首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Phosphorus (P) is a major nutrient for plant growth, and it is often the primary limiting nutrient in freshwater ecosystems controlling algal blooms. The Bronx River of New York City, New York, USA includes freshwater and coastal water systems. The water quality of both fresh and saline water is lower than the standard levels designated by New York State, and classified as Class B and Class I waters, respectively. Algal blooms and oxygen depletion within the river have degraded the water quality, endangered fishing, and limited recreational use. The internal loading of P, an important bioavailability indicator in the Bronx River, is determined by the sorption processes, i.e., cycling of P between solid and liquid phases. The objectives of this study were to understand how P sorption characteristics affect the internal loading of P and the conditions that might give rise to a flux of P from sediment to the water column, and to estimate the effects of physicochemical properties of the sediments on P sorption parameters. Bed sediments were collected from 15 sites along the Bronx River, from the origin in Westchester Davis Brook, Kensico Dam through the Bronx to the Sound View Park estuary. Phosphorus sorption maximum (Smax) were significantly correlated with oxalate–extractable iron (Ox–Fe) and aluminum (Ox–Al), acid-extractable calcium (HCl–Ca) and magnesium (HCl–Mg), and total organic matter (OM), suggesting that not only metal ions affected P sorption characteristics, but OM also influenced the P sorption processes. This study also showed that originally sorbed P (S0) was significantly correlated with Ox–Fe, Ox–Al, HCl–Mg, and OM. The extremely high values of the percentage of sorbed P retained in sediments (>98% for all sites except the two estuary sites: site 13 of 88% and site 14 of 92%) suggest that a large flux of P to the water column from the sediments could potentially occur under changing hydro-climatic conditions, such as the changes in pH, ionic strength and redox conditions, which may, in turn, exacerbate eutrophic conditions and subsequent algal blooms.  相似文献   

2.
王吉鹏  吴艳宏 《生态学报》2016,36(5):1204-1214
磷(P)的生物有效性对山地生态系统的发育和稳定至关重要。由于大气CO_2浓度升高和N沉降增加,生态系统C、N和P的化学计量比失衡,P的生物有效性受到更多关注。近年来山地系统中P的研究不断深入,2004—2013年间ISI Web of Knowledge中相关研究论文几乎是此前近百年的3倍。总结了山地生态系统中P的生物有效性的特点及其对植物物种多样性和初级生产力的影响。山地生态系统P的生物有效性因垂直高差和地形梯度空间变异明显,快速物质运移和生物过程是控制山地生态系统P的生物有效性的关键因素。P的生物有效性可以影响山地生态系统物种多样性和初级生产力,其对初级生产力的限制存在于全球范围内的山地生态系统。当P的生物有效性发生改变时,山地生态系统的结构越复杂,其植物物种多样性和初级生产力的响应可能会越平缓。全球变化的重要驱动因子(如增温和N沉降增加)可以直接或间接地改变山地生态系统P的生物有效性,因此需要在山地生态系统中加强长期监测和养分控制实验,并结合新型P分析技术,以期认识山地生态系统P的生物有效性的现状、变化趋势和对生态系统的影响,从而为适应全球变化背景下山地生态系统养分状况的改变提供依据。  相似文献   

3.
富营养化水体沉积物中磷的释放及其影响因素   总被引:71,自引:5,他引:71  
综述了富营养化水体沉积物中磷的化学形态、释放规律及其影响因素。化学形态分为水溶性磷、铝磷、铁磷、钙磷、还原态可溶性磷、闭蓄磷、有机磷等 7种 ,其分布取决于各形态磷的性质。磷释放受 7种因素影响 ,厌氧、高 pH或低 pH值、高温、扰动、生物活动、底泥与水体含磷量的浓度差值以及钙质沉积物组分等因素均能促进沉积物中磷的释放。  相似文献   

4.
黄东海陆架区沉积物中磷的形态分布及生物可利用性   总被引:1,自引:0,他引:1  
张小勇  杨茜  孙耀  黄建生 《生态学报》2013,33(11):3509-3519
采用1992年Ruttenberg连续提取法(SEDEX)将黄东海陆架区沉积物中的磷分为交换态磷(Ex-P),Fe结合态磷(Fe-P),自生磷(Au-P),碎屑磷(De-P),有机磷(Or-P),分析了各形态磷的平面和垂直分布特征;利用沉积物年代序列测定的结果,探讨了柱状沉积物中不同形态磷的含量变化,并进一步分析了该区域磷形态的生物可利用性.结果表明,黄东海陆架区表层沉积物各形态磷平均含量为:Au-P(140.72 μg/g)>De-P(59.23 μg/g)>Or-P(32.69 μg/g)>Fe-P(29.91 μg/g)>Ex-P(5.92 μg/g);各形态磷在沉积时间序列上分布不同,反映了不同时期人类活动和气候环境等因子对磷埋藏量影响的不同,其中Au-P在长江口H1-18站位含量比南黄海中部3个站位要低得多;调查区表层潜在生物有效磷为13.55%左右,仅仅占沉积磷中的一小部分.  相似文献   

5.
长江口崇明东滩湿地沉积物对磷的吸附特征   总被引:8,自引:0,他引:8  
研究了崇明东滩湿地低(S1)、中(S2)、高(S3)潮滩沉积物对磷的吸附特征。结果表明,沉积物吸磷过程主要发生在前24 h内,随后近于达到平衡状态。沉积物对PO43--P的平均吸附速率在0~0.5 h内最大,均超过了140 mg.kg-1.h-1;快速吸附过程主要发生在前11 h,前11 h的平均快速吸附速率表现为S1>S3>S2,且沉积物中细颗粒成分越多,沉积物对PO43--P的平均快速吸附速率越大。沉积物对磷的吸附等温线符合Langmuir吸附等温方程,根据Langmuir方程计算,沉积物对磷的吸附容量均>200 mg.kg-1,同时沉积物对PO43--P的吸附容量也表现为S1>S3>S2。原因可能同S1中细颗粒成分、有机碳和常量金属元素(Al、Ca、Fe、Mg)的百分含量较多而S2中细颗粒成分、有机碳和常量金属元素的百分含量较少有关。温度和pH值也影响沉积物对PO43--P的吸附作用。  相似文献   

6.
In this research, we measured the iron bioavailability of ferrous gluconate stabilized with glycine (SFG) when it is used to fortify petit suisse cheese using the prophylactic-preventive method in rats. Three groups of male, weaned rats received a basal diet (control diet; 5.2 ppm Fe), a reference standard diet (SO4Fe; 9.2 ppm Fe), and a basal diet using iron-fortified petit suisse cheese as the iron source (cheese diet; 8.8 ppm Fe) for 22d. The iron bioavailability was calculated as the ratio between the mass of iron incorporated into hemoglobin and the total iron intake per animal during the treatment. These values (BioFe) were 68% and 72% for SFG and ferrous sulfate, respectively. The value of the Relative Biological Value (RBV) was 95% for SFG in petit suisse cheese. These results show that according to this method, the iron bioavailability from industrial fortified petit suisse cheese can be considered as a high bioavailability rate.  相似文献   

7.
We determined phosphate uptake by calcareous sediments at two locations within a shallow lagoon in Bermuda that varied in trophic status, with one site being mesotrophic and the other being more eutrophic. Phosphate adsorption over a six hour period was significantly faster in sediments from the mesotrophic site. Uptake at both sites was significantly less than that reported for a similar experiment on calcareous sediments in an oligotrophic lagoon in the Bahamas. The difference in phosphorus adsorption between our sites did not appear to be related to sediment characteristics often cited as important, such as differences in surface area (as inferred from grain size distributions), total organic matter content, or iron content. However, the sediment total phosphorus contents were inversely related to phosphorus uptake at our sites in Bermuda, and at the previously studied Bahamas site.We hypothesize that phosphate uptake in these calcareous sediments is a multi-step process, as previously described for fluvial sediments or pure calcium carbonate solids, with rapid initial surface chemisorption followed by a slower incorporation into the carbonate solid-phase matrix. Accordingly, sediments already richer in solid phase phosphorus take up additional phosphate more slowly since the slower incorporation of surface-adsorbed phosphate into the carbonate matrix limits the rate of renewal of surface-reactive adsorption sites.Although carbonate sediments are a sink for phosphate, and thereby reduce the availability of phosphorus for benthic macrophytes and phytoplankton in the shallow overlying water, phosphate uptake by these sediments appears to decrease along a gradient from oligotrophic to eutrophic sites. If our result is general, it implies a positive feedback in phosphorus availability, with a proportionately greater percentage of phosphorus loading being biologically available longer as phosphorus loading increases. This pattern is supported by the significantly higher tissue phosphorus content of the seagrass,Thalassia testudinum, collected from the eutrophic inner bay site. Over time, this effect may tend to cause a shift from phosphorus to nitrogen limitation in some calcareous marine environments.  相似文献   

8.
Bio-availability of phosphorus in sediments of the western Dutch Wadden Sea   总被引:6,自引:0,他引:6  
The purpose of this study was to make a prognosis of the effects of extended purification of terrestrial waste water, reaching the Wadden Sea by the River Rhine and Lake IJssel, on the phosphate concentration in the western Wadden Sea.The quantities of different phosphorus fractions in intertidal and subtidal sediments of the Marsdiep tidal basin (western Dutch Wadden Sea) were measured. Different methods are applied to determine the amount of phosphorus that can be released from these sediments. The direct bioavailability is determined by inoculating sediment suspensions with a natural mixture of precultured micro-organisms from the sampling area. A second approach is the measurement of the phosphate release under different redox conditions. Sequential extraction of sediment samples with different solvents is also applied. Under the present conditions and compared to the nutrient loads from fresh water (Lake IJssel) and from the North Sea, the phosphorus stored in the sediments of the western Dutch Wadden Sea plays a minor role in the total supply to micro-algae and bacteria. The bulk of the biologically available phosphorus in the sediments originates from the metal-associated fraction. Releasable phosphate may contribute to the local annual primary production to an extent of ca 45 to ca 150 g C m–2 a–1. The total amount of phosphorus in the sediment (mainly calcite associated) is twice to 6 times the biologically available amount.  相似文献   

9.
Contaminated sediments have been found in almost all water bodies which have at some time received, or are presently receiving, waste inputs from urban and industrial sources. In the Laurentian Great Lakes, sediments are classified as contaminated from bulk chemical analysis. The chemical criteria used to evaluate these results are somewhat arbitrary and only partially consider biological impacts. The absence of adequate linkage among sediment contamination, bioavailability, effects on organisms, populations, and ultimately ecosystem health, represents a major barrier to the restoration and protection of aquatic ecosystems.An integrated strategy for the assessment and delineation of contaminated sediments is proposed which provides a comprehensive evaluation of impact, as well as a cost-effective sampling and testing program. The strategy incorporates the triad approach and is to be executed in two stages. Both stages use physical, chemical and biological information; however, the second stage requires more sampling and analyses to specify the severity and extent of the associated problems. To illustrate the type of output anticipated if the strategy is used, data assembled from the Detroit River are presented. They demonstrate that combined analysis of physical, chemical and biological data can be used to link cause and effect between sediment contaminants and benthic communities.  相似文献   

10.
Munawar  M.  Gregor  D.  Daniels  S. A.  Norwood  W. P. 《Hydrobiologia》1989,(1):497-507
Biological impact assessment of sediment-bound contaminants is currently considered essential in addition to routine chemical characterization. Conventional methods of sediment bioassessment require relatively large quantities of the sample. When sample sizes are limited however, these methods become ineffective. To overcome this problem, the Limited Sample Bioassay (LSB) technique was developed. Bioassays conducted with bottom sediments and suspended particulates from western, central and Arctic regions of Canada indicated that the newly developed LSB technique successfully evaluated the contaminant/nutrient impact on laboratory-grown cultures of algae. The LSB method produced results which were comparable to those from standard elutriate bioassays conducted with natural phytoplankton size assemblages. The data suggest that the LSB can play an important role in providing a quick, simple, sensitive, and inexpensive screening technique for assessing the bioavailability of contaminants (or nutrients) from sediment of limited quantity.  相似文献   

11.
In this research, we measure the iron bioavailability of micronized ferric orthophosphate when it is used to fortify low-fat fluid milk enriched with calcium and petit suisse cheese using the prophylactic-preventive method in rats. Four groups of male weaned rats received a basal diet (control diet; 6.5 ppm Fe), a reference standard diet (SO4Fe; 18.2 ppm Fe), a basal diet using iron-fortified fluid milk as the iron source (milk diet; Fe ppm 17.9), and a basal diet using iron-fortified petit suisse cheese as the iron source (cheese diet; 18.0 ppm Fe) for 22 d. The iron bioavailability of the different sources was calculated as the ratio between the mass of iron incorporated into hemoglobin during the experiment and the total iron intake per animal. The relative biological values with regard to the reference standard (RBV%) were 61% and 69% for the milk and cheese diet, respectively. These results show that according to this method, the iron bioavailability in both fortified foods can be considered as medium bioavailability rates.  相似文献   

12.
Abstract

Samples taken from polluted creek sediments were dried at temperatures between 20°C and 100°C (either in air or under a nitrogen atmosphere) and selective chemical extraction procedures were then used to examine the effect of drying temperature and oxidation on the bonding mode distribution patterns of Zn, Pb, Cd and Cu. Exposure to air during the drying stage tended to increase the fraction of total metal which was less firmly bound (i.e. ion exchangeable, weakly sorbed). Less metal was present in these categories when higher drying temperatures were used, and temperature changes had a larger effect when the samples were dried under nitrogen. The drying process appears to promote metal migration to phases having a stronger bonding power. In most of the samples studied, heating caused Pb to migrate to the carbonate phase while accumulation in the organic/sulfide phases was the dominant process for Cu and Cd. In the case of Zn, migration to the carbonate phase was favoured in some studies (e.g. using air-dried samples), in other sediments the migration end-point was the organic/sulfide phases. During storage of dried samples at room temperature for prolonged periods (e.g. months) the amount of less firmly bound metal tended to increase, and nullified the distribution changes induced by drying. The effect was most pronounced in the case of Cd. The study highlights that significant errors in metal distribution pattern analyses can arise from sample preparation procedures and it has provided information on the possible mobilisation of metal when dredged sediment is land-dumped, i.e. allowed to dry in air.  相似文献   

13.
对2002年7月至2003年7月间采集的柘林湾表层沉积物样品中的总磷(TP)、有机磷(OP)及各形态无机磷进行分析。结果表明,各形态磷的空间分布与调查海区沉积物粒径有关,并受沿岸污水排放及近岸养殖排污等人为活动的影响。表层沉积物各形态磷的平面分布基本呈现为湾内(除S1、S7站外)高于湾外的总体趋势。无机磷中以自生磷(Au-P)为主要存在形态,占总磷的47.3%,有机磷(OP)含量次之,占总磷的19.5%,铁结合磷(Fe-P)最低。其中,生物可利用磷(包括Ex-P、Fe-P、OP和部分Au-P)占TP的35.7%~83.0%,在国内外海湾中处于较高水平。  相似文献   

14.
We examined forms of solid phosphorus fractions in intertidal marsh sediments along a salinity (0–22%.) gradient in a river-dominated estuary and in a marine-dominated salt marsh with insignificant freshwater input. Freshwater marsh sediments had the highest ratio of organic N:P of between 28:1 and 47:1 mol:mol, compared to 211 to 311 molmol in the saltmarshes, which is consistent with a trend toward P-limitation of primary production in freshwater and N-limitation in salt marshes. However, total P concentration, 24.7±11.1mol P g dw–1 (±1 SD) averaged over the upper meter of sediment, was greatest in the freshwater marsh where bioavailablity of P is apparently limited. In the freshwater marsh the greatest fraction of total P (24–51%.) was associated with humic acids, while the importance of humic-P decreased with increasing salinity to 1–23%. in the salt marshes. Inorganic P contributed considerably less to total sediment P in the freshwater marsh (15–40%.) than in the salt marshes (33–85%.). In reduced sediments at all sites, phosphate bound to aluminum oxides and clays was an important inorganic P pool irrespective of salinity. Inorganic P associated with ferric iron [Fe(III)] phases was most abundant in surface sediments of freshwater and brackish marshes, while Ca-bound P dominated inorganic P pools in the salt marshes. Thus, our results showed that particle-bound P in marsh sediments exhibited changes in chemical association along the salinity gradient of an estuarine system, which is a likely consequence of changes in ionic strength and the availability of iron and calcium.  相似文献   

15.
Doremus  Craig  Clesceri  Lenore S. 《Hydrobiologia》1982,91(1):261-268
Rapid microbial metabolism and a large phosphorus uptake potential were observed in surface sediments of Lake George, New York. This sediment (termed the flocculent layer) also exhibited a phosphorus limited condition and a large reservoir of inorganic phosphorus associated with humic substances. These observations suggest that the empirically observed phosphorus retention in oligotrophic lake sediments may be promoted by a rapid cycling of phosphorus between microflora and its associated organic matter.  相似文献   

16.
Krogerus  Kirsti  Ekholm  Petri 《Hydrobiologia》2003,492(1-3):15-28
In shallow lakes, the cycling of P between water and bottom sediments is strongly influenced by wind-induced resuspension of particulate matter. The significance of this P flux as an algal nutrient source is unclear. We examined gross sedimentation in 3 open and shallow agriculturally loaded lakes. In addition, we estimated the potential P-release from settling and bottom matter by laboratory tests. The mean daily rate of gross sedimentation was 21–170 g m–2 d–1 of dry sediment, 0.04–0.18 g m–2 d–1 of P and 0.18–2.0 g m–2 d–1 of N; being the highest in the shallowest and most eutrophic lake. In Lake Karhijärvi, where the most intensive measurements were taken, wind explained the temporal variation in the gross sedimentation to some extent. The settling matter consisted of inorganic particles low in nutrients, especially during peak sedimentation periods. On average, 7.7 ± 3.1% (x ± 95% confidence interval) of the P in the settling matter in L. Karhijärvi was in an algal-available form according to 2–3 week bioassays. In the bottom matter of the three lakes, 3.0 ± 1.7% and 2.5 ± 3.6%, and 4.3 ± 3.7% of the P was utilized by the algae. In L. Karhijärvi, resuspension of the potentially available P exceeded 20 times the external loading during the open water season. According to sorption tests, P is released from the bottom matter only when the concentration of o-P is <2 g l–1. Although such a low value cannot be determined with common analytical procedures, it seems probable that the P concentration allows P desorption during P-limited periods. However, the significance of resuspended matter as an algal nutrient source calls for further research.  相似文献   

17.
Sorption of phosphate by sediments as a result of enhanced external loading   总被引:3,自引:3,他引:0  
In artificial test ditches, originally poor in nutrients, the effects of enhanced external loading with phosphorus were studied. An important term in the mass balance of phosphorus is retention by sediment. Parameters concerning the uptake of phosphorus by the sandy sediment of a ditch have been measured or were obtained from curve-fitting and were used in a mathematical model to describe diffusion into the sediment and subsequent sorption by soil particles.On a time scale of hours uptake of phosphorus from the overlying water by intact sediment cores could be simulated well with a simple diffusion-adsorption model. Mixing of the overlying water resulted in an enhanced uptake rate caused by an increased effective diffusion coefficient in the top layer of the sediment.Laboratory experiments revealed that after a fast initial adsorption, a slow uptake process followed that continued for a period of at least several months. This slow sorption can immobilize a substantial part of the phosphorus added. It may physically be described as an intraparticular diffusion process, in which the adsorbed phosphate penetrates into metaloxides, probably present as sand grain coating, and thereby reaches sorption sites not immediately accessible otherwise.The total sorption capacity of the soil particles is ca. 3.3 times the maximum instantaneous surficial adsorption capacity.  相似文献   

18.
This study investigated the effects of competition between binding substrates (organic matter and iron oxide) and between metals (cadmium and copper), on the partitioning of sedimentary copper and its subsequent bioavailability to an aquatic plant. Organic matter and a synthesized iron oxide, ferrihydrite, were added singly and in combination to a series of sand sediments, which were then dosed with environmentally realistic concentrations of cadmium and copper and planted with rice,Oryza sativa. Organic matter controlled copper partitioning and bioavailability, whereas the synthetic ferrihydrite bound negligible amounts of either metal, even in the absence of organic matter. As organic matter concentrations increased, operationally-defined leachable copper decreased, organic-associated copper increased and the survival of rice plants improved in an approximately linear fashion. At a nominal starting copper concentration of 5.8 μg g dry wt−1, plant survival after four weeks averaged 0–8% in sediments without organic matter, 25% in a sediment containing 0.18% organic matter and 58% in a sediment containing 0.36% organic matter. These results suggest that organic-associated forms of copper are unavailable to plants, and that the operational definition of ‘leachable’ copper (extracted with dilute ammonium acetate) adequately represents the species of copper that is (are) available to plants. Our study using a well-characterized artificial sediment supports the copper fractionation patterns and correlations between copper partitioning and bioavailability reported from the heterogeneous, poorly characterized sediments of natural lake and river sediments.  相似文献   

19.
Liam A. Kelly 《Hydrobiologia》1993,253(1-3):367-372
Aquaculture is an increasingly significant user of freshwater resources in Scotland. In 1989, the total fish biomass produced in Scottish freshwater amounted to 7000 t. 50% of this total was reared in floating cage systems situated in lochs (lakes). Both solid (mainly in the form of uneaten feeds and faecal matter) and dissolved byproducts of the production cycle enter the limnetic environment untreated. Much solid waste material accumulates directly on the sediments beneath the cage systems. This leads to a localised enrichment in nutrient elements of the sedimentary environment. The experiments served to quantify rates of total phosphorus (TP) and dissolved reactive phosphorus (DRP) release from undercage and control sites, and to relate such releases to the biological availability of the released P. Results indicate significantly higher levels of NH4Cl-extractable P in sediments affected by waste deposition from fish cages. TP and DRP release, and greater growth of Chla are obtained from undercage cores compared with control sites. No link between extractable-P content of sediments, or release rate and Chla production was established.  相似文献   

20.
Abstract

The effect of drying temperature and oxidation on the level of exchangeable ammonium ion found in sediments has been examined using samples collected from along a polluted creek and from shallow lake bays. The sediments were dried at temperatures between 20°C and 100°C (either in air or under a nitrogen atmosphere), and the ammonium ion content was extracted into 0.1 M KCl prior to analysis using an ion selective electrode. Exposure to air during the drying stage usually resulted in lower ammonium values, while increasing the drying temperature altered the amount of displaceable (i.e. available) ammonium ion extracted, generally in an upward direction. The amount detected (5–25 μ g?1) varied between sites, and surface sediment values differed from the 10–50 cm core material results. The pH of the extracts varied with the drying temperature used, indicating that the heating process promoted some chemical changes in the test samples. The study has demonstrated that in nutrient level surveys, the analytical data produced can depend greatly on the sample preparation procedure selected. It also indicated the type of changes which could occur when dredged sediments are land dumped.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号