首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
2.
3.
Diploid a/alpha Saccharomyces cerevisiae cells cease mitotic growth and enter meiosis in response to starvation. Expression of meiotic genes depends on the IME1 gene product, which accumulates only in meiotic cells. We report here an analysis of the regulatory region of IME2, an IME1-dependent meiotic gene. Deletion and substitution studies identified a 48-bp IME1-dependent upstream activation sequence (UAS). Activity of the UAS also requires the RIM11, RIM15, and RIM16 gene products, which are required for expression of the chromosomal IME2 promoter and for meiosis. Through a selection for suppressors that permit UAS activity in an ime1 deletion mutant, we identified recessive mutations in three genes, SIN3 (also called RPD1, UME4, and SDI1), RPD3, and UME6 (also called CAR80), that were previously known as negative regulators of other early meiotic genes. Mutational analysis of the IME2 UAS reveals two critical sequence elements: a G+C-rich sequence (called URS1), previously identified at many meiotic genes, and a newly described element, the T4C site, that we found at a subset of meiotic genes. In agreement with prior studies, URS1 mutations lead to elevated IME2 UAS activity in the absence of IME1. However, the URS1 mutations prevent any further stimulation of UAS activity by IME1. Repression through URS1 has been shown to require the UME6 gene product. We find that activation of the IME2 UAS by IME1 also requires the UME6 gene product. Thus, UME6 and the URS1 site both have dual negative and positive roles at the IME2 UAS. We propose that IME1 modifies UME6 to convert it from a negulator to a positive Regulor.  相似文献   

4.
In meiosis, homologous recombination preferentially occurs between homologous chromosomes rather than between sister chromatids, which is opposite to the bias of mitotic recombinational repair. The TBPIP/HOP2 protein is a factor that ensures the proper pairing of homologous chromosomes during meiosis. In the present study, we found that the purified mouse TBPIP/HOP2 protein stimulated homologous pairing catalyzed by the meiotic DMC1 recombinase in vitro. In contrast, TBPIP/HOP2 did not stimulate homologous pairing by RAD51, which is another homologous pairing protein acting in both meiotic and mitotic recombination. The positive effect of TBPIP/HOP2 in the DMC1-mediated homologous pairing was only observed when TBPIP/HOP2 first binds to double-stranded DNA, not to single-stranded DNA, before the initiation of the homologous pairing reaction. Deletion analyses revealed that the C-terminal basic region of TBPIP/HOP2 is required for efficient DNA binding and is also essential for its homologous pairing stimulation activity. Therefore, these results suggest that TBPIP/HOP2 directly binds to DNA and functions as an activator for DMC1 during the homologous pairing step in meiosis.  相似文献   

5.
6.
7.
8.
The HO gene in Saccharomyces cerevisiae is regulated by a large and complex promoter that is similar to promoters in higher order eukaryotes. Within this promoter are 10 potential binding sites for the a1-α2 heterodimer, which represses HO and other haploid-specific genes in diploid yeast cells. We have determined that a1-α2 binds to these sites with differing affinity, and that while certain strong-affinity sites are crucial for repression of HO, some of the weak-affinity sites are dispensable. However, these weak-affinity a1-α2-binding sites are strongly conserved in related yeast species and have a role in maintaining repression upon the loss of strong-affinity sites. We found that these weak sites are sufficient for a1-α2 to partially repress HO and recruit the Tup1-Cyc8 (Tup1-Ssn6) co-repressor complex to the HO promoter. We demonstrate that the Swi5 activator protein is not bound to URS1 in diploid cells, suggesting that recruitment of the Tup1-Cyc8 complex by a1-α2 prevents DNA binding by activator proteins resulting in repression of HO.  相似文献   

9.
10.
11.
12.
13.
14.
15.
The Saccharomyces cerevisiae RIM15 gene was identified previously through a mutation that caused reduced ability to undergo meiosis. We report here an analysis of the cloned RIM15 gene, which specifies a 1,770-residue polypeptide with homology to serine/threonine protein kinases. Rim15p is most closely related to Schizosaccharomyces pombe cek1+. Analysis of epitope-tagged derivatives indicates that Rim15p has autophosphorylation activity. Deletion of RIM15 causes reduced expression of several early meiotic genes (IME2, SPO13, and HOP1) and of IME1, which specifies an activator of early meiotic genes. However, overexpression of IME1 does not permit full expression of early meiotic genes in a rim15delta mutant. Ime1p activates early meiotic genes through its interaction with Ume6p, and analysis of Rim15p-dependent regulatory sites at the IME2 promoter indicates that activation through Ume6p is defective. Two-hybrid interaction assays suggest that Ime1p-Ume6p interaction is diminished in a rim15 mutant. Glucose inhibits Ime1p-Ume6p interaction, and we find that Rim15p accumulation is repressed in glucose-grown cells. Thus, glucose repression of Rim15p may be responsible for glucose inhibition of Ime1p-Ume6p interaction.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号