HMW Pbp interacts with the Chlamydia cell division protein FtsK. Chlamydiae are coccoid yet contain MreB, a rod shape-determining protein linked to Pbp2 in bacilli. Using MreB-specific antibiotics, we show that MreB is essential for chlamydial growth and division. Importantly, co-treatment with MreB-specific and Pbp-specific antibiotics resulted in the MreB-inhibited phenotype, placing MreB upstream of Pbp function in chlamydial cell division. Finally, we showed that MreB also interacts with FtsK. We propose that, in Chlamydia, MreB acts as a central co-ordinator at the division site to substitute for the lack of FtsZ in this bacterium.  相似文献   

11.
The protective immune response to infection with Chlamydia trachomatis is associated with antibody reactivity to serovar-specific determinants on the major outer membrane protein (MOMP). Because this immunity is T cell dependent, it is essential to define those Th cell determinants that promote natural boosting of the protective antibody response. The gene for MOMP of serovar B was separated into nine overlapping fragments that represent the five C and four V regions. These fragments were expressed as fusion peptides with GST and used to identify the regions of the MOMP that contain T cell determinants recognized in BALB/c mice. We identified peptides that elicit a T cell response to Chlamydia by immunizing mice with the fusion peptides and testing the proliferative response of T cells in vitro to intact organism. For analysis of determinants seen after infection, animals were inoculated with live organism and the T cell proliferative response to each fusion peptide was measured in vitro. In contrast to proliferative analysis in which several regions of the MOMP elicited T cell responses, functional analysis demonstrated that a single fusion peptide, containing V segment three, elicited T cell help in vivo for the production of high titered antisera, specific for protective determinants on the MOMP.  相似文献   

12.
T Moncan  F Eb  J Orfila 《Biologicals》1991,19(1):53-55
An ultrasound cell disrupter with a cooled cup tip was used to increase rapidly Chlamydia trachomatis infection in vitro. After three growth cycles of the NI-1 strain (serovar E), the pulsed ultrasound use enhanced the number of infected McCoy cells by approximately 12-times, as compared with control; and 8.8-times over the shaking with glass beads and centrifugation technique. After three growth cycles of the fast-growing LB-1 strain (serovar L2), the enhancement was by 15 and 10.8 respectively. Consequently, ultrasound treatment with a cooled cup tip can offer a working standard procedure to increase rapidly the number of cells infected with Chlamydia.  相似文献   

13.
Chlamydia trachomatis infection has been suggested to induce host genome duplication and is linked to increased risks of cervical cancer. We describe here the mechanism by which Chlamydia causes a cleavage furrow defect that consistently results in the formation of multinucleated host cells, a phenomenon linked to tumorigenesis. Host signaling proteins essential for cleavage furrow initiation, ingression, and stabilization are displaced from one of the prospective furrowing cortices after Chlamydia infection. This protein displacement leads to the formation of a unique asymmetrical, unilateral cleavage furrow in infected human cells. The asymmetrical distribution of signaling proteins is caused by the physical presence of the Chlamydia inclusion at the cell equator. By using ingested latex beads, we demonstrate that the presence of a large vacuole at the cell equator is sufficient to cause furrow ingression failure and can lead to multinucleation. Interestingly, internalized latex beads of similar size do not localize to the cell equator as efficiently as Chlamydia inclusions; moreover, inhibition of bacterial protein synthesis with antibiotic reduces the frequency at which Chlamydia localizes to the cell equator. Together, these results suggest that Chlamydia effectors are involved in strategic positioning of the inclusion during cell division.  相似文献   

14.
Cell division and cell wall biosynthesis in prokaryotes are driven by partially overlapping multiprotein machineries whose activities are tightly controlled and co-ordinated. So far, a number of protein components have been identified and acknowledged as essential for both fundamental cellular processes. Genes for enzymes of both machineries have been found in the genomes of the cell wall-less genera Chlamydia and Wolbachia , raising questions as to the functionality of the lipid II biosynthesis pathway and reasons for its conservation. We provide evidence on three levels that the lipid II biosynthesis pathway is indeed functional and essential in both genera: (i) fosfomycin, an inhibitor of MurA, catalysing the initial reaction in lipid II biosynthesis, has a detrimental effect on growth of Wolbachia cells; (ii) isolated cytoplasmic membranes from Wolbachia synthesize lipid II ex vivo ; and (iii) recombinant MraY and MurG from Chlamydia and Wolbachia exhibit in vitro activity, synthesizing lipid I and lipid II respectively. We discuss the hypothesis that the necessity for maintaining lipid II biosynthesis in cell wall-lacking bacteria reflects an essential role of the precursor in prokaryotic cell division. Our results also indicate that the lipid II pathway may be exploited as an antibacterial target for chlamydial and filarial infections.  相似文献   

15.
16.
Growth of two laboratory strains ofChlamydia trachomatis (Gambia 17 and UW 5) was compared in McCoy cell monolayers 1–3 days old and McCoy cells inoculated while in suspension (day 0). Both cell preparations were treated with cytochalasin B. Each chlamydial strain produced more inclusions in the cell suspension preparations than in monolayers. Efforts to inoculate cycloheximide-treated cells in suspension were unsuccessful because of the toxic effect of this chemical. When patient specimens were tested in cell suspensions and in monolayers, all positives were detected comparably in both systems, although bacterial contamination was more pronounced in the cell suspensions. The results indicate that cell suspensions can be used as a convenient and rapid supplement to preformed monolayers for chlamydial culture tests.  相似文献   

17.
The effect of the intracellular parasite Chlamydia trachomatis on the host cell energy metabolism has been studied. Glucose consumption by L-929 cell cultures infected or uninfected by C. trachomatis was studied in comparison during a 3-days cultivation. The content of glucose in the cultural medium was determined every 5, 24, 48, 72 hrs according to the developmental cycle of the parasite. It was shown that cell infection by C. trachomatis induced the alteration of energy metabolism via an increase in the glucose consumption rate.  相似文献   

18.
Chlamydia trachomatis and Chlamydia pneumoniae genomes contain genes coding for type III secretion apparatuses. Like other pathogens, Chlamydia probably uses this system to secrete proteins in the host cell. With the aim of identifying such proteins, we analyzed the organization of Chlamydia type III secretion genes.  相似文献   

19.
Abstract When Chlamydia trachomatis serotype E was grown in monolayers of replicating McCoy cells, dividing inclusions were seen by indirect immunofluorescence. Transmission of inclusions occurred within the McCoy cell population, so that clusters of inclusions in adjacent cells had formed by 72 h. Inclusion division and transmission may provide an important mechanism for persistence of naturally occurring chlamydial infections.  相似文献   

20.
For Chlamydia, an intracellular pathogen of humans, host cell invasion is obligatory for survival, growth and pathogenesis. At the molecular level, little is known about the binding and entry of Chlamydia into the mammalian host cell. Chlamydia are genetically intractable therefore experimental approaches targeting the host are often necessary. CHO6 is a mutagenized cell line resistant to attachment and infection by Chlamydia. In this study, CHO6 was shown using proteomic methods to have a defect in processing of the leader sequence for protein disulfide isomerase (PDI). Complementation by expression of full-length PDI restored C. trachomatis binding and infectivity in the CHO6 mutant cell line. The cell line was also resistant to diphtheria toxin and required complemented cell-surface PDI for toxin entry. These data demonstrate that native PDI at the cell surface is required for effective chlamydial attachment and infectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号