首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 326 毫秒
1.
潘超  过志鹏  付贵萍  唐佳  赵林 《微生物学通报》2023,50(11):4751-4769
【背景】近年来,随着海水养殖规模的扩大,养殖产品产生的排泄物与残留的饲料大量积累,导致养殖水域的氮磷元素含量上升,水体富营养化加剧并对环境造成危害。【目的】从红树林人工湿地中筛选出好氧反硝化聚磷菌株并研究各菌株的最佳除氮除磷效率,随后通过响应面法构建菌群,进一步强化菌株去除污染物的能力。【方法】将前期筛选出的5株耐盐异养硝化-好氧反硝化菌通过异染颗粒染色和聚-β-羟基丁酸(poly-β-hydroxybutyricacid,PHB)染色进行好氧反硝化聚磷菌的筛选,通过单因素试验明确各菌株的最佳除氮除磷条件,并利用Design-Expert软件和Box-Benhnken响应面法进行配比试验。【结果】经过筛选获得3株耐盐好氧反硝化聚磷菌,分别为肺无色杆菌(Achromobacter pulmonis) strain E43、氧化木糖无色杆菌(Achromobacterxylosoxidans)strainJ1和食油假单胞菌(Pseudomonasoleovorans)strain F2,发现菌株E43具有聚磷功能,确定了耐盐好氧反硝化聚磷菌群的最优降解投加比例为E43:J1:F2=1:1:...  相似文献   

2.
亚硝酸盐对污水生物除磷影响的研究进展   总被引:4,自引:0,他引:4  
亚硝酸盐作为生物硝化和反硝化的中间产物, 存在于污水生物脱氮除磷系统中。对于生物强化除磷工艺亚硝酸盐既是电子受体用于反硝化除磷, 同时又是抑制剂影响生物除磷过程。本文综述了聚磷菌在厌氧、好氧和缺氧环境中的代谢机理, 在此基础上分别从好氧除磷和反硝化除磷两方面介绍了亚硝酸盐对污水生物除磷影响的研究, 同时概述了亚硝酸盐对生物除磷的抑制机理, 并对该领域的研究提出了个人见解。  相似文献   

3.
碳源调控下除磷/蓄磷生物滤池的生物膜特性分析   总被引:1,自引:0,他引:1  
王凤蕊  张顺  田晴  谢学辉 《微生物学通报》2013,40(12):2227-2236
【目的】分析厌氧/好氧交替生物滤池(AABF)在生物除磷与蓄磷过程中, 采用碳源调控(定期补充进水碳源)诱导蓄磷菌群充分释磷-排磷的运行方式对滤池微生物特性的影响。【方法】通过多聚物染色、扫描电镜(SEM)以及限制性酶切多态性分析法(RFLP), 对比了碳源调控前后AABF长期运行生物膜内菌群形态、组成特征及变化。【结果】AABF在实施碳源调控期间滤池生物膜内部分微生物形态主要由杆状演变为丝状; 细菌种类大幅减少, 碳源调控过程中生物膜内优势菌β-Proteobacteria的比例由56.9%提高至72.5%。实施碳源调控后, 细菌的组成与形态变化明显。【结论】定期补充进水碳源(诱导释磷/收割磷的运行方式), 同时控制碳源投量, 能够引起生物膜微生物形态发生较大变化, 优势菌比例迅速提高。研究结果对于通过过程调控, 提高除磷工艺的设计具有重要的意义。  相似文献   

4.
生物除磷系统中积磷小月菌研究进展   总被引:1,自引:0,他引:1  
水体中磷元素超标是引起水体富营养化的重要原因,而强化生物除磷(Enhanced biological phosphorus removal,EBPR)是污水除磷最行之有效的方法。聚磷菌(Phosphate accumulating organisms,PAOs)在EBPR中发挥重要作用,本文首先概述了典型PAOs在EBPR的作用和机理:厌氧条件下,典型PAOs分解Poly-P合成聚羟基烷酸(Polyhydroxyalkanoates,PHA);好氧条件下,利用分解PHA产生的能量超量吸收磷合成Poly-P。其次评述了积磷小月菌在EBPR中的作用和机理:积磷小月菌作为PAOs的一种,在PAOs中所占比例较多,且有超强的磷去除能力,研究表明积磷小月菌体内存在PHA,但合成系统与典型PAOs不同;另外,积磷小月菌可直接利用葡萄糖作为碳源,这是典型PAOs不具备的,其超强除磷能力与积磷小月菌有效的磷转运能力和其Poly-P合成代谢能力有关。探讨并总结积磷小月菌在强化生物除磷系统中的作用和机理对进一步研究如何提高积磷小月菌的除磷效果有重要理论意义与应用价值。  相似文献   

5.
采用序批式反应器(SBR),对比厌氧/好氧(A/O)和厌氧/缺氧(A/A)2种运行模式对模拟生活和工业混合污水同时脱氮除磷的效能。结果表明:反硝化聚磷菌完全可以在厌氧/缺氧交替运行条件下得到富集,稳定运行的2种模式对有机物和P的去除率分别保持在90%和85%以上,且A/A SBR具有更强的释磷能力,其释磷量比A/O SBR高出1.2倍。进一步试验表明:磷的释放在有无硝酸盐的情况下效果是不同的。2个系统内污泥均有反硝化除磷能力,A/A SBR中所含反硝化聚磷菌(DPAO)的比例是A/O SBR的4.56倍。2种模式出水水质都能取得较好的效果,且能实现同步除磷脱氮,而反硝化除磷在生物除磷方面更具优势。  相似文献   

6.
强化生物除磷(EBPR)被认为是一种最经济、可持续的污水除磷工艺。近年来大量研究报道,系统中聚糖菌的大量繁殖会使除磷工艺性能变差或完全失败。介绍了聚糖菌的代谢机理和影响聚糖菌与聚磷菌之间竞争的因素(如进水基质、P/C、pH值、温度和泥龄等),便于更好地理解聚糖菌的特性,从而实现提高生物除磷系统运行的性能与稳定性。  相似文献   

7.
重金属镍(Ni)在生物除磷方面的潜在价值尚不明确,本研究旨在揭示Ni对强化生物除磷及微生物的影响。本研究调查了Ni (0.1~10 mg/L)对强化生物除磷(EBPR)的短期和长期影响,Ni对代谢中间体转化的影响,以及Ni对活性污泥关键酶活性和细胞膜完整性的影响。研究显示,与对照相比,短期内1 mg/L和10 mg/L的Ni可使除磷效率分别从99.7%降低到38.3%和0%。0.1 mg/L的Ni在短期内对磷的去除无显著影响,但处理30 d后磷完全消失。尽管活性氧的产生随着Ni浓度的增加而增加,但活性污泥中微生物的细胞膜没有受到破坏。本研究表明,短期暴露于0.1 mg/L Ni对除磷的影响可以忽略不计,但随着Ni浓度的增加,严重抑制除磷。短期暴露于10 mg/L Ni可显著抑制PPX的活性。在好氧阶段,PHA的降解受到显著抑制。长期接触Ni可导致所有EBPR系统失效,且Ni的长期存在增强了PHV和糖原的转化。说明Ni的浓度及暴露时间均可影响强化生物除磷的效果及代谢中间产物。  相似文献   

8.
采用生物蓄磷/磷移除型潮汐流人工湿地(TFCW)试验装置,探究了周期性磷移除操作过程中3种不同的有机碳源补充方式对系统运行性能的影响.结果表明: 碳源补充方式可显著影响TFCW的生物蓄磷/磷移除性能.碳源补充方式的优化有利于系统中聚磷菌群(PAOs)丰度及其活性的维持,可最大限度地提高PAOs在磷移除操作过程中的磷素释放量、胞内聚β-羟基丁酸(PHB)合成量及其对碳源的利用率,并可保障系统在生物蓄磷阶段高效且稳定的除磷效果.当生物蓄磷/磷移除(PB-PH)周期为30 d,且采用连续循环投加方式补充碳源时,TFCW在试验阶段的磷素截留量与磷素移除率分别为26994.88 mg和70.8%.典型PB-PH周期内系统在生物蓄磷过程中的磷素去除率为(91.4±2.1)%,系统中的PAOs在磷移除过程中的磷素释放量、胞内PHB合成量及其对碳源的利用率分别为(1563.72±127.84) mg、(4.52±0.39) mmol C·g-1 VSS和(97.3±1.6)%.  相似文献   

9.
反硝化聚磷菌的脱氮除磷机制及其在废水处理中的应用   总被引:9,自引:0,他引:9  
余鸿婷  李敏 《微生物学报》2015,55(3):264-272
摘要:水体富营养化是当前水污染治理的重点关注对象,利用微生物脱氮除磷开展富营养化水体治理是一种重要的技术。基于反硝化细菌和聚磷菌的脱氮除磷功能,兼具反硝化和聚磷功能的微生物研究及其在污水工艺中的应用越来越广泛。在厌氧和好氧/缺氧环境中,反硝化聚磷菌的脱氮除磷机制有很大差别,且在化学和酶学方面都有所体现。其中,质子驱动力/电子受体理论能够很好地解释反硝化聚磷的化学过程,而反硝化酶系和多聚磷酸盐激酶是酶学过程的主要参与者。当前研究已明确在不同氧含量环境中氮素对磷去除的影响机制,但是否存在磷对除氮作用的影响仍有待进一步研究。在此基础上,本文以氮-磷的偶联过程为切入点,分别从反硝化聚磷的化学过程和酶学机制方面进行简要综述。此外,介绍了反硝化聚磷菌在实验室以及工厂化污水处理中的应用近况,并提出了今后的研究重点与方向,以期为反硝化聚磷菌在环境修复中的进一步开发应用提供理论依据。  相似文献   

10.
【背景】投加微生物菌剂是强化生物处理效能的重要手段,反硝化是污水脱氮除磷的关键步骤,但目前对于反硝化微生物菌剂相关的研究报道较少。【目的】驯化高效反硝化聚磷菌菌剂,并对系统进行生物强化。【方法】采用两阶段法快速富集反硝化聚磷菌,筛选高效脱氮除磷功能菌株NC1-1并进行鉴定,以NC1-1为菌种来源制备干粉菌剂,研究菌剂强化A2SBR系统污水处理效果。【结果】历经36 d后反硝化聚磷菌富集成功,菌株NC1-1经鉴定属于戈登氏菌属,其脱氮除磷率分别为89.46%和91.68%。麦麸、玉米粉配比为85%:15%、NC1-1投菌量为20 mL、发酵液用量20 mL的条件下成功制得干粉菌剂,干粉菌剂最佳投加量为10%的A2SBR系统总磷(total phosphorus,TP)和NO3--N去除率比未投加菌剂的A2SBR系统提高12.06%和11.52%。【结论】菌剂NC1-1的投加使A2SBR系统的污染物去除效能进一步提高,研究结果为进一步研究反硝化聚磷菌菌剂提供了...  相似文献   

11.
水体富营养化是当前水环境保护工作的重点关注问题,微生物修复富营养化水体具有高效、低耗且不产生二次污染等特点,已经成为富营养化水体生态修复的一种重要方式。近年来,对反硝化聚磷菌的研究及其在污水处理工艺中的应用越来越广泛。不同于传统的反硝化细菌联合聚磷菌去除氮磷工艺,反硝化聚磷菌在交替厌氧、缺氧/好氧条件下能同时进行脱氮除磷而被广泛关注与研究。值得注意的是,近几年报道的部分微生物仅在好氧条件下就可进行同时脱氮除磷,但是其脱氮除磷机理仍未理清。基于此,文中总结了目前发现的反硝化聚磷菌和同时硝化反硝化聚磷微生物的种类及特点,并对其脱氮与除磷的关系及其机理进行了系统性分析,对目前反硝化除磷存在的问题进行了梳理,最后对今后的研究方向进行了展望,以期为完善反硝化聚磷菌的脱氮除磷机理及工艺改进提供参考。  相似文献   

12.
目的:从太湖沉积物中分离高效聚磷细菌,初步鉴定并研究其聚磷特性。方法:利用合成废水培养基完成菌株分离和纯化,通过单因素实验,研究不同条件对聚磷菌的生长和除磷效率的影响。结果:筛选到一株高效聚磷细菌WK-3并完成了分类鉴定;单因素实验结果表明,其生长的对数期为20~49 h;最适生长和聚磷的碳源为蔗糖,最大除磷率50.1%;最适生长pH为6.0,最适聚磷pH为7.0,除磷率51.2%;最适生长和聚磷的起始磷含量为3μmol/L,除磷率53.9%;最适生长和聚磷的接种量为3%,除磷率34.6%。结论:筛选到聚磷菌株WK-3,初步鉴定为微嗜酸寡养单胞菌(Stenotrophomonas acidaminiphila),确定了聚磷的碳源、pH、起始磷量、接种量条件。  相似文献   

13.
聚磷菌的诱变选育及其生长特性   总被引:5,自引:0,他引:5  
方法:采用氮离子注入技术对巢湖底泥中筛选出的一株细菌进行辐照诱变处理,选育出2株高效聚磷菌,并对这两株菌的生长特性进行了研究,根据生理生化及生长试验,并参照《伯杰氏细菌手册》进行菌种分类鉴定,这两株菌被鉴定为假单胞菌属细菌(Pseudomonas sp),并研究了菌量、温度、pH、氧、碳源对两株假单胞菌(Pseudomonas sp)的生长特性及聚磷代谢的影响。结果:试验表明,诱变后的聚磷率明显高于试验出发菌,为出发菌的1.43~3.89倍。两株菌的最适生长温度为30℃,最适pH和菌量分别为6、8和OD=0.6、0.4。最适菌量在厌氧条件下出现放磷现象,好氧条件下过量摄磷现象,经过先厌氧条件的培养其去磷率明显高于直接好氧培养条件下的去磷率,以乙酸钠为碳源时其聚磷率高于乳糖、甲醇、乙醇为碳源时的摄磷量。  相似文献   

14.
投加絮凝剂是促使微生物快速形成污泥颗粒的一种有效手段,通过研究在不同絮凝剂下生成的生物絮体的形态和沉降性能,推荐选用聚合氯化铝(PAC)作为促进光合细菌球形红细菌形成污泥颗粒的絮凝剂。PAC的最佳投加量范围为140-160mg/L,其中,PAC投加量150mg/L时,促进污泥颗粒化的效果最好。考察球形红细菌污泥颗粒降解氯苯的环境条件,结果表明球形红细菌污泥颗粒降解氯苯的最佳条件为好氧、pH7.0、30°C。  相似文献   

15.
强化生物除磷系统主要微生物及其代谢机理研究进展   总被引:1,自引:1,他引:0  
强化生物除磷(enhanced biological phosphorus removal,EBPR)工艺在废水除磷处理中应用广泛.主要功能微生物及其代谢机理的研究是有效调控EBPR工艺稳定运行与效能提升的基础.本文选取EBPR系统中最主要的两类微生物(聚磷菌和聚糖菌),从底物吸收机制、糖酵解途径、TCA途径的贡献以及聚磷菌和聚糖菌的代谢相似性等方面对这些微生物的代谢机理进行综述,评价了分子生物学技术在研究EBPR系统微生物学及其代谢机理方面的应用现状,在此基础上对EBPR系统今后的研究方向进行了展望.
  相似文献   

16.
反硝化除磷菌筛选及其特性研究   总被引:1,自引:0,他引:1  
【目的】研究反硝化除磷菌特性。【方法】通过微生物筛选和生物学特性研究方法,从对虾养殖池塘中筛选出多株可在有氧条件下同时具有反硝化除磷功能的菌种。【结果】菌株LY-1可在18 h内将初始量为10 mg/L的亚硝酸盐氮降低至0.04 mg/L,PO43?-P降低至0.05 mg/L。在DO浓度为5.0?5.9 mg/L时,该菌反硝化除磷率近100%。试验选取具有反硝化除磷功能的枯草芽孢杆菌为阳性对照菌,大肠杆菌为阴性对照菌,比较研究了菌株LY-1在不同pH、温度、盐度、PO43?-P浓度、亚硝酸盐浓度时反硝化除磷的强弱,在pH为5?9范围时,该菌亚硝酸盐氮去除率近99%,PO43?-P去除率86%;温度为30°C时,该菌反硝化除磷率近100%;盐度为5‰?15‰、PO43?-P浓度为10 mg/L、亚硝酸盐氮浓度为20 mg/L时,该菌亚硝酸盐氮和PO43?-P去除率均可达99%。【结论】菌株LY-1反硝化除磷性能显著高于对照菌(P<0.05)。通过菌株LY-1形态学观察、生理生化及16S rRNA基因序列分析,初步鉴定为蜡样芽孢杆菌(Bacillus cereus)。  相似文献   

17.
【目的】通过调整活性污泥在驯化过程中碳、氮、磷比例以及供氧模式, 以提高其积累PHB的能力。应用PCR-DGGE定期对驯化期间菌群动态进行分析。【方法】以乙酸钠为碳源, 在SBR (Sequencing batch reactor) 内以厌氧/好氧 (A/O) 交替的驯化模式, 逐级提高碳源浓度, 限制氮源浓度, 人为创造营养不均衡条件来逐步提高活性污泥积累PHB的能力。【结果】当碳浓度逐步提高, COD升高至1 200 mg/L, COD/N/P为1 200/9.6/30时, 活性污泥中PHB积累量达到最大, 占细胞干重的64.2%。【结论】驯化过程中逐步提高COD负荷, 并增加COD/N的值有利于PHB积累, 利用苏丹黑和Albert法染色显示菌群内产PHB菌占很大比例, 透射电镜显示菌体胞内含有大量白色PHB颗粒。经DGGE菌群动态分析, 发现驯化过程中菌群种类出现较为明显的演替, 而在一个反应周期(6 h)内菌种数量也有一定改变。驯化获得的高产PHB的菌群中含Acinetobacter、Bacillus、Bacteroidetes、Chryseobacteria 及proteobacteria等5个属的微生物, 菌群多样性较为丰富。  相似文献   

18.
旨在从环境样品中筛选对富营养化水体具有良好脱氮除磷效果的好氧反硝化菌。采集福州某养猪场污水处理池中的水样。通过反硝化细菌培养基培养、BTB培养基平板分离、硝酸盐还原试验和蓝白斑筛选法、异染颗粒以及聚-β-羟基丁酸(PHB)颗粒染色试验,筛选获得两株具有脱氮除磷特性的菌株,命名为N1和N2。经16S r RNA基因序列分析,N1和N2分别属于无色杆菌属(Achromobacter.sp)和短波单胞菌属(Brevundimonas.sp)。将菌株N1和N2复配,获得脱氮除磷复合菌FIM-1。考察了菌株对人工合成污水和富营养化水体脱氮除磷的效果。结果表明,两株菌在含磷量较低的水体中,对磷的去除率较高,相对于单菌,复合菌表现出更佳的脱氮除磷效果。  相似文献   

19.
采用分光光度法测定氧乐果总磷含量。该方法表明磷浓度在0~0.5μg/mL范围内与吸光度有良好的线性关系(R~2=0.999 3),加标回收率为91.8%~94.3%,相对标准偏差(n=5)小于4%。该法测得氧乐果(50 mg/L)总磷含量为0.334μg/mL。  相似文献   

20.
一株十溴联苯醚高效好氧降解菌的筛选、鉴定及降解特性   总被引:1,自引:0,他引:1  
【目的】从广东贵屿镇电子垃圾拆解地采集的沉积物样品中分离十溴联苯醚(BDE-209)高效好氧降解菌,并考察其对BDE-209的降解特性。【方法】通过生理生化实验和16S rRNA测序鉴定菌种,正交实验优化降解条件,并分析不同降解体系及影响因素对菌降解BDE-209的影响。【结果】鉴定结果显示,该BDE-209好氧降解菌为短短芽孢杆菌(Brevibacillus brevis)。B.brevis对1 mg/L BDE-209 5 d的降解率可达54.38%。正交实验结果表明,B.brevis降解BDE-209的最优条件为:pH 7,投菌量3 g/L,温度30°C。降解特性研究结果显示B.brevis对BDE-209降解的最佳菌龄为36 h,最佳氮源为(NH4)2SO4,B.brevis对Cu2+、Cd2+有较好的耐受性,但Cu2+和Cd2+的存在会影响其对BDE-209的降解。当Cu2+浓度在1 5 mg/L,Cd2+浓度在0.3 0.5 mg/L范围内时,B.brevis对BDE-209降解均可达50%以上。【结论】B.brevis对BDE-209有很好的降解效率,研究结果对BDE-209的好氧微生物降解及环境中BDE-209的生物修复具有较好的科学意义和应用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号