首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: It is well established that ischemia-induced release of glutamate and the subsequent activation of postsynaptic glutamate receptors are important processes involved in the development of ischemic neuronal damage. Moderate intraischemic hypothermia attenuates glutamate release and confers protection from ischemic damage, whereas mild intraischemic hyperthermia increases glutamate release and augments ischemic pathology. As protein kinase C (PKC) is implicated in neurotransmitter release and glutamate receptor-mediated events, we evaluated the relationship between intraischemic brain temperature and PKC activity in brain regions known to be vulnerable or nonvulnerable to transient global ischemia. Twenty minutes of bilateral carotid artery occlusion plus hypotension were induced in rats in which intraischemic brain temperature was maintained at 30°C, 37°C, or 39°C. Prior to and following ischemia, brain temperature was 37°C in all groups. Cytosolic, membrane-bound, and total PKC activities were determined in hippocampal, striatal, cortical, and thalamic homogenates at the end of ischemia and at 0.25–24 h of recirculation. PKC activity of control rats varied by region and were affected by altered brain temperature. For both membrane-bound and cytosolic PKC, there was a significant temperature effect, and for membrane-bound PKC there was also a significant effect of region. Rats with normothermic ischemia (37°C) showed extensive depressions of all PKC fractions. Hippocampus and striatum were noteworthy for depressions in PKC activity extending from the earliest (15 min) to the latest (24 h) recirculation times studied, whereas cortex showed PKC depressions chiefly during the first hour of recirculation, and the thalamic pattern was inconsistent. In contrast, in rats with hypothermic ischemia (30°C), significant overall effects were noted only for total PKC in thalamus, which showed depressed levels at both 1 and 24 h of recirculation. Rats with hyperthermic (39°C) ischemia also showed significant overall effects for the time course of membrane-bound, cytosolic, and total PKC activities in the hippocampus, striatum, and cortex. However, no significant reductions in PKC indices were observed in the thalamus. For membrane-bound PKC, significant temperature effects were noted for hippocampus, striatum, and cortex, but not for thalamus. For cytosolic, as well as total PKC, activity, significant temperature effects were noted for all four brain regions. Our results indicate that ischemia, followed by reperfusion, induces a significant reduction in PKC activity and that this process is highly influenced by the brain temperature during ischemia. Furthermore, our data also establish that differences exist in the response of PKC to ischemia/recirculation in vulnerable versus non-vulnerable brain regions. These results suggest that PKC alterations may be an important factor involved in the modulatory effects of temperature on the outcome following transient global ischemia.  相似文献   

2.
Abstract: Posttraumatic hypothermia reduces the extent of neuronal damage in remote cortical and subcortical structures following traumatic brain injury (TBI). We evaluated whether excessive extracellular release of glutamate and generation of hydroxyl radicals are associated with remote traumatic injury, and whether posttraumatic hypothermia modulates these processes. Lateral fluid percussion was used to induce TBI in rats. The salicylate-trapping method was used in conjunction with microdialysis and HPLC to detect hydroxyl radicals by measurement of the stable adducts 2,3- and 2,5-dihydroxybenzoic acid (DHBA). Extracellular glutamate was measured from the same samples. Following trauma, brain temperature was maintained for 3 h at either 37 or 30°C. Sham-trauma animals were treated in an identical manner. In the normothermic group, TBI induced significant elevations in 2,3-DHBA (3.3-fold, p < 0.01), 2,5-DHBA (2.5-fold, p < 0.01), and glutamate (2.8-fold, p < 0.01) compared with controls. The levels of 2,3-DHBA and glutamate remained high for approximately 1 h after trauma, whereas levels of 2,5-DHBA remained high for the entire sampling period (4 h). Linear regression analysis revealed a significant positive correlation between integrated 2,3-DHBA and glutamate concentrations ( p < 0.05). Posttraumatic hypothermia resulted in suppression of both 2,3- and 2,5-DHBA elevations and glutamate release. The present data indicate that TBI is followed by prompt increases in both glutamate release and hydroxyl radical production from cortical regions adjacent to the impact site. The magnitude of glutamate release is correlated with the extent of the hydroxyl radical adduct, raising the possibility that the two responses are associated. Posttraumatic hypothermia blunts both responses, suggesting a mechanism by which hypothermia confers protection following TBI.  相似文献   

3.
Abstract: We evaluated the changes of interstitial N -acetylaspartate (NAA) concentration ([NAA]e) in rat striatum by microdialysis following transient global ischemia and depolarization. The dialysate NAA concentration ([NAA]d) values were corrected for the in vivo recovery to obtain [NAA]e, by the use of [3H]mannitol in the perfusion fluid. During global ischemia the relative loss (RL) of [3H]mannitol decreased to 40% of preischemic values, reflecting the decrease in extracellular volume fraction. During reperfusion RL of [3H]mannitol quickly normalized. The [NAA]d doubled during transient ischemia, which, after correction for in vivo recovery, corresponds to a fivefold increase in [NAA]e ( p < 0.05). Reperfusion induced a >10-fold increase of [NAA]e ( p < 0.01) with subsequent normalization after 45 min. KCI at 100 m M caused a reversible 50% reduction in RL of [3H]mannitol and a three times increase in [NAA]e ( p < 0.05) but no further increase when normal perfusate was reintroduced. The mechanisms of NAA release from neurons are unknown but may involve the activation of unknown channels/carriers—possibly in relation to a volume regulatory response. The present study shows that the distribution of NAA in brain is dynamically regulated in acute ischemia and suggests that changes of NAA levels could be caused by other means than neuronal loss.  相似文献   

4.
Abstract: Proteolytic degradation of numerous calpain substrates, including cytoskeletal and regulatory proteins, has been observed during brain ischemia and reperfusion. In addition, calpain inhibitors have been shown to decrease degradation of these proteins and decrease postischemic neuronal death. Although these observations support the inference of a role for μ-calpain in the pathophysiology of ischemic neuronal injury, the evidence is indirect. A direct indicator of μ-calpain proteolytic activity is autolysis of its 80-kDa catalytic subunit, and therefore we examined the μ-calpain catalytic subunit for evidence of autolysis during cerebral ischemia. Rabbit brain homogenates obtained after 0, 5, 10, and 20 min of cardiac arrest were electrophoresed and immunoblotted with a monoclonal antibody specific to the μ-calpain catalytic subunit. In nonischemic brain homogenates the antibody identified an 80-kDa band, which migrated identically with purified μ-calpain, and faint 78- and 76-kDa bands, which represent autolyzed forms of the 80-kDa subunit. The average density of the 80-kDa band decreased by 25 ± 4 ( p = 0.008) and 28 ± 9% ( p = 0.004) after 10 and 20 min of cardiac arrest, respectively, whereas the average density of the 78-kDa band increased by 111 ± 50% ( p = 0.02) after 20 min of cardiac arrest. No significant change in the density of the 76-kDa band was detected. These results provide direct evidence for autolysis of brain μ-calpain during cerebral ischemia. Further work is needed to characterize the extent, duration, and localization of μ-calpain activity during brain ischemia and reperfusion as well as its role in the causal pathway of postischemic neuronal injury.  相似文献   

5.
Abstract: To find a biochemical basis for the increased tolerance of the brain to anoxia during barbiturate anesthesia, we studied whole-brain free fatty acids (FFA) at various times after decapitation of awake and pentobarbital-anesthetized rats. Post-decapitation, the brains were kept at 37°C for 1 to 60 min before freezing in liquid N2. Nonischemic brains were frozen in liquid N2, using a rapid sampling technique. Whole-brain arachidonic, stearic, oleic, linoleic, and palmitic acids were quantitated by gas-liquid chromatography. In unanesthetized, nonischemic brain, total FFA was 1226 ± 121 nmol/g brain ( n = 12) and was unaffected by pentobarbital anesthesia (1126 ± 86 nmol/g brain, n = 11), except for a reduction in arachidonic acid. Total FFA in unanesthetized and pentobarbital-anesthetized rats transiently declined between 0 and 1 min of ischemia, and then rose linearly for up to 60 min, with consistently lower values in pentobarbital-treated rats, the greatest attenuation being that of arachidonic and stearic acid liberation. Brain FFA liberation during global ischemia is the first known biochemical variable directly correlated with the duration (i.e., severity) of global ischemia. The attenuation of brain FFA liberation and especially of arachidonic and stearic acids may be the biochemical basis of barbiturate attenuation of ischemic brain injury.  相似文献   

6.
Thirty minutes of total cerebral ischemia (decapitation) decreased total glutathione (GSH + GSSG) by 7% but had no detectable effect on the concentration of oxidized glutathione (GSSG), reduced ascorbate, or total ascorbate. In a model of reversible, bilateral hemispheric ischemia (four-vessel occlusion) no changes in glutathione or ascorbate were detected after 30 min of ischemia. During 24 h of reperfusion following such an insult no detectable change in total ascorbate, reduced ascorbate, or oxidized glutathione was noted; however, total brain glutathione declined by 25%. The findings are discussed in relation to the hypothesis that the deleterious effects of ischemia are due to an increase in free radical production which in turn leads to increased lipid peroxidation.  相似文献   

7.
Abstract: We have reported previously that posttreatment with N G-nitro-L-arginine methyl ester (L-NAME), an inhibitor of the nitric oxide synthase, reduced the volume of cortical and striatal infarct induced by middle cerebral artery occlusion in rats. In the present study, we investigated the mechanisms by which L-NAME (3 mg/kg i.p.) is neuroprotective in this model of cerebral ischemia. First, we have shown the reversal of the neuroprotective effect of L-NAME by a coinjection of L-arginine. Second, in order to determine by which mechanism nitric oxide exacerbates neuronal damage produced by focal cerebral ischemia, we studied the effect of the inhibition of nitric oxide synthase by L-NAME on the histological consequences of a focal injection of N -methyl-D-aspartate (NMDA) in the striatum, and on the striatal overflow of glutamate and aspartate induced either by K+ depolarization or by focal cerebral ischemia. We have found that L-NAME treatment reduced the excitotoxic damage produced by NMDA injection. By using microdialysis, we have shown that the K+- and the ischemia-induced glutamate efflux was reduced by 52 and 30%, respectively, after the L-NAME treatment. These results indicate that nitric oxide synthesis induced by the NMDA receptor overstimulation is one of the major events leading to neuronal damage. One possible mechanism by which nitric oxide may contribute to the excitotoxic process is by facilitating the ischemia-induced glutamate overflow.  相似文献   

8.
-phenyl-tert-butyl-nitrone (PBN) a spin adduct forming agent is believed to have a protective action in ischemia-reperfusion injury of brain by forming adducts of oxygen free radicals including ±OH radical. Electron paramagnetic resonance (EPR) has been used to both detect and monitor the time course of oxygen free radical formation in the in vivo rat cerebral cortex. Cortical cups were placed over both cerebral hemispheres of methoxyflurane anesthetized rats prepared for four vessel occlusion-evoked cerebral ischemia. Prior to the onset of sample collection, both cups were perfused with artificial cerebrospinal fluid (aCSF) containing the spin trap agent -(4-pyridyl-1-oxide)-N-tert butylnitrone (POBN 100 mM) for 20 min. In addition 50 mg/kg BW of POBN was administered intraperitoneally (IP) 20 min prior to ischemia in order to improve our ability to detect free radical adducts. Cup fluid was subsequently replaced every 15 min during ischemia and every 10 min during reperfusion with fresh POBN containing CSF and the collected cortical superfusates were analyzed for radical adducts by EPR spectroscopy. After a basal 10 min collection, cerebral ischemia was induced for 15 or 30 min (confirmed by EEG flattening) followed by a 90 min reperfusion. -OH radical adducts (characterized by six line EPR spectra) were detected during ischemia and 90 min reperfusion. No adduct was detected in the basal sample or after 90 min of reperfusion. Similar results were obtained when diethylenetriaminepenta-acetic acid (100 μM; DETAPAC) a chelating agent was included in the artificial CSF. Systemic administration of PBN (100 mg/kg BW) produced a significant attenuation of radical adduct during reperfusion. A combination of systemic and topical PBN (100 mM) was required to suppress -OH radical adduct formation during ischemia as well as reperfusion. PBN free radical adducts were detected in EPR spectra of the lipid extracts of PBN treated rat brains subjected to ischemia/reperfusion. Thus this study suggests that PBN's protective action in cerebral ischemia/reperfusion injury is related to its ability to prevent a cascade of free radical generation by forming spin adducts.  相似文献   

9.
《Free radical research》2013,47(4):255-265
α-phenyl-tert-butyl-nitrone (PBN) a spin adduct forming agent is believed to have a protective action in ischemia-reperfusion injury of brain by forming adducts of oxygen free radicals including ±OH radical. Electron paramagnetic resonance (EPR) has been used to both detect and monitor the time course of oxygen free radical formation in the in vivo rat cerebral cortex. Cortical cups were placed over both cerebral hemispheres of methoxyflurane anesthetized rats prepared for four vessel occlusion-evoked cerebral ischemia. Prior to the onset of sample collection, both cups were perfused with artificial cerebrospinal fluid (aCSF) containing the spin trap agent α-(4-pyridyl-1-oxide)-N-tert butylnitrone (POBN 100 mM) for 20 min. In addition 50 mg/kg BW of POBN was administered intraperitoneally (IP) 20 min prior to ischemia in order to improve our ability to detect free radical adducts. Cup fluid was subsequently replaced every 15 min during ischemia and every 10 min during reperfusion with fresh POBN containing CSF and the collected cortical superfusates were analyzed for radical adducts by EPR spectroscopy. After a basal 10 min collection, cerebral ischemia was induced for 15 or 30 min (confirmed by EEG flattening) followed by a 90 min reperfusion. -OH radical adducts (characterized by six line EPR spectra) were detected during ischemia and 90 min reperfusion. No adduct was detected in the basal sample or after 90 min of reperfusion. Similar results were obtained when diethylenetriaminepenta-acetic acid (100 μM; DETAPAC) a chelating agent was included in the artificial CSF. Systemic administration of PBN (100 mg/kg BW) produced a significant attenuation of radical adduct during reperfusion. A combination of systemic and topical PBN (100 mM) was required to suppress -OH radical adduct formation during ischemia as well as reperfusion. PBN free radical adducts were detected in EPR spectra of the lipid extracts of PBN treated rat brains subjected to ischemia/reperfusion. Thus this study suggests that PBN's protective action in cerebral ischemia/reperfusion injury is related to its ability to prevent a cascade of free radical generation by forming spin adducts.  相似文献   

10.
This study addresses the possible involvement of an agonist-induced postischemic hyperactivity in the delayed neuronal death of the CA1 hippocampus in the rat. In two sets of experiments, dialytrodes were implanted into the CA1 either acutely or chronically (24 h of recovery). During 20 min of cerebral ischemia (four-vessel occlusion model) and 8 h of reflow, we followed extracellular amino acids and multiple-unit activity. Multiple-unit activity ceased within 20 sec of ischemia and remained zero during the ischemic insult and for the following 1 h of reflow. During ischemia, extracellular aspartate, glutamate, taurine, and gamma-aminobutyric acid increased in both acute and chronic experiments (seven- to 26-fold). Multiple-unit activity recovered to preischemic levels following 4-6 h of reflow. In the group with dialytrodes implanted acutely, the continuous increase in multiple-unit activity reached 110% of basal at 8 h of reflow. In the group with dialytrodes implanted chronically, multiple-unit activity recovered faster and reached 140% of control at 8 h, paralleled by an increase in extracellular aspartate (5.5-fold) and glutamate (twofold). In conclusion, the postischemic increase of excitatory amino acids and the recovery of the neuronal activity may stress the CA1 pyramidal cells, which could be detrimental in combination with, e.g., postsynaptic impairments.  相似文献   

11.
血脑屏障的破坏是引起脑缺血损伤及继发水肿、出血、炎症的微观原因。缺血缺氧和再灌注过程产生的自由基,以及后续基质金属蛋白酶的激活,是破坏血脑屏障结构和功能的重要分子机制。因而,在脑缺血早期及时抑制自由基产生并清除自由基,抑制基质金属蛋白酶的活性,是降低脑缺血血脑屏障损伤及其并发症的关键环节。本文将从血脑屏障损伤的角度,概述自由基与基质金属蛋白酶在脑缺血损伤过程中的作用。  相似文献   

12.
Biochemical changes in the rat brain cholinergic system during and after 60 min of ischemia were studied using a four-vessel occlusion model. Extracellular acetylcholine (ACh) concentrations in the unanesthetized rat hippocampus markedly increased during ischemia and reached a peak (about 13.5 times baseline levels) at 5-10 min after the onset of ischemia. At 2-5 h after reperfusion, extracellular ACh concentrations were reduced to 64-72% of the levels of controls. ACh levels in the hippocampus, striatum, and cortex decreased significantly during ischemia and exceeded their control values just after reperfusion. A significant increase in hippocampal ACh level after 2 days of reperfusion and a decrease in [14C]ACh synthesis from [14C]glucose in hippocampal slices excised at 2 days after reperfusion were observed. The extracellular concentrations and tissue levels of choline markedly increased after ischemia. These results show that ACh is markedly released into the extracellular space in the hippocampus during ischemia, and they suggest that ACh synthesis is activated just after reperfusion and that cholinergic activity is reduced after 2-48 h of reperfusion in the hippocampus.  相似文献   

13.
Bradykinin is considered an important mediator of the inflammatory response in both the peripheral and the central nervous system and it has attracted recent interest as a potential mediator of brain injury following stroke. Bradykinin is recognized to play an important role in ischemic brain. We investigated the effect of bradykinin postconditioning on ischemic damage after 8 min of ischemia (four-vessel occlusion) and 3 days of reperfusion. Bradykinin was administered after 2 days of reperfusion at a dose of 150 μg/kg (i.p.). Catalase (CAT) activity was significantly increased in all examined regions (cortex, hippocampus and striatum) 3 days after 8 min of ischemia, but postconditioning decreased this activity below the control values. The total activity of superoxide dismutase (SOD) 3 days after ischemia was at control level with or without postconditioning. However, the analysis of individual SODs separately revealed interesting differences; while the activity of CuZnSOD was significantly decreased 3 days after ischemia, the activity of MnSOD was significantly increased compared to control levels. In both cases, postconditioning returned SOD activity to control levels. These findings are interesting because MnSOD is a mitochondrial enzyme and its activity in the cytosol suggests that a possible mechanism of protection provided by postconditioning could include prevention of release of mitochondrial proteins to the cytoplasm, resulting in protection against the mitochondrial pathway of apoptosis. 8 min of ischemia alone caused the degeneration of 52.37% neurons in the hippocampal CA1 region 3 days later. Bradykinin used as postconditioning 2 days after the same interval of ischemia enabled the survival of more than 97% of CA1 neurons. This study demonstrated that bradykinin postconditioning induces protection against ischemic brain injury and promotes neuronal survival.  相似文献   

14.
The aim of our study was to investigate the changes of various biochemical parameters (concentrations of lactate, free arachidonate, cyclo- and lipoxygenase products) in rat brain after ischemia and reperfusion and the effects of pretreatment with the ganglioside derivative GM1-lactone on the same parameters. Ischemia was induced by reversible occlusion of common carotid arteries for 20 min, which included a final 5 min of respiration of 5% oxygen in nitrogen. Reperfusion was obtained by removing the occlusion. Pre-ischemic conditions were obtained on sham-operated animals. Animals were killed by microwave irradiation of their heads. Brain levels of lactate and of free arachidonate were markedly increased after ischemia and returned to normal values at 5 min of reperfusion. Levels of the cyclooxygenase metabolites prostaglandin F2 alpha, 6-keto-prostaglandin F1 alpha, and thromboxane B2 were increased after ischemia, whereas levels of the lipoxygenase metabolite leukotriene C4 (LTC4) did not change. After reperfusion, a very marked increase of the cyclooxygenase products occurred but not of LTC4. Treatment with GM1-lactone prevented the elevation of cyclo- and lipoxygenase metabolites especially during reperfusion, with limited effects on lactate and free arachidonate levels.  相似文献   

15.
Although considerable evidence supports a role for excitatory amino acids in the pathogenesis of ischemic neuronal injury, few in vivo studies have examined the effect of increasing durations of ischemia on the extracellular concentrations of these agents. Recently, other neurotransmitters (e.g., glycine and dopamine) have been implicated in the mechanism of ischemic neuronal injury. Accordingly, this study was undertaken to examine the patterns of changes of extracellular glutamate, aspartate, glycine concentrations in the hippocampus, and dopamine, serotonin, and dopamine metabolites in the caudate nucleus with varying durations (5, 10, or 15 minutes) of transient global cerebral ischemia as evidence to support their pathogenetic roles. Microdialysis was used to sample the brain's extracellular space before, during, and after the ischemic period. Glutamate and aspartate concentrations in the dialysate increased from baseline by 1-, 5-, and 13-fold and by 4-, 9-, and 31-fold, respectively, for the three ischemic durations. The concentrations returned to baseline rapidly after reperfusion. The peak concentrations of glutamate and aspartate were significantly higher with increasing ischemic duration. Dopamine concentrations increased by approximately 700-fold in response to all three ischemic durations and returned to baseline within 10 min of reperfusion. Glycine, in contrast, increased during ischemia by a mean of 4-fold, but remained elevated throughout the 80-min period of reperfusion. The final concentrations of glycine were significantly higher than baseline levels (p = 0.0002, Mann-Whitney test). That glutamate and aspartate concentrations in the hippocampus co-vary with the duration of global ischemia is taken as supportive evidence of their pathogenetic role in ischemic neuronal injury.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Neurologic dysfunction after cerebral ischemic insults may be due not only to neuronal death, but also to a possibly reversible failure in synaptic transmission. Because noradrenaline (NA)-inducible cyclic-AMP (cAMP) accumulation in brain may reflect the integrity of synaptic transmission mechanisms and brain viability, we studied its changes in cerebral cortex after various durations of decapitation ischemia. Unanesthetized rats were decapitated and the brains were kept at 37 degrees C for times ranging from 0 to 60 min. Cerebral cortical slices were incubated in vitro and NA (11.2 microM)-induced cAMP accumulation was evaluated over 10 min. At 0 min of ischemia, NA-induced cAMP accumulation was 56 pmol/mg protein/10 min. Between 0 and 20 min of ischemia, a linear eightfold increase, to 435 +/- 49 pmol/mg protein/10 min, occurred in NA-induced cAMP accumulation, with no further increase after longer durations of ischemia. The mechanisms modulating the increase in cortical NA-inducible cAMP accumulation with a maximum response after 20 min of ischemia remain to be defined.  相似文献   

17.
Abstract: The effect of pentobarbital on the induction of heat shock protein (HSP) 70 and heat shock cognate protein (HSC) 70 mRNAs after transient global ischemia in gerbil brains was investigated by in situ hybridization using cloned cDNA probes selective for each mRNA species. In sham control brains, HSP70 mRNA was scarcely present, whereas HSC70 mRNA was present in most cell populations. After a 5-min occlusion of bilateral common carotid arteries, HSP70 and HSC70 mRNAs were induced together in several cells and were especially dense in hippocampal dentate granule cells at 3 h, but the strong hybridization of the mRNAs continued only in hippocampal CA1 cells by 2 days. At 7 days after the ischemia, CA1 neuronal cell death was apparent, and the HSP70 mRNA disappeared and HSC70 mRNA content returned to the sham level, except for in the CA1 cells. Pretreatment with pentobarbital (40 mg/kg, i.p.) greatly reduced or inhibited the induction of HSP70 and HSC70 mRNAs at both early (3-h) and late (2-day) phases after ischemia. The drug also prevented CA1 cell death at 7 days along with the maintenance of expression of HSC70 mRNA at the sham control level. Hypothermic effects of pentobarbital were noted at 30 and 60 min after the reperfusion, whereas at 2 h there was no statistical significance between the control and drug-treated groups. The great reduction of HSP70 and HSC70 mRNA induction at both early and late phases after ischemia suggests that pentobarbital reduces intra- and/or postischemic stress and may protect CA1 cells from ischemic damage. These effects of the drug may be mainly due to its specific action rather than its hypothermic effects.  相似文献   

18.
Numerous studies support the hypothesis that reperfusion following cerebral ischemia contributes substantially to ischemic injury and that mitochondrial dysfunction plays a central role. Defining the mechanisms by which mitochondrial dysfunction occurs may be important for the development of new therapies against delayed neuronal cell death. Ischemic preconditioning (IP) increases an organ's resistance to ischemic injury. There are two windows for IPC, one that requires several hours to develop and another one with a rapid setting (rapid window). However, the rapid window only provides neuroprotection for few days. We have recently determined that this lack of chronic protection by the rapid window was due to lack of protection against mitochondrial dysfunction.  相似文献   

19.
Abstract: Using in situ DNA polymerase I-mediated biotin-dATP nick-translation (PANT) and terminal deoxynucleotidyl-transferase-mediated dUTP nick end-labeling (TUNEL), we investigated the evolution of DNA strand breaks, a marker of DNA damage, in rat brain after 1 h of middle cerebral artery occlusion and various durations of reperfusion. DNA single-strand breaks (SSBs) detected by PANT were present in neurons after as little as 1 min of reperfusion. Numbers of neurons containing an SSB increased progressively in the ischemic core but decreased in the ischemic penumbra after 1 h of reperfusion. DNA double-strand breaks (DSBs) detected by TUNEL were first seen in neurons after 1 h of reperfusion, and their numbers then increased progressively in the ischemic core, with a regional distribution similar to that of SSBs. However, the number of SSB-containing cells was greater than that of DSB-containing cells at all time points tested. SSB-containing cells detected within the first hour of reperfusion were exclusively neuronal and exhibited normal nuclear morphology. At 16–72 h of reperfusion, many SSB- and DSB-containing cells, including both neurons and astrocytes, showed morphological changes consistent with apoptosis. Gel electrophoresis of DNA isolated from the ischemic core showed DNA fragmentation at 24 h, when both SSBs and DSBs were present, but not at 1 h, when few DSBs were detected. These results suggest that damage to nuclear DNA is an early event after neuronal ischemia and that the accumulation of unrepaired DNA SSBs may contribute to delayed ischemic neuronal death, perhaps by triggering apoptosis.  相似文献   

20.
Stimulation of inositol phospholipid hydrolysis by transmitter receptor agonists was measured in slices from hippocampus, cerebral cortex, and corpus striatum at various intervals after transient global ischemia in rats. Ischemia was induced through the four-vessel occlusion model. Stimulation of [3H]inositol monophosphate formation by excitatory amino acids was greatly enhanced in hippocampal slices prepared from ischemic rats at 24 h or 7 days after reperfusion. This potentiation was more evident using ibotenic acid and was also observed in cerebral cortex, but not in corpus striatum. This regional profile correlated with the pattern of ischemia-induced neuronal damage observed under our experimental conditions. The enhanced responsiveness to excitatory amino acids was always accompanied by an increase in both basal and norepinephrine-stimulated [3H]inositol monophosphate formation. In contrast, stimulation of [3H]inositol monophosphate formation by carbamylcholine was not modified in hippocampal or cortical slices from ischemic animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号