首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lipid A diversity and the innate host response to bacterial infection   总被引:6,自引:0,他引:6  
Lipopolysaccharide, a component of the outer membrane of Gram-negative bacteria, is a potent immunostimulatory molecule which activates the innate host defense system. Over the past few years progress has been made in identifying the molecular mechanisms of host recognition of lipid A (a component of lipopolysaccharide), the identification of the genes required for Escherichia coli lipid A biosynthesis, and the role of lipid A acylation when viable bacteria are presented to host cells. Recent data indicate that bacteria can regulate this molecule in response to different host microenvironments. Host factors that induce lipid A modifications and the resultant changes in host response remain to be determined.  相似文献   

2.
Organic-solvent-tolerant bacteria are considered extremophiles with different tolerance levels that change among species and strains, but also depend on the inherent toxicity of the solvent. Extensive studies to understand the mechanisms of organic solvent tolerance have been done in Gram-negative bacteria. On the contrary, the information on the solvent tolerance mechanisms in Gram-positive bacteria remains scarce. Possible shared mechanisms among Gram-(−) and Gram-(+) microorganisms include: energy-dependent active efflux pumps that export toxic organic solvents to the external medium; cis-to-trans isomerization of unsaturated membrane fatty acids and modifications in the membrane phospholipid headgroups; formation of vesicles loaded with toxic compounds; and changes in the biosynthesis rate of phospholipids to accelerate repair processes. However, additional physiological responses of Gram-(+) bacteria to organic solvents seem to be specific. The aim of the present work is to review the state of the art of responsible mechanisms for organic solvent tolerance in Gram-positive bacteria, and their industrial and environmental biotechnology potential.  相似文献   

3.
4.
PlsY is the essential first step in membrane phospholipid synthesis of Gram-positive pathogens. PlsY catalyzes the transfer of the fatty acid from acyl-phosphate to the 1-position of glycerol-3-phosphate to form the first intermediate in membrane biogenesis. A series of non-metabolizable, acyl-sulfamate analogs of the acyl-phosphate PlsY substrate were prepared and evaluated as inhibitors of Staphylococcus aureus PlsY and for their Gram-positive antibacterial activities. From this series phenyl (8-phenyloctanoyl) sulfamate had the best overall profile, selectively inhibiting S. aureus phospholipid biosynthesis and causing the accumulation of both long-chain fatty acids and acyl-acyl carrier protein intermediates demonstrating that PlsY was the primary cellular target. Bacillus anthracis was unique in being more potently inhibited by long chain acyl-sulfamates than other bacterial species. However, it is shown that Bacillus anthracis PlsY is not more sensitive to the acyl-sulfamates than S. aureus PlsY. Metabolic profiling showed that B. anthracis growth inhibition by the acyl-sulfamates was not specific for lipid synthesis illustrating that the amphipathic acyl-sulfamates can also have off-target effects in Gram-positive bacteria. Nonetheless, this study further advances PlsY as a druggable target for the development of novel antibacterial therapeutics, through the discovery and validation of the probe compound phenyl (8-phenyloctanoyl) sulfamate as a S. aureus PlsY inhibitor.  相似文献   

5.
6.
Recent studies have revealed an array of novel regulatory mechanisms involved in the biosynthesis and metabolism of the phospholipid cardiolipin (CL), the signature lipid of mitochondria. CL plays an important role in cellular and mitochondrial function due in part to its association with a large number of mitochondrial proteins, including many which are unable to function optimally in the absence of CL. New insights into the complexity of regulation of CL provide further evidence of its importance in mitochondrial and cellular function. The biosynthesis of CL in yeast occurs via three enzymatic steps localized in the mitochondrial inner membrane. Regulation of this process by general phospholipid cross-pathway control and factors affecting mitochondrial development has been previously established. In this review, novel regulatory mechanisms that control CL biosynthesis are discussed. A unique form of inositol-mediated regulation has been identified in the CL biosynthetic pathway, independent of the INO2-INO4-OPI1 regulatory circuit that controls general phospholipid biosynthesis. Inositol leads to decreased activity of phosphatidylglycerolphosphate (PGP) synthase, which catalyzes the committed step of CL synthesis. Reduced enzymatic activity does not result from alteration of expression of the structural gene, but is instead due to increased phosphorylation of the enzyme. This is the first demonstration of phosphorylation in response to inositol and may have significant implications in understanding the role of inositol in other cellular regulatory pathways. Additionally, synthesis of CL has been shown to be dependent on mitochondrial pH, coordinately controlled with synthesis of mitochondrial phosphatidylethanolamine (PE), and may be regulated by mitochondrial DNA absence sensitive factor (MIDAS). Further characterization of these regulatory mechanisms holds great potential for the identification of novel functions of CL in mitochondrial and cellular processes.  相似文献   

7.
Regulation of fatty acid metabolism in bacteria   总被引:3,自引:0,他引:3  
  相似文献   

8.
Palmitoylated lipid A can both protect pathogenic bacteria from host immune defences and attenuate the activation of those same defences through the TLR4 signal transduction pathway. A palmitate chain from a phospholipid is incorporated into lipid A by an outer membrane enzyme PagP, which is an 8-stranded antiparallel beta-barrel preceded by an amino-terminal amphipathic alpha-helix. The PagP barrel axis is tilted by 25 degrees with respect to the membrane normal. An interior hydrophobic pocket in the outer leaflet-exposed half of the molecule functions as a hydrocarbon ruler that allows the enzyme to distinguish palmitate from other acyl chains found in phospholipids. Internalization of a phospholipid palmitoyl group within the barrel appears to occur by lateral diffusion from the outer leaflet through non-hydrogen-bonded regions between beta-strands. The MsbA-dependent trafficking of lipids from the inner membrane to the outer membrane outer leaflet is necessary for lipid A palmitoylation in vivo. The mechanisms by which bacteria regulate pagP gene expression strikingly reflect the corresponding pathogenic lifestyle of the bacterium. Variations on PagP structure and function can be illustrated with the known homologues from Gram-negative bacteria, which include pathogens of humans and other mammals in addition to pathogens of insects and plants. The PagP enzyme is potentially a target for the development of anti-infective agents, a probe of outer membrane lipid asymmetry, and a tool for the synthesis of lipid A-based vaccine adjuvants and endotoxin antagonists.  相似文献   

9.
Intestinal aspects of lipid absorption: in review   总被引:2,自引:0,他引:2  
The rapidly evolving field of lipid absorption is reviewed with the thrust of new knowledge focused on the interpendency of the luminal and cellular phases of absorption. To date little attention has been paid to factors that regulate the phospholipid biosynthesis in the enterocyte. The availability of 20:4 omega 6 may be the rate-limiting factor for phospholipid synthesis. The source of 20:4 omega 6 is unknown, whether it be synthesized de novo the enterocyte or entirely originating from degradation of bile phospholipid. It has been established that dietary fat can modulate the enterocyte membrane lipid composition and transport properties. Specified fats such as as fish oils rich in 20:5 omega 3 and 22:6 omega 3 have been implicated as protective against hypercholesterolemia. However, the effects of these dietary fats on the transport of nutrients across the enterocyte are not yet known, nor are the mechanisms responsible for the adaptive responses of the brush border identified.  相似文献   

10.
It is known that ethanol strongly interferes with the development and activity of lactic acid bacteria in wine. In this work, it was observed that membrane composition was dependent of ethanol concentration and cell physiological state. The protein electrophoretic profile was modified in the membranes of Oenococcus oeni cultured in presence of 8 and 10% ethanol. Concerning the membrane lipid composition, it was observed that O. oeni maintained a high level of phospholipid biosynthesis via the relative increased biosynthesis of phosphoethanolamine and sphingomyelin in presence of ethanol. On the other hand, ethanol induced an increase in the membrane lactobacillic acid percentage at the expense of cis-vaccenic acid. This increased synthesis of lactobacillic acid appears as the more significant change induced by ethanol in O. oeni membrane. The increase of lactobacillic acid in the membrane of O. oeni clearly appears as a factor that provides protection against the toxic effect of ethanol, balancing the increase of membrane fluidity normally attributed to ethanol. The results presented in this paper constitute evidence that lactobacillic acid may have a part in the survival and or adaptive mechanisms developed by O. oeni under culture adverse conditions, allowing these bacteria to maintain their activity in the presence of ethanol, namely performing malolactic fermentation in wine.  相似文献   

11.
All cell membranes are composed of glycerol phosphate phospholipids, and this commonality argues for the presence of such phospholipids in the last common ancestor, or cenancestor. However, phospholipid biosynthesis is very different between bacteria and archaea, leading to the suggestion that the cenancestor was devoid of phospholipid membranes. Recent phylogenomic studies challenge this view, suggesting that the cenancestor did possess complex phospholipid membranes. Here, we discuss the implications of these recent findings for membrane evolution in archaea and bacteria, and for the origin of the eukaryotic cell.  相似文献   

12.
Lu YJ  Zhang YM  Grimes KD  Qi J  Lee RE  Rock CO 《Molecular cell》2006,23(5):765-772
It is not known how Gram-positive bacterial pathogens carry out glycerol-3-phosphate (G3P) acylation, which is the first step in the formation of phosphatidic acid, the key intermediate in membrane phospholipid synthesis. In Escherichia coli, acylation of the 1-position of G3P is carried out by PlsB; however, the majority of bacteria lack a plsB gene and in others it is not essential. We describe a two-step pathway that utilizes a new fatty acid intermediate for the initiation of phospholipid formation. First, PlsX produces a unique activated fatty acid by catalyzing the synthesis of fatty acyl-phosphate from acyl-acyl carrier protein, and then PlsY transfers the fatty acid from acyl-phosphate to the 1-position of G3P. The PlsX/Y pathway defines the most widely distributed pathway for the initiation of phospholipid formation in bacteria and represents a new target for the development of antibacterial therapeutics.  相似文献   

13.
Lipopolysaccharide (LPS) is the major surface molecule of Gram-negative bacteria and consists of three distinct structural domains: O-antigen, core, and lipid A. The lipid A (endotoxin) domain of LPS is a unique, glucosamine-based phospholipid that serves as the hydrophobic anchor of LPS and is the bioactive component of the molecule that is associated with Gram-negative septic shock. The structural genes encoding the enzymes required for the biosynthesis of Escherchia coli lipid A have been identified and characterized. Lipid A is often viewed as a constitutively synthesized structural molecule. However, determination of the exact chemical structures of lipid A from diverse Gram-negative bacteria shows that the molecule can be further modified in response to environmental stimuli. These modifications have been implicated in virulence of pathogenic Gram-negative bacteria and represent one of the molecular mechanisms of microbial surface remodeling used by bacteria to help evade the innate immune response. The intent of this review is to discuss the enzymatic machinery involved in the biosynthesis of lipid A, transport of the molecule, and finally, those enzymes involved in the modification of its structure in response to environmental stimuli.  相似文献   

14.
Phosphatidic acid (PA) is a critical metabolite at the heart of membrane phospholipid biosynthesis. However, PA also serves as a critical lipid second messenger that regulates several proteins implicated in the control of cell cycle progression and cell growth. Three major metabolic pathways generate PA: phospholipase D (PLD), diacylglycerol kinase (DGK), and lysophosphatidic acid acyltransferase (LPAAT). The LPAAT pathway is integral to de novo membrane phospholipid biosynthesis, whereas the PLD and DGK pathways are activated in response to growth factors and stress. The PLD pathway is also responsive to nutrients. A key target for the lipid second messenger function of PA is mTOR, the mammalian/mechanistic target of rapamycin, which integrates both nutrient and growth factor signals to control cell growth and proliferation. Although PLD has been widely implicated in the generation of PA needed for mTOR activation, it is becoming clear that PA generated via the LPAAT and DGK pathways is also involved in the regulation of mTOR. In this minireview, we highlight the coordinated maintenance of intracellular PA levels that regulate mTOR signals stimulated by growth factors and nutrients, including amino acids, lipids, glucose, and Gln. Emerging evidence indicates compensatory increases in one source of PA when another source is compromised, highlighting the importance of being able to adapt to stressful conditions that interfere with PA production. The regulation of PA levels has important implications for cancer cells that depend on PA and mTOR activity for survival.  相似文献   

15.
Most of the enzymes and genes required for lipid biosynthesis and degradation in the budding yeast Saccharomyces cerevisiae have now been identified and the global mechanisms that regulate their activity are being established. Synthesis of phospholipids is restricted to specific subcellular compartments, and the lipids migrate from their site of formation to their final destination. In addition to synthesis, remodelling and degradation of phospholipids controls the content of the lipid portion of cellular membranes, while highly specific phospholipases catalyse the release of lipid-based second messengers. In this review, we describe the current understanding of the organization and regulation of phospholipid metabolism in yeast, and discuss the mechanisms that have been proposed for intracellular lipid transport.  相似文献   

16.
17.
In Gram-negative bacteria, lipopolysaccharide and phospholipid biosynthesis takes place at the inner membrane. How the completed lipid molecules are subsequently transported to the outer membrane remains unknown. Omp85 of Neisseria meningitidis is representative for a family of outer membrane proteins conserved among Gram-negative bacteria. We first demonstrated that the omp85 gene is co-transcribed with genes involved in lipid biosynthesis, suggesting an involvement in lipid assembly. A meningococcal strain was constructed in which Omp85 expression could be switched on or off through a tac promoter-controlled omp85 gene. We demonstrated that the presence of Omp85 is essential for viability. Depletion of Omp85 leads to accumulation of electron-dense amorphous material and vesicular structures in the periplasm. We demonstrated, by fractionation of inner and outer membranes, that lipopolysaccharide and phospholipids mostly disappeared from the outer membrane and instead accumulated in the inner membrane, upon depletion of Omp85. Omp85 depletion did not affect localization of integral outer membrane proteins PorA and Opa. These results provide compelling evidence for a role for Omp85 in lipid transport to the outer membrane.  相似文献   

18.
Direct analysis of membrane lipids by liquid chromatography-electrospray mass spectrometry was used to demonstrate the role of unsaturation in ether lipids in the adaptation of Methanococcoides burtonii to low temperature. A proteomics approach using two-dimensional liquid chromatography-mass spectrometry was used to identify enzymes involved in lipid biosynthesis, and a pathway for lipid biosynthesis was reconstructed from the M. burtonii draft genome sequence. The major phospholipids were archaeol phosphatidylglycerol, archaeol phosphatidylinositol, hydroxyarchaeol phosphatidylglycerol, and hydroxyarchaeol phosphatidylinositol. All phospholipid classes contained a series of unsaturated analogues, with the degree of unsaturation dependent on phospholipid class. The proportion of unsaturated lipids from cells grown at 4 degrees C was significantly higher than for cells grown at 23 degrees C. 3-Hydroxy-3-methylglutaryl coenzyme A synthase, farnesyl diphosphate synthase, and geranylgeranyl diphosphate synthase were identified in the expressed proteome, and most genes involved in the mevalonate pathway and processes leading to the formation of phosphatidylinositol and phosphatidylglycerol were identified in the genome sequence. In addition, M. burtonii encodes CDP-inositol and CDP-glycerol transferases and a number of homologs of the plant geranylgeranyl reductase. It therefore appears that the unsaturation of lipids may be due to incomplete reduction of an archaeol precursor rather than to a desaturase mechanism. This study shows that cold adaptation in M. burtonii involves specific changes in membrane lipid unsaturation. It also demonstrates that global methods of analysis for lipids and proteomics linked to a draft genome sequence can be effectively combined to infer specific mechanisms of key biological processes.  相似文献   

19.
Phosphatidylcholine is a major lipid of eukaryotic membranes, but found in only few prokaryotes. Enzymatic methylation of phosphatidylethanolamine by phospholipid N-methyltransferase was thought to be the only biosynthetic pathway to yield phosphatidylcholine in bacteria. However, mutants of the microsymbiotic soil bacterium Sinorhizobium (Rhizobium) meliloti, defective in phospholipid N-methyltransferase, form phosphatidylcholine in wild type amounts when choline is provided in the growth medium. Here we describe a second bacterial pathway for phosphatidylcholine biosynthesis involving the novel enzymatic activity, phosphatidylcholine synthase, that forms phosphatidylcholine directly from choline and CDP-diacylglycerol in cell-free extracts of S. meliloti. We further demonstrate that roots of host plants of S. meliloti exude choline and that the amounts of exuded choline are sufficient to allow for maximal phosphatidylcholine biosynthesis in S. meliloti via the novel pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号