首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The adhesion of growing neurites into appropriate bundles or fascicles is important for the development of correct synaptic connectivity in the nervous system. We describe fasciculation defects of animals with mutations in the C. elegans gene dig-1 and show that dig-1 encodes a giant molecule (13,100 amino acids) of the immunoglobulin superfamily. Five new alleles of dig-1 were isolated in a screen for mutations affecting the morphology or function of several classes of head sensory neurons. Mutants showed process defasciculation of several classes of neurons. Analysis of a temperature-sensitive allele revealed that dig-1 is required during embryogenesis for normal process fasciculation of one class of head sensory neuron. Partial sequencing of two alleles, RNA interference (RNAi) and rescuing experiments showed that dig-1 encodes a giant molecule of the immunoglobulin superfamily. DIG-1 protein contains many domains associated with adhesion, is likely secreted, and has some features of proteoglycans. dig-1 mutants were originally isolated due to their displaced gonads [Thomas, J.H., Stern, M.J., Horvitz, H.R., 1990. Cell interactions coordinate the development of the C. elegans egg-laying system. Cell 62, 1041-52]; thus, dig-1 alleles were also characterized for their effects on gonad placement. Mutant phenotypes suggest that DIG-1 may mediate cell movement as well as process fasciculation and that different regions of the protein may mediate these functions.  相似文献   

2.
A novel DNA sequence element termed the J element involved in the regulated expression of class II major histocompatibility complex genes was recently described. To study this element and its role in class II gene regulation further, a cDNA library was screened with oligonucleotide probes containing both the S element and the nearby J element of the human DPA gene. Several DNA clones were obtained by this procedure, one of which, clone 18, is reported and characterized here. It encodes a protein predicted to contain 688 amino acid residues, including 11 zinc finger motifs of the C2H2 type in the C-terminal region, that are Krüppel-like in the conservation of the H/C link sequence connecting them. The 160 N-terminal amino acids in the nonfinger region of clone 18 are highly homologous with similar regions of several other human, mouse, and Drosophila sequences, defining a subfamily of Krüppel-like zinc finger proteins termed TAB (tramtrack [ttk]-associated box) here. One of the Drosophila sequences, ttk, is a developmental control gene, while a second does not contain a zinc finger region but encodes a structure important in oocyte development. An acidic activation domain is located between the N-terminal conserved region of clone 18 and its zinc fingers. This protein appears to require both the S and J elements, which are separated by 10 bp for optimal binding. Antisense cDNA to clone 18 inhibited the expression of a reporter construct containing the DPA promoter, indicating its functional importance in the expression of this class II gene.  相似文献   

3.
4.
5.
6.
7.
C2H2 zinc finger protein genes encode nucleic acid-binding proteins involved in the regulation of gene activity. AtZFP1 (Arabidopsis thaliana zinc finger protein 1) is one member of a small family of C2H2 zinc finger-encoding sequences previously characterized from Arabidopsis. The genomic sequence corresponding to the AtZFP1 cDNA has been determined. Molecular analysis demonstrates that AtZFP1 is a unique, intronless gene which encodes a 1100 nucleotides mRNA highly expressed in roots and stems. A construct in which 2.5 kb of AtZFP1 upstream sequences is linked to the -glucuronidase gene was introduced into Arabidopsis by Agrobacterium-mediated transformation of roots. Histochemical analysis of transgenic Arabidopsis carrying the AtZFP1 promotor:-glucuronidase fusion shows good correlation with RNA blot hybridization analysis. This transgenic line will be a useful tool for analyzing the regulation of AtZFP1 to further our understanding of its function.  相似文献   

8.
The Drosophila neuralized gene encodes a C3HC4 zinc finger.   总被引:4,自引:0,他引:4  
B D Price  Z Chang  R Smith  S Bockheim    A Laughon 《The EMBO journal》1993,12(6):2411-2418
  相似文献   

9.
A chloroplast gene encoding a protein with one zinc finger.   总被引:3,自引:1,他引:3       下载免费PDF全文
  相似文献   

10.
The C2H2 zinc finger is the most prevalent protein motif in the mammalian proteome. Two C2H2 fingers in Ikaros are dedicated to homotypic interactions between family members. We show here that these fingers comprise a bona fide dimerization domain. Dimerization is highly selective, however, as homologous domains from the TRPS-1 and Drosophila Hunchback proteins support homodimerization, but not heterodimerization with Ikaros. Ikaros-Hunchback selectivity is determined by 11 residues concentrated within the alpha-helical regions typically involved in base recognition. Preferential homodimerization of one chimeric protein predicts a parallel dimer interface and establishes the feasibility of creating novel dimer specificities. These results demonstrate that the C2H2 motif provides a versatile platform for both sequence-specific protein-nucleic acid interactions and highly specific dimerization.  相似文献   

11.
12.
13.
We have identified and cloned cDNA for a novel cell-surface protein that we have named Tactile for T cell activation, increased late expression. It is expressed on normal T cell lines and clones, and some transformed T cells, but no other cultured cell lines tested. It is expressed at low levels on peripheral T cells and is strongly up-regulated after activation, peaking 6 to 9 days after the activating stimulus. It is also up-regulated on NK cells activated in allogeneic cultures. It is not found on peripheral B cells but is expressed at very low levels on activated B cells. Tactile-specific mAb immunoprecipitates a band of 160 kDa when reduced and bands of 240, 180, and 160 kDa nonreduced. Using an antiserum produced with affinity-purified Tactile protein to screen a lambda gt11 library, we have identified Tactile cDNA. Northern blot analysis shows an expression pattern similar to that of the protein and transfection of COS cells with the full-length 5.2-kb cDNA results in cell-surface expression. Comparison with the sequence databanks show that Tactile is a member of the immunoglobulin gene superfamily, with similarity to Drosophila amalgam, the melanoma Ag MUC-18, members of the carcinoembryonic Ag family, the poliovirus receptor, and the neural cell adhesion molecule. The deduced primary sequence encodes a protein with three Ig domains, a long serine/threonine/proline-rich region typical of an extensively O-glycosylated domain, a transmembrane domain, and a 45 residue cytoplasmic domain. These data suggest that Tactile may be involved in adhesive interactions of activated T and NK cells during the late phase of the immune response.  相似文献   

14.
The murine myeloproliferative leukemia virus has previously been shown to contain a fragment of the coding region of the c-mpl gene, a member of the cytokine receptor superfamily. We have isolated cDNA and genomic clones encoding murine c-mpl and localized the c-mpl gene to mouse chromosome 4. Since some members of this superfamily function by transducing a proliferative signal and since the putative ligand of mpl is unknown, we have generated a chimeric receptor to test the functional potential of mpl. The chimera consists of the extracellular domain of the human interleukin-4 receptor and the cytoplasmic domain of mpl. A mouse hematopoietic cell line transfected with this construct proliferates in response to human interleukin-4, thereby demonstrating that the cytoplasmic domain of mpl contains all elements necessary to transmit a growth stimulatory signal. In addition, we show that 25-40% of mpl mRNA found in the spleen corresponds to a novel truncated and potentially soluble isoform of mpl and that both full-length and truncated forms of mpl protein can be immunoprecipitated from lysates of transfected COS cells. Interestingly, however, although the truncated form of the receptor possesses a functional signal sequence and lacks a transmembrane domain, it is not detected in the culture media of transfected cells.  相似文献   

15.
16.
2',3'-Cyclic-nucleotide 3'-phosphodiesterase (CNP) is an enzyme abundantly present in the central nervous system of mammals and some vertebrates. In vitro, CNP specifically catalyzes the hydrolysis of 2',3'-cyclic nucleotides to produce 2'-nucleotides, but the physiologically relevant in vivo substrate remains obscure. Here, we report the medium resolution NMR structure of the catalytic domain of rat CNP with phosphate bound and describe its binding to CNP inhibitors. The structure has a bilobal arrangement of two modules, each consisting of a four-stranded beta-sheet and two alpha-helices. The beta-sheets form a large cavity containing a number of positively charged and aromatic residues. The structure is similar to those of the cyclic phosphodiesterase from Arabidopsis thaliana and the 2'-5' RNA ligase from Thermus thermophilus, placing CNP in the superfamily of 2H phosphodiesterases that contain two tetrapeptide HX(T/S)X motifs. NMR titrations of the CNP catalytic domain with inhibitors and kinetic studies of site-directed mutants reveal a protein conformational change that occurs upon binding.  相似文献   

17.
18.
To improve the DNA hydrolytic activity of the zinc finger nuclease, we have created a new artificial zinc finger nuclease (ZWH4) by connecting two distinct zinc finger domains possessing different types of Zn(II) binding sites (Cys2His2- and His4-types). The overall fold of ZWH4 is similar to that of the wild-type Sp1 zinc finger (Sp1(zf123)) as revealed by circular dichroism spectroscopy. The gel mobility shift assay demonstrated that ZWH4 binds to the GC box DNA, although the DNA-binding affinity is lower than that of Sp1(zf123). Evidently, ZWH4 hydrolyzes the covalently closed circular plasmid DNA (form I) containing the GC box (pBSGC) to the linear duplex DNA (form III) in the presence of a higher concentration (50 times) of the protein than DNA for a 24-h reaction. Of special interest is the fact that the novel mixed zinc finger protein containing the Cys2His2- and His4-type domains was first created. The present results provide the useful information for the redesign strategy of an artificial nuclease based on the zinc finger motif.  相似文献   

19.
Zinc finger proteins with high affinity for human immunodeficiency virus Rev responsive element stem loop IIB (RRE-IIB) were previously isolated from a phage display zinc finger library. Zinc fingers from one of these proteins, RR1, were expressed individually and assayed for RRE-IIB affinity. The C-terminal zinc finger retained much of the binding affinity of the two-finger parent and was disrupted by mutations predicted to narrow the RRE-IIB major groove and which disrupt Rev binding. In contrast, the N-terminal zinc finger has a calculated affinity at least 1000-fold lower. Despite the high affinity and specificity of RR1 for RRE-IIB, binding affinity for a 234-nucleotide human immunodeficiency virus Rev responsive element (RRE234) was significantly lower. Therefore, zinc finger proteins that bind specifically to RRE234 were constructed using an in vitro selection and recombination approach. These zinc fingers bound RRE234 with subnanomolar dissociation constants and bound the isolated RRE-IIB stem loop with an affinity 2 orders of magnitude lower but similar to the affinity of an arginine-rich peptide derived from Rev. These data show that single C2H2 zinc fingers can bind RNA specifically and suggest that their binding to stem loop IIB is similar to that of Rev peptide. However, binding to RRE234 is either different from stem loop IIB binding or the tertiary structure of stem loop IIB is changed within the Rev responsive element.  相似文献   

20.
We describe the cloning and characterization of the mouse MOK-2 gene, a new member of the Krüppel family of zinc finger proteins. Sequencing of both cDNA and genomic clones showed that the predicted MOK-2 protein consists of seven zinc finger domains with only five additional amino acids. The finger domains of MOK-2 are highly homologous to one another but not to those of other zinc finger proteins. MOK-2 is preferentially expressed in transformed cell lines, brain tissue, and testis tissue. Its possible role in cellular transformation is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号