首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Molecular strategies in biological evolution of antimicrobial peptides   总被引:6,自引:0,他引:6  
Nicolas P  Vanhoye D  Amiche M 《Peptides》2003,24(11):1669-1680
Gene-encoded antimicrobial peptides that protect the skin of hylid and ranin frogs against noxious microorganisms are processed from a unique family of precursor polypeptides with a unique pattern of conserved and variable regions opposite to that of conventional secreted peptides. Precursors belonging to this family, designated the preprodermaseptin, have a common N-terminal preproregion that is remarkably well conserved both within and between species, but a hypervariable C-terminal domain corresponding to antimicrobial peptides with very different lengths, sequences, charges and antimicrobial spectra. Each frog species has its own distinct panoply of 10-20 antimicrobial peptides so that the 5000 species of ranids and hylids may produce approximately 100,000 different peptide antibiotics. The strategy that these frogs have evolved to generate this enormous array of peptides includes repeated duplications of a 150 million years old ancestral gene, focal hypermutation of the antimicrobial peptide domain maybe involving a mutagenic DNA polymerase similar to Escherichia coli Pol V, and subsequent actions of positive (diversifying) selection. The hyperdivergence of skin antimicrobial peptides can be viewed as the successful evolution of a multi-drug defense system that provides frogs with maximum protection against rapidly changing microbial biota and minimizes the chance of microorganisms developing resistance to individual peptides. The impressive variations in the expression of frog skin antimicrobial peptides may be exploited for discovering new molecules and structural motifs targeting specific microorganisms for which the therapeutic armamentarium is scarce.  相似文献   

3.
Wang A  Wang J  Hong J  Feng H  Yang H  Yu X  Ma Y  Lai R 《Biochimie》2008,90(6):863-867
While conducting experiments to investigate antimicrobial peptides of amphibians living in the Yunnan-Sichuan region of southwest China, a new family of antimicrobial peptides was identified from skin secretions of the rufous-spotted torrent frog, Amolops loloensis. Members of the new peptide family named amolopins are composed of 18 amino acids with a unique sequence, for example, NILSSIVNGINRALSFFG. By BLAST search, amolopins did no show similarity to any known peptides. Among the tested microorganisms, native and synthetic peptides only showed antimicrobial activities against Staphylococcus aureus ATCC2592 and Bacillus pumilus, no effects on other microorganisms. The CD spectroscopy showed that it adopted a structure of random combined with beta-sheet in water, Tris-HCl or Tris-HCl-SDS. Several cDNAs encoding amolopins were cloned from the skin cDNA library of A. loloensis. The precursors of amolopin are composed of 62 amino acid residues including predicted signal peptides, acidic propieces, and mature antimicrobial peptides. The preproregion of amolopin precursor comprises a hydrophobic signal peptide of 22 residues followed by an 18 residue acidic propiece which terminates by a typical prohormone processing signal Lys-Arg. The preproregions of precursors are very similar to other amphibian antimicrobial peptide precursors but the mature amolopins are different from other antimicrobial peptide families. The remarkable similarity of preproregions of precursors that give rise to very different antimicrobial peptides in distantly related frog species suggests that the corresponding genes form a multigene family originating from a common ancestor.  相似文献   

4.
Wang X  Song Y  Li J  Liu H  Xu X  Lai R  Zhang K 《Peptides》2007,28(10):2069-2074
While conducting experiments to investigate antimicrobial peptides of amphibians living in the Yunnan-Guizhou region of southwest China, a new family of antimicrobial peptides was identified from skin secretions of the Yunnan frog, Rana pleuraden. Members of the new peptide family named pleurain-As are composed of 26 amino acids with a unique N-terminal sequence (SIIT) and a disulfide-bridged heptapeptide sequence (CRLYNTC). By BLAST search, pleurain-As had no significant similarity to any known peptides. Native and synthetic peptides showed antimicrobial activities against tested microorganisms including Gram-negative and Gram-positive bacteria and fungi. Twenty different cDNAs encoding pleurain-As were cloned from the skin cDNA library of R. pleuraden. The precursors of pleurain-As are composed of 69 amino acid residues including predicted signal peptides, acidic propieces, and cationic mature antimicrobial peptides. The preproregion of pleurain-A precursor comprises a hydrophobic signal peptide of 22 residues followed by an 18 residue acidic propiece which terminates by a typical prohormone processing signal Lys-Arg. The preproregions of precursors are very similar to other amphibian antimicrobial peptide precursors but the mature pleurain-As are different from other antimicrobial peptide families. The remarkable similarity of preproregions of precursors that give rise to very different antimicrobial peptides in distantly related frog species suggests that the corresponding genes form a multigene family originating from a common ancestor. Furthermore, pleurain-As could exert antimicrobial capability against Helicobacter pylori. This is the first report of naturally occurring peptides with anti-H. pylori activity from Rana amphibians.  相似文献   

5.
Skin secretions of hylid frogs show amazing levels of interspecific and intraspecific diversity and are comprised of a cocktail of genetically-related, but markedly diverse antimicrobial peptides that are grouped into a superfamily, termed the dermaseptins, comprising several families: dermaseptins (sensu stricto), phylloseptins, plasticins, dermatoxins, phylloxins, hyposins, caerins, and aureins. Dermaseptin gene superfamily evolution is characterized by repeated gene duplications and focal hypermutations of the mature peptide coding sequence, followed by positive (diversifying) selection. We review here molecular mechanisms leading to these vast combinatorial peptide libraries, and structural and functional properties of antimicrobial peptides of the dermaseptin and plasticin families, as well as those of dermaseptin S9, an amyloidogenic peptide with antimicrobial and chemoattractant activities.  相似文献   

6.
While investigating antimicrobial peptide diversity of Amolops loloensis, five novel antimicrobial peptides belonging to two families were identified from skin secretions of this frog. The first family including two members is esculentin-2-AL (esculentin-2-ALa and -ALb); the second family including three members is temporin-AL (temporin-ALd to -ALf). The family of esculentin-2-AL is composed of 37 amino acid residues (aa); the family of temporin-AL is composed of 16, 13 and 10 aa, respectively. All of these antimicrobial peptides showed antimicrobial activities against tested microorganisms. cDNAs encoding precursors of esculentin-2-ALs and temporin-ALs were cloned from the skin cDNA library of A. loloensis. All the precursors share similar overall structures. There is a typical prohormone processing signal (Lys-Arg) located between the acidic propiece and the mature peptide. The antimicrobial peptide family of esculentin-2 is firstly reported in the genus of Amolops. Combined with previous reports, a total of four antimicrobial peptide families have been identified from the genus of Amolops; three of them are also found in the genus of Rana. These results suggest the possible evolutionary connection between the genera Amolops and Rana.  相似文献   

7.
Chen T  Zhou M  Rao P  Walker B  Shaw C 《Peptides》2006,27(7):1738-1744
The Chinese bamboo leaf odorous frog (Rana (Odorrana) versabilis) and the North American pickerel frog (Rana palustris) occupy different ecological niches on two different continents with no overlap in geographical distribution. R. palustris skin secretions contain a formidable array of antimicrobial peptides including homologs of brevinin-1, esculentin-1, esculentin-2, ranatuerin-2, a temporin and a family of peptides considered of unique structural attributes when isolated, palustrins 1-3. Here we describe the structures of mature peptides and precursors of eight putative antimicrobial peptides from the skin secretion of the Chinese bamboo leaf odorous frog (Rana (Odorrana) versabilis). Each peptide represents a structural homolog of respective peptide families isolated from R. palustris, including two peptides identical in primary structure to palustrin 1c and palustrin 3b. Additionally, two peptides were found to be structural homologs of ranatuerin 2B and ranatuerin 2P from the closely-related North American species, Rana berlandieri (the Rio Grande leopard frog) and Rana pipiens (the Northern leopard frog), respectively. Both palustrins and ranatuerins have hitherto been considered unique to North American ranid frogs. The use of primary structures of amphibian skin antimicrobial peptides is thus questionable as a taxonomic device or alternatively, the micro-evolution and/or ancestry of ranid frogs is more highly complex than previously thought.  相似文献   

8.
Nonrandom patterns associated with adaptively evolving genes can shed light on how selection and mutation produce rapid changes in sequences. I examine such patterns in two independent families of antimicrobial peptide genes: those in frogs, which are known to have evolved under positive selection, and those in flatfishes, which I show have also evolved under positive selection. I address two recently proposed hypotheses about the molecular evolution of antimicrobial peptide genes. The first is that the mature peptide region is replicated by an error-prone polymerase that increases the mutation rate and the transversion/transition ratio compared to the signal sequence of the same genes. The second is that mature peptides evolve in a coordinated fashion with their propieces, such that a change in net charge in one molecular region prompts an opposite change in charge in the other region. I test these hypotheses using alternative methods that minimize alignment errors, correct for phylogenetic nonindependence, reduce sequence saturation, and account for differing selection pressures on different regions of the gene. In both gene families I show that divergence at both synonymous and nonsynonymous sites within the mature peptide region is enhanced. However, in neither gene family is there evidence of an increased mutational transversion/transition ratio or coordinated evolution. My observations are consistent with either an elevated mutation rate in an adaptively evolving gene region or widespread selection on “silent” sites. These hypotheses challenge the assumption that mutations are random and can be measured by the synonymous substitution rate. [Reviewing Editor: Dr. Willie J. Swanson]  相似文献   

9.
Antimicrobial peptides are highly diverse pathogen-killing molecules. In many taxa, their evolution is characterized by positive selection and frequent gene duplication. It has been proposed that genes encoding antimicrobial peptides might be subject to balancing selection and/or an enhanced mutation rate, but these hypotheses have not been well evaluated because allelic variation has rarely been studied at antimicrobial peptide loci. We present an evolutionary analysis of novel antimicrobial peptide genes from leopard frogs, Rana. Our results demonstrate that a single genome contains multiple homologous copies, among which there is an excess of nonsynonymous nucleotide site divergence relative to that expected from synonymous site divergence. Thus, we confirm the trends of recurrent duplication and positive selection. Allelic variation is quite low relative to interspecies divergence, indicating a recent positive selective sweep with no evidence of balancing selection. Repeated gene duplication, rather than a balanced maintenance of divergent allelic variants at individual loci, appears to be how frogs have responded to selection for a diverse suite of antimicrobial peptides. Our data also support a pattern of enhanced synonymous site substitution in the mature peptide region of the gene, but we cannot conclude that this is due to an elevated mutation rate.  相似文献   

10.
11.
Piscidins constitute a family of cationic antimicrobial peptides that are thought to play an important role in the innate immune response of teleosts. On the one hand they show a remarkable diversity, which indicates that they are shaped by positive selection, but on the other hand they are ancient and have specific targets, suggesting that they are constrained by purifying selection. Until now piscidins had only been found in fish species from the superorder Acanthopterygii but we have recently identified a piscidin gene in Atlantic cod (Gadus morhua), thus showing that these antimicrobial peptides are not restricted to evolutionarily modern teleosts. Nucleotide diversity was much higher in the regions of the piscidin gene that code for the mature peptide and its pro domain than in the signal peptide. Maximum likelihood analyses with different evolution models revealed that the piscidin gene is under positive selection. Charge or hydrophobicity-changing amino acid substitutions observed in positively selected sites within the mature peptide influence its amphipathic structure and can have a marked effect on its function. This diversification might be associated with adaptation to new habitats or rapidly evolving pathogens.  相似文献   

12.
Ranatuerins are antimicrobial peptides of the innate immune system found in ranid frogs. We previously presented evidence that a positive selective sweep had fixed a single allele at the Ranatuerin2 locus in the northern leopard frog (Rana pipiens). In this paper, we further investigate the evolutionary history of ranatuerins as follows. First, we sequenced Ranatuerin2 in additional individuals of R. pipiens and related frog species and compared diversity and divergence at these sequences with that at four putatively neutrally evolving loci. Second, we asked whether the evolutionary patterns observed at Ranatuerin2 were typical for ranatuerin loci by sequencing our samples at a paralogous locus, Ranatuerin2b, and performing the same neutrality tests. Ranatuerin2b also showed strong and significant evidence of at least one selective sweep. Third, we used the neutral loci to independently resolve conflicting hypotheses about phylogenetic relationships among our study species. Both the neutral loci and the ranatuerin loci supported an older phylogeny inferred from allozyme data and strongly rejected a more recent phylogeny inferred from mitochondrial DNA. Finally, in order to test whether the sweep was driven by the evolution of substantially new peptide function, we used the phylogeny to reconstruct the hypothetical Ranatuerin2 peptide that existed before the sweep. We synthesized this peptide and tested its activity and that of the extant peptide against six bacterial pathogens of frogs. We observed antibacterial activity but found no significant functional differences between the two peptides.  相似文献   

13.
A novel family of peptide precursors that have very similar N-terminal preprosequences followed by markedly different C-terminal domains has been identified in the skin of hylid frogs belonging to the genus Phyllomedusinae. Biologically active peptides derived from the variable domains include the dermaseptins, 28-34-residue peptides that have a broad-spectrum microbicidal activity, and dermorphin and the deltorphins, D-amino acid containing heptapeptides that are very potent agonists for the micro-opioid and delta-opioid receptors, respectively. This report describes the isolation, synthesis and cloning of phylloxin, a prototypical member of a novel family of antimicrobial peptides derived from the processing of a dermaseptin/dermorphin-like precursor. The structure of phylloxin (GWMSKIASGIGTFLSGIQQ amide) shows no homology to the dermaseptins, but bears some resemblance to the levitide-precursor fragment and the xenopsin-precursor fragment, two antimicrobial peptides isolated from the skin of an evolutionarily distant frog species, Xenopus laevis. Circular dichroism spectra of phylloxin in low polarity medium, which mimics the lipophilicity of the membrane of target microorganisms, indicated 60-70% alpha-helical conformation, and predictions of secondary structure suggested that the peptide can be configured as an amphipathic helix spanning residues 1-19. Phylloxin is an addition to the structurally and functionally diverse peptide families encoded by the rapidly evolving C-terminal domains of the dermorphin/dermaseptin group of precursors.  相似文献   

14.
The northern red-legged frog Rana aurora aurora and the California red-legged frog Rana aurora draytonii are traditionally classified together in the same species group. Ten peptides with antimicrobial activity were isolated from norepinephrine-stimulated skin secretions of R. aurora draytonii and purified to near homogeneity. The peptides were identified as belonging to the ranatuerin-2 family (two peptides), brevinin-1 family (four peptides), temporin family (three peptides), and a novel peptide, RV-23 (RIGVLLARLPKLFSLFKLMGKKV) that has limited structural similarity to the bee venom peptide, melittin. This distribution of peptides contrasts with that found previously in skin secretions from R. aurora aurora collected under the same conditions and at the same time of year (one ranatuerin-2 peptide, two brevinin-1 peptides, and one temporin peptide). The variation in amino acid sequences between corresponding R. aurora draytonii and R. aurora aurora peptides is comparable with the variation in sequences of orthologs from other members of the Amerana group of New World ranid frogs (Rana boylii, Rana muscosa, and Rana luteiventris). It is proposed, therefore, that the red-legged frogs should be regarded as separate species (R. aurora and R. draytonii) within the Amerana group rather than conspecific subspecies. The data emphasize that amino acid sequences of antimicrobial peptides in skin secretions may be used to infer taxonomic and phylogenetic relationships between species of ranid frogs.  相似文献   

15.
A single peptide with antimicrobial activity was extracted from the skin of the European agile frog (R. dalmatina). The primary structure of this 17 amino-acid-residue peptide (ILPLLLGKVVCAITKKC) does not immediately suggest membership of any of the previously described families of antimicrobial peptides from ranid frogs. However, if it is assumed that the peptide has undergone several residue deletions during the course of speciation, it shows sequence similarity with peptides belonging to the widely distributed brevinin-1 family, particularly those isolated from the related species Rana temporaria. The minimum inhibitory concentration of the peptide, termed brevinin-1 Da, against the Gram-positive bacterium Staphylococcus aureus was 7 microM and against the Gram-negative bacterium Escherichia coli was 30 microM.  相似文献   

16.
The mammalian defensin molecule is a short, highly cationic peptide cytotoxic to both microbial and mammalian cells which is cleaved from a precursor including a signal peptide and a highly anionic propiece. A phylogenetic analysis of 28 complete sequences from five mammalian species (mouse, rat, guinea pig, rabbit, and human) showed species-specific clusters of sequences, indicating that the genes duplicated after divergence of these species. Comparison of rates of synonymous and nonsynonymous nucleotide substitution suggested that gene duplication has often been followed by a period in which diversification of the mature defensins at the amino acid level has been selectively favored. In some comparisons, it appeared that amino acid differences in this region have appeared in a nonrandom fashion so as to change the pattern of residue charges. Because it has been hypothesized that the negative charge in the propiece serves to balance the positive charge in the mature defensin and thus to prevent cytotoxicity prior to cleavage, we used a maximum likelihood method of reconstructing ancestral states in order to test whether this balance has been maintained over evolutionary time in spite of rapid diversification of the mature defensin at the amino acid level. Reconstructed ancestral sequences always maintained a charge balance between mature defensin and propiece, and changes in the net positive charge of the mature defensin were balanced by corresponding changes in the propiece. The results support the hypothesis that, in the evolution of these proteins, amino acid changes have occurred in a coordinated fashion so as to preserve an adaptive phenotype. Received: 23 October 1996 / Accepted: 7 January 1997  相似文献   

17.
The plant MADS-box regulatory gene family includes several loci that control different aspects of inflorescence and floral development. Orthologs to the Arabidopsis thaliana MADS-box floral meristem genes APETALA1 and CAULIFLOWER and the floral organ identity genes APETALA3 and PISTILLATA were isolated from the congeneric species Arabidopsis lyrata. Analysis of these loci between these two Arabidopsis species, as well as three other more distantly related taxa, reveal contrasting dynamics of molecular evolution between these paralogous floral regulatory genes. Among the four loci, the CAL locus evolves at a significantly faster rate, which may be associated with the evolution of genetic redundancy between CAL and AP1. Moreover, there are significant differences in the distribution of replacement and synonymous substitutions between the functional gene domains of different floral homeotic loci. These results indicate that divergence in developmental function among paralogous members of regulatory gene families is accompanied by changes in rate and pattern of sequence evolution among loci.  相似文献   

18.
19.
Cathelicidins are a gene family of antimicrobial peptides produced as inactive precursors. Signal peptidase removes the N-terminal signal sequence, while peptidylglycine alpha-amidating monooxygenase often amidates and cleaves the C-terminal region. Removal of the cathelin domain liberates the active antimicrobial peptide. For mammalian sequences, this cleavage usually occurs through the action of elastase, but other tissue-specific processing enzymes may also operate. Once released, these bioactive peptides are susceptible to proteolytic degradation. We propose that some mature cathelicidins are naturally resistant to proteases due to their unusual primary structures. Among mammalian cathelicidins, proline-rich sequences should resist attack by serine proteases because proline prevents cleavage of the scissile bond. In hagfish cathelicidins, the unusual amino acid bromotryptophan may make the active peptides less susceptible to proteolysis for steric reasons. Such protease resistance could extend the pharmacokinetic lifetimes of cathelicidins in vivo, sustaining antimicrobial activity.  相似文献   

20.
A novel family of antimicrobial peptides, named raniseptins, has been characterized from the skin secretion of the anuran Hypsiboas raniceps. Nine cDNA molecules have been successfully cloned, sequenced, and their respective polypeptides were characterized by mass spectrometry and Edman degradation. The encoded precursors share structural similarities with the dermaseptin prepropeptides from the Phyllomedusinae subfamily and the mature 28-29 residue long peptides undergo further proteolytic cleavage in the crude secretion yielding consistent fragments of 14-15 residues. The biological assays performed demonstrated that the Rsp-1 peptide has antimicrobial activity against different bacterial strains without significant lytic effect against human erythrocytes, whereas the peptide fragments generated by endoproteolysis show limited antibiotic potency. MALDI imaging mass spectrometry in situ studies have demonstrated that the mature raniseptin peptides are in fact secreted as intact molecules within a defined glandular domain of the dorsal skin, challenging the physiological role of the observed raniseptin fragments, identified only as part of the crude secretion. In this sense, stored and secreted antimicrobial peptides may confer distinct protective roles to the frog.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号