首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The prostacyclin receptor (IP) is primarily coupled to G alpha(s)-dependent activation of adenylyl cyclase; however, a number of studies indicate that the IP may couple to other secondary effector systems perhaps in a species-specific manner. In the current study, we investigated the specificity of G protein:effector coupling by the mouse (m) IP overexpressed in human embryonic kidney 293 cells and endogenously expressed in murine erythroleukemia cells. The mIP exhibited efficient G alpha(s) coupling and concentration-dependent increases in cAMP generation in response to the IP agonist cicaprost; however, mIP also coupled to G alpha(i) decreasing the levels of cAMP in forskolin-treated cells. mIP coupling to G alpha(i) was pertussis toxin-sensitive and was dependent on protein kinase (PK) A activation status. In addition, the mIP coupled to phospholipase C (PLC) activation in a pertussis toxin-insensitive, G alpha(i)-, G beta gamma-, and PKC-independent but in a G alpha(q)- and PKA-dependent manner. Whole cell phosphorylation assays demonstrated that the mIP undergoes cicaprost-induced PKA phosphorylation. mIP(S357A), a site-directed mutant of mIP, efficiently coupled to G alpha(s) but failed to couple to G alpha(i) or to efficiently couple to G alpha(q):PLC. Moreover, mIP(S357A) did not undergo cicaprost-induced phosphorylation confirming that Ser(357) is the target residue for PKA-dependent phosphorylation. Finally, co-precipitation experiments permitted the detection of G alpha(s), G alpha(i), and G alpha(q) in the immunoprecipitates of mIP, whereas only G alpha(s) was co-precipitated with mIP(S357A) indicating that Ser(357) of mIP is essential for G alpha(i) and G alpha(q) interaction. Moreover, inhibition of PKA blocked co-precipitation of mIP with G alpha(i) or G alpha(q). Taken together our data indicate that the mIP, in addition to coupling to G alpha(s), couples to G alpha(i) and G alpha(q); however, G alpha(i) and G alpha(q) coupling is dependent on initial cicaprost-induced mIP:G alpha(s) coupling and phosphorylation of mIP by cAMP-dependent PKA where Ser(357) was identified as the target residue for PKA phosphorylation.  相似文献   

2.
Lo RK  Liu AM  Wise H  Wong YH 《Cellular signalling》2008,20(11):2095-2106
Human prostacyclin receptor (hIP) stimulates STAT3 via pertussis toxin-insensitive G proteins in human erythroleukemia (HEL) cells. Since hIP can utilize G(s) and G(q) proteins for signal transduction and that both G proteins can induce STAT3 phosphorylation and activation via complex signaling networks, we sought to determine if one of them is predominant in mediating the hIP signal. Stimulation of STAT3 Tyr(705) and Ser(727) phosphorylations by the IP-specific agonist, cicaprost, was sensitive to inhibition of protein kinase A, phospholipase Cbeta, protein kinase C, calmodulin-dependent protein kinase II and Janus kinase 2/3. Unlike Galpha(16)-mediated regulation of STAT3 in the same cells, cicaprost-induced STAT3 Tyr(705) phosphorylation was resistant to inhibition of Src and MEK while STAT3 Ser(727) phosphorylation distinctly required phosphatidylinositol-3 kinase. This unique inhibitor-sensitivity pattern of STAT3 phosphorylation was reproduced in HEL cells by stimulating the G(16)-coupled C5a receptor in the presence of dibutyryl-cAMP, suggesting that the change in inhibitor-sensitivity was due to activation of the G(s) pathway. This postulation was confirmed by expressing constitutively active Galpha(16)QL and Galpha(s)QL in human embryonic kidney 293 cells and the inhibitor-sensitivity of Galpha(16)QL-induced STAT3 phosphorylations could be converted by the mere presence of Galpha(s)QL to resemble that obtained with cicaprost in HEL cells. In addition, the restoration of the Galpha(16)-mediated inhibitor-sensitivity upon cicaprost induction in Galpha(s)-knocked down HEL cells again verified the pivotal role of G(s) signal. Taken together, our observations illustrate that co-stimulation of G(s) and G(q) can result in the fine-tuning of STAT3 activation status, and this may provide the basis for cell type-specific responses following activation of hIP.  相似文献   

3.
Activation of protein kinase C (PKC) can result from stimulation of the receptor-G protein-phospholipase C (PLCbeta) pathway. In turn, phosphorylation of PLCbeta by PKC may play a role in the regulation of receptor-mediated phosphatidylinositide (PI) turnover and intracellular Ca(2+) release. Activation of endogenous PKC by phorbol 12-myristate 13-acetate inhibited both Galpha(q)-coupled (oxytocin and M1 muscarinic) and Galpha(i)-coupled (formyl-Met-Leu-Phe) receptor-stimulated PI turnover by 50-100% in PHM1, HeLa, COSM6, and RBL-2H3 cells expressing PLCbeta(3). Activation of conventional PKCs with thymeleatoxin similarly inhibited oxytocin or formyl-Met-Leu-Phe receptor-stimulated PI turnover. The PKC inhibitory effect was also observed when PLCbeta(3) was stimulated directly by Galpha(q) or Gbetagamma in overexpression assays. PKC phosphorylated PLCbeta(3) at the same predominant site in vivo and in vitro. Peptide sequencing of in vitro phosphorylated recombinant PLCbeta(3) and site-directed mutagenesis identified Ser(1105) as the predominant phosphorylation site. Ser(1105) is also phosphorylated by protein kinase A (PKA; Yue, C., Dodge, K. L., Weber, G., and Sanborn, B. M. (1998) J. Biol. Chem. 273, 18023-18027). Similar to PKA, the inhibition by PKC of Galpha(q)-stimulated PLCbeta(3) activity was completely abolished by mutation of Ser(1105) to Ala. In contrast, mutation of Ser(1105) or Ser(26), another putative phosphorylation target, to Ala had no effect on inhibition of Gbetagamma-stimulated PLCbeta(3) activity by PKC or PKA. These data indicate that PKC and PKA act similarly in that they inhibit Galpha(q)-stimulated PLCbeta(3) as a result of phosphorylation of Ser(1105). Moreover, PKC and PKA both inhibit Gbetagamma-stimulated activity by mechanisms that do not involve Ser(1105).  相似文献   

4.
p21-activated protein kinase (PAK)-1 phosphorylated Galpha(z), a member of the Galpha(i) family that is found in the brain, platelets, and adrenal medulla. Phosphorylation approached 1 mol of phosphate/mol of Galpha(z) in vitro. In transfected cells, Galpha(z) was phosphorylated both by wild-type PAK1 when stimulated by the GTP-binding protein Rac1 and by constitutively active PAK1 mutants. In vitro, phosphorylation occurred only at Ser(16), one of two Ser residues that are the major substrate sites for protein kinase C (PKC). PAK1 did not phosphorylate other Galpha subunits (i1, i2, i3, o, s, or q). PAK1-phosphorylated Galpha(z) was resistant both to RGSZ1, a G(z)-selective GTPase-activating protein (GAP), and to RGS4, a relatively nonselective GAP for the G(i) and G(q) families of G proteins. Phosphorylation of Ser(27) by PKC did not alter sensitivity to either GAP. The previously described inhibition of G(z) GAPs by PKC is therefore mediated by phosphorylation of Ser(16). Phosphorylation of either Ser(16) by PAK1 or Ser(27) by PKC decreased the affinity of Galpha(z) for Gbetagamma; phosphorylation of both residues by PKC caused no further effect. PAK1 thus regulates Galpha(z) function by attenuating the inhibitory effects of both GAPs and Gbetagamma. In this context, the kinase activity of PAK1 toward several protein substrates was directly inhibited by Gbetagamma, suggesting that PAK1 acts as a Gbetagamma-regulated effector protein. This inhibition of mammalian PAK1 by Gbetagamma contrasts with the stimulation of the PAK homolog Ste20p in Saccharomyces cerevisiae by the Gbetagamma homolog Ste4p/Ste18p.  相似文献   

5.
We have previously established that isoprenylation of the prostacyclin receptor (IP) is required for its efficient G protein coupling and effector signaling (Hayes, J. S., Lawler, O. A., Walsh, M. T., and Kinsella, B. T. (1999) J. Biol. Chem. 274, 23707-23718). In the present study, we sought to investigate whether the IP may actually be subject to palmitoylation in addition to isoprenylation and to establish the functional significance thereof. The human (h) IP was efficiently palmitoylated at Cys(308) and Cys(311), proximal to transmembrane domain 7 within its carboxyl-terminal (C)-tail domain, whereas Cys(309) was not palmitoylated. The isoprenylation-defective hIP(SSLC) underwent palmitoylation but did not efficiently couple to G(s) or G(q), confirming that isoprenylation is required for G protein coupling. Deletion of C-tail sequences distal to Val(307) generated hIP(Delta307) that was neither palmitoylated nor isoprenylated and did not efficiently couple to G(s) or to G(q), whereas hIP(Delta312) was palmitoylated and ably coupled to both effector systems. Conversion of Cys(308), Cys(309), Cys(311), Cys(308,309), or Cys(309,311) to corresponding Ser residues, while leaving the isoprenylation CAAX motif intact, did not affect hIP coupling to G(s) signaling, whereas mutation of Cys(308,311) and Cys(308,309,311) abolished signaling, indicating that palmitoylation of either Cys(308) or Cys(311) is sufficient to maintain functional G(s) coupling. Although mutation of Cys(309) and Cys(311) did not affect hIP-mediated G(q) coupling, mutation of Cys(308) abolished signaling, indicating a specific requirement for palmitoylation of Cys(308) for G(q) coupling. Consistent with this, neither hIP(C308S,C309S), hIP(C308S,C311S), nor hIP(C308S,C309S,C311S) coupled to G(q). Taken together, these data confirm that the hIP is isoprenylated and palmitoylated, and collectively these modifications modulate its G protein coupling and effector signaling. We propose that through lipid modification followed by membrane insertion, the C-tail domain of the IP may contain a double loop structure anchored by the dynamically regulated palmitoyl groups proximal to transmembrane domain 7 and by a distal farnesyl isoprenoid permanently attached to its carboxyl terminus.  相似文献   

6.
The effects of transient cerebral ischemia on phosphorylation of the NR1 subunit of the NMDA receptor by protein kinase C (PKC) and protein kinase A (PKA) were investigated. Adult rats received 15 min of cerebral ischemia followed by various times of recovery. Phosphorylation was examined by immunoblotting hippocampal homogenates with antibodies that recognized NR1 phosphorylated on the PKC phosphorylation sites Ser890 and Ser896, the PKA phosphorylation site Ser897, or dually phosphorylated on Ser896 and Ser897. The phosphorylation of all sites examined increased following ischemia. The increase in phosphorylation by PKC was greater than by PKA. The ischemia-induced increase in phosphorylation was predominantly associated with the population of NR1 that was insoluble in 1% deoxycholate. Enhanced phosphorylation of NR1 by PKC and PKA may contribute to alterations in NMDA receptor function in the postischemic brain.  相似文献   

7.
8.
The present studies mapped the protein kinase A (PKA) phosphorylation site of Galpha(13) and studied the consequences of its phosphorylation. Initial experiments using purified human Galpha(13) and the PKA catalytic subunit established that PKA directly phosphorylates Galpha(13). The location of this phosphorylation site was next investigated with a new synthetic peptide (G(13)SRI(pep)) containing the PKA consensus sequence (Arg-Arg-Pro-Thr(203)) within the switch I region of Galpha(13). G(13)SRI(pep) produced a dose-dependent inhibition of PKA-mediated Galpha(13) phosphorylation. On the other hand, the Thr-phosphorylated derivative of G(13)SRI(pep) possessed no inhibitory activity, suggesting that Galpha(13) Thr(203) may represent the phosphorylation site. Confirmation of this notion was obtained by showing that the Galpha(13)-T203A mutant (in COS-7 cells) could not be phosphorylated by PKA. Additional studies using co-elution affinity chromatography and co-immunoprecipitation demonstrated that Galpha(13) phosphorylation stabilized coupling of Galpha(13) with platelet thromboxane A(2) receptors but destabilized coupling of Galpha(13) to its betagamma subunits. In order to determine the functional consequences of this phosphorylation on Galpha(13) signaling, activation of the Rho pathway was investigated. Specifically, Chinese hamster ovary cells overexpressing human Galpha(13) wild type (Galpha(13)-WT) or Galpha(13)-T203A mutant were generated and assayed for Rho activation. It was found that 8-bromo-cyclic AMP caused a significant decrease (50%; p < 0.002) of Rho activation in Galpha(13) wild type cells but produced no change of basal Rho activation levels in the mutant (p > 0.4). These results therefore suggest that PKA blocks Rho activation by phosphorylation of Galpha(13) Thr(203).  相似文献   

9.
The G protein-coupled inwardly rectifying K+ channel, GIRK1/GIRK4, can be activated by receptors coupled to the Galpha(i) subunit. An opposing role for Galpha(q) receptor signaling in GIRK regulation has only recently begun to be established. We have studied the effects of m1 muscarinic acetylcholine receptor (mAChR) stimulation, which is known to mobilize calcium and activate protein kinase C (PKC) by a Galpha(q)-dependent mechanism, on whole cell GIRK1/4 currents in Xenopus oocytes. We found that stimulation of the m1 mAChR suppresses both basal and dopamine 2 receptor-activated GIRK 1/4 currents. Overexpression of Gbetagamma subunits attenuates this effect, suggesting that increased binding of Gbetagamma to the GIRK channel can effectively compete with the G(q)-mediated inhibitory signal. This G(q) signal requires the use of second messenger molecules; pharmacology implicates a role for PKC and Ca2+ responses as m1 mAChR-mediated inhibition of GIRK channels is mimicked by PMA and Ca2+ ionophore. We have analyzed a series of mutant and chimeric channels suggesting that the GIRK4 subunit is capable of responding to G(q) signals and that the resulting current inhibition does not occur via phosphorylation of a canonical PKC site on the channel itself.  相似文献   

10.
Heterotrimeric G proteins mediate cell growth and differentiation by coupling cell surface receptors to intracellular effector enzymes. The G-protein alpha subunit, Galpha(16), and its murine homologue Galpha(15), are expressed specifically in hematopoietic cells and their expression is highly regulated during differentiation of normal and leukemic cells. In this study, we examined the phosphorylation of Galpha(15)/Galpha(16) and its role in receptor and effector coupling. We observed a PMA-stimulated intact cell phosphorylation of Galpha(15) in COS7 cells transfected with Galpha(15) and protein kinase Calpha (PKCalpha), and phosphorylation of endogenous Galpha(16) in HL60 cells. We also showed that peptides derived from the two G-proteins were phosphorylated in vitro using purified brain PKC. Furthermore, we identified the putative phosphorylation site and showed that mutation or deletion of this PKC phosphorylation site inhibited phospholipase C (PLC) activation. The behavior of double mutants with the constitutively active G-protein mutation (QL-mutant) and mutation in the putative phosphorylation site suggests that the phosphorylation site of Galpha(15/16) is essential for receptor-coupled activation of PLC, but not for direct interaction of the G-protein with PLC-beta.  相似文献   

11.
Our earlier studies of rat brain phospholipase D1 (rPLD1) showed that the enzyme could be activated in cells by alpha subunits of the heterotrimeric G proteins G(13) and G(q). Recently, we showed that rPLD1 is modified by Ser/Thr phosphorylation and palmitoylation. In this study, we first investigated the roles of these post-translational modifications on the activation of rPLD1 by constitutively active Galpha(13)Q226L and Galpha(q)Q209L. Mutations of Cys(240) and Cys(241) of rPLD1, which abolish both post-translational modifications, did not affect the ability of either Galpha(13)Q226L or Galpha(q)Q209L to activate rPLD1. However, the RhoA-insensitive mutants, rPLD1(K946A,K962A) and rPLD1(K962Q), were not activated by Galpha(13)Q226L, although these mutant enzymes responded to phorbol ester and Galpha(q)Q209L. On the contrary, the PKC-insensitive mutant rPLD1(DeltaN168), which lacks the first 168 amino acids of rPLD1, responded to Galpha(13)Q226L but not to Galpha(q)Q209L. In addition, we found that rPLD2 was strongly activated by Galpha(q)Q209L and phorbol ester. However, surprisingly, the enzymatic activity of rPLD2 was suppressed by Galpha(13)Q226L and constitutively active V14RhoA in COS-7 cells. Abolition of the post-translational modifications of rPLD2 did not alter the effects of Galpha(q)Q209L or Galpha(13)Q226L. The suppressive effect of Galpha(13)Q226L on rPLD2 was reversed by dominant negative N19RhoA and the C3 exoenzyme of Clostridium botulinum, further supporting a role for RhoA. In summary, Galpha(13) activation of rPLD1 in COS-7 cells is mediated by Rho, while Galpha(q) activation requires PKC. rPLD2 is activated by Galpha(q), but is inhibited by Galpha(13). Neither Ser/Thr phosphorylation nor palmitoylation is required for these effects.  相似文献   

12.
Bradykinin (BK) or kallikreins activate B2 receptors (R) that couple Galpha(i) and Galpha(q) proteins to release arachidonic acid (AA) and elevate intracellular Ca2+ concentration ([Ca2+]i). Thrombin cleaves the protease-activated-receptor-1 (PAR1) that couples Galpha(i), Galpha(q), and Galpha(12/13) proteins. In Chinese hamster ovary cells stably transfected with human B2R, thrombin liberated little AA, but it significantly potentiated AA release by B2R agonists. We explored mechanisms of cooperativity between constitutively expressed PAR1 and B2R. We also examined human endothelial cells expressing both Rs constitutively. The PAR1 agonist hexapeptide (TRAP) was as effective as thrombin. Inhibitors of components of Galpha(i), Galpha(q), and Galpha(12/13) signaling pathways, and a protein kinase C (PKC)-alpha inhibitor, G?-6976, blocked potentiation, while phorbol, an activator, enhanced it. Several inhibitors, including a RhoA kinase inhibitor, a [Ca2+]i antagonist, and an inositol-(1,3,4)-trisphosphate R antagonist, reduced mobilization of [Ca2+]i by thrombin and blocked potentiation of AA release by B2R agonists. Because either a nonselective inhibitor (isotetrandrine) of phospholipase A2 (PLA2) or a Ca2+-dependent PLA2 inhibitor abolished potentiation of AA release by thrombin, while a Ca2+-independent PLA2 inhibitor did not, we concluded that the mechanism involves Ca2+-dependent PLA2 activation. Both thrombin and TRAP modified activation and phosphorylation of the B2R induced by BK. In lower concentrations they enhanced it, while higher concentrations inhibited phosphorylation and diminished B2R activation. Protection of the NH2-terminal Ser1-Phe2 bond of TRAP by an aminopeptidase inhibitor made this peptide much more active than the unprotected agonist. Thus PAR1 activation enhances AA release by B2R agonists through signal transduction pathway.  相似文献   

13.
14.
While classically viewed as a prototypic G(s) and adenylyl cyclase-coupled G protein-coupled receptor, recent studies have indicated that some aspects of beta(2)-adrenergic receptor (beta(2)-AR) signaling are inhibited by pertussis toxin, indicating that they are mediated by G(i)/G(o) proteins. These signals include activation of ERK MAPKs and Akt activation, as well as hypertrophic and anti-apoptotic pathways in cardiac myocytes. Studies in cultured cells have suggested the hypothesis that protein kinase A (PKA)-mediated phosphorylation of the beta(2)-AR regulates its coupling specificity with respect to G(s) and G(i). Using a Chinese hamster ovary cell system, we show that mutant beta(2)-ARs with Ala substituted for Ser at consensus PKA sites stimulate robust cyclic AMP accumulation (G(s)) but are unable to activate ERK (G(i)). In contrast, Ser --> Asp mutants are dramatically impaired in their ability to activate adenylyl cyclase but are significantly more active than wild type receptor in activating ERK. Activation of adenylyl cyclase by wild type and Ser --> Ala mutant receptors is not altered by pertussis toxin, whereas adenylyl cyclase stimulated through the Ser --> Asp mutant is enhanced. Activation of ERK by wild type and Ser --> Asp receptors is inhibited by pertussis toxin. To further rigorously test the hypothesis, we utilized a completely reconstituted system of purified recombinant wild type and PKA phosphorylation site mutant beta(2)-ARs and heterotrimeric G(s) and G(i). G protein coupling was measured by receptor-mediated stimulation of GTPgammaS binding to the G protein. PKA-mediated phosphorylation of the beta(2)-AR significantly decreased its ability to couple to G(s), while simultaneously dramatically increasing its ability to couple to G(i). These results are reproduced when a purified recombinant Ser --> Asp mutant beta(2)-AR is tested, whereas the Ser --> Ala receptor resembles the unphosphorylated wild type. These results provide strong experimental support for the idea that PKA-mediated phosphorylation of the beta(2)-adrenergic receptor switches its predominant coupling from G(s) to G(i).  相似文献   

15.
Thromboxane (TX) A(2) is a potent stimulator of platelet activation/aggregation and smooth muscle contraction and contributes to a variety of pathologies within the vasculature. In this study, we investigated the mechanism whereby the cellular responses to TXA(2) mediated through the TPbeta isoform of the human TXA(2) receptor (TP) are dynamically regulated by examining the mechanism of agonist-induced desensitization of intracellular signalling and second messenger generation by TPbeta. It was established that TPbeta is subject to profound agonist-induced homologous desensitization of signalling (intracellular calcium mobilization and inositol 1,3,5 trisphosphate generation) in response to stimulation with the TXA(2) mimetic U46619 and this occurs through two key mechanisms: TPbeta undergoes partial agonist-induced desensitization that occurs through a GF 109203X-sensitive, protein kinase (PK)C mechanism whereby Ser(145) within intracellular domain (IC)(2) has been identified as the key phospho-target. In addition, TPbeta also undergoes more profound and sustained agonist-induced desensitization involving G protein-coupled receptor kinase (GRK)2/3-phosphorylation of both Ser(239) and Ser(357) within its IC(3) and carboxyl-terminal C-tail domains, respectively. Inhibition of phosphorylation of either Ser(239) or Ser(357), through site directed mutagenesis, impaired desensitization while mutation of both Ser(239) and Ser(357) almost completely abolished desensitization of signalling, GRK phosphorylation and beta-arrestin association, thereby blocking TPbeta internalization. These data suggest a model whereby agonist-induced PKC phosphorylation of Ser(145) partially impairs. TPbeta signalling while GRK2/3 phosphorylation at both Ser(239) and Ser(357) within its IC(3) and C-tail domains, respectively, sterically inhibits G-protein coupling, profoundly desensitizing signalling, and promotes beta-arrestin association and, in turn, facilitates TPbeta internalization. Thromboxane (TX) A(2) is a potent stimulator of platelet aggregation and smooth muscle contraction and contributes to a variety of vascular pathologies. Herein the mechanism whereby the cellular responses to TXA(2) mediated through the TPbeta isoform of the human TXA(2) receptor (TP) are dynamically regulated was investigated by examining the mechanism of its agonist-induced desensitization of intracellular signalling and second messenger generation. TPbeta is subject to profound agonist-induced homologous desensitization of signalling (intracellular calcium mobilization and inositol 1,3,5 trisphosphate generation) in response to stimulation with the TXA(2) mimetic U46619 and this occurs through two key mechanisms: TPbeta undergoes partial agonist-induced desensitization that occurs through a GF 109203X-sensitive, protein kinase (PK)C mechanism whereby Ser(145) within intracellular domain (IC)(2) was identified as the key phospho-target. In addition, TPbeta also undergoes more profound and sustained agonist-induced desensitization involving G protein-coupled receptor kinase (GRK)2/3-phosphorylation of both Ser(239) and Ser(357) within its IC(3) and carboxyl-terminal C-tail domains, respectively. Inhibition of phosphorylation of either Ser(239) or Ser(357), through site directed mutagenesis, impaired desensitization while mutation of both Ser(239) and Ser(357) almost completely abolished desensitization of signalling, GRK phosphorylation and beta-arrestin association, thereby blocking TPbeta internalization. These data suggest a model whereby agonist-induced PKC phosphorylation of Ser(145) partially impairs TPbeta signalling while GRK2/3 phosphorylation at both Ser(239) and Ser(357) within its IC(3) and C-tail domains, respectively, sterically inhibits G-protein coupling, profoundly desensitizing signalling, and promotes beta-arrestin association and, in turn, facilitates TPbeta internalization.  相似文献   

16.
CEACAM1-LF, a homotypic cell adhesion adhesion molecule, transduces intracellular signals via a 72 amino acid cytoplasmic domain that contains two immunoreceptor tyrosine-based inhibitory motifs (ITIMs) and a binding site for β-catenin. Phosphorylation of Ser503 by PKC in rodent CEACAM1 was shown to affect bile acid transport or hepatosteatosis via the level of ITIM phosphorylation, but the phosphorylation of the equivalent residue in human CEACAM1 (Ser508) was unclear. Here we studied this analogous phosphorylation by NMR analysis of the 15N labeled cytoplasmic domain peptide. Incubation with a variety of Ser/Thr kinases revealed phosphorylation of Ser508 by GSK3bβ but not by PKC. The lack of phosphorylation by PKC is likely due to evolutionary sequence changes between the rodent and human genes. Phosphorylation site assignment by mass spectrometry and NMR revealed phosphorylation of Ser472, Ser461 and Ser512 by PKA, of which Ser512 is part of a conserved consensus site for GSK3β binding. We showed here that only after phosphorylation of Ser512 by PKA was GSK3β able to phosphorylate Ser508. Phosphorylation of Ser512 by PKA promoted a tight association with the armadillo repeat domain of β-catenin at an extended region spanning the ITIMs of CEACAM1. The kinetics of phosphorylation of the ITIMs by Src, as well dephosphorylation by SHP2, were affected by the presence of Ser508/512 phosphorylation, suggesting that PKA and GSK3β may regulate the signal transduction activity of human CEACAM1-LF. The interaction of CEACAM1-LF with β-catenin promoted by PKA is suggestive of a tight association between the two ITIMs of CEACAM1-LF.  相似文献   

17.
The ability of prostacyclin analogues to stimulate adenylyl cyclase (AC) and phospholipase C (PLC) in Chinese hamster ovary (CHO) cells expressing cloned human (hIP) or cloned mouse (mIP) prostacyclin receptors has been compared. For hIP, the order of potency (pEC(50)) for stimulating AC and PLC pathways was similar: AFP-07 (9.3, 8.4)>cicaprost (8.3, 6.9), iloprost (7.9, 6.8)>taprostene (7.4, 6.8)>carbacyclin (6.9, 6.6), PGE(1) (6.6, 5.1). Although the standard IP agonists cicaprost and iloprost behaved similarly in both hIP and mIP receptor-expressing cells, carbacyclin and PGE(1) showed significantly higher potency at the mIP receptor, suggesting that the agonist recognition sites on hIP and mIP receptors are not identical. A further distinction between hIP and mIP receptors was found with taprostene, which had greater efficacy at hIP receptors (AC 94%, PLC 14%) than at mIP receptors (AC 77%, PLC 0%) (cicaprost=100% in each assay).  相似文献   

18.
We have investigated the functional coupling of alpha and beta isoforms of the human thromboxane A(2) receptor (TP) to Galpha(16) and Galpha(12) members of the G(q) and G(12) families of heterotrimeric G proteins in human embryonic kidney (HEK) 293 cell lines HEK.alpha10 or HEK.beta3, stably over-expressing TPalpha and TPbeta, respectively. Moreover, using HEK.TP(Delta328) cells which over-express a variant of TP truncated at the point of divergence of TPalpha and TPbeta, we investigated the requirement of the C-tail per se in mediating G protein coupling and effector activation. Both TPalpha and TPbeta couple similarly to Galpha(16) to affect increases in inositol 1,4,5-trisphosphate (IP(3)) and mobilisation of intracellular calcium ([Ca(2+)](i)) in response to the TP agonist U46619. Whilst both TP isoforms mediated [Ca(2+)](i) mobilisation in cells co-transfected with Galpha(12), neither receptor generated corresponding increases in IP(3), indicating that the Galpha(12)-mediated increases in [Ca(2+)](i) do not involve PLC activation. Verapamil, an inhibitor of voltage dependent Ca(2+) channels, reduced [Ca(2+)](i) mobilisation in TPalpha and TPbeta cells co-transfected with Galpha(12) to approximately 40% of that mobilised in its absence, whereas [8-(N,N-diethylamino)-octyl-3,4, 5-trimethoxybenzoate, hydrochloride] (TMB-8), an antagonist of intracellular Ca(2+) release, had no effect on [Ca(2+)](i) mobilisation by either receptor isoform co-transfected with Galpha(12). Despite the lack of differential coupling specificity by TPalpha and TPbeta, TP(Delta328) signalled more efficiently in the absence of a co-transfected G protein compared to the wild type receptors but, on the other hand, displayed an impaired ability to couple to co-transfected Galpha(11), Galpha(12) or Galpha(16) subunits. In studies investigating the role of the C-tail in influencing coupling to the effector adenylyl cyclase, similar to TPalpha but not TPbeta, TP(Delta328) coupled to Galpha(s), leading to increased adenosine 3',5'-cyclic monophosphate (cAMP), rather than to Galpha(i). Whereas TP(Delta328) signalled more efficiently in the absence of co-transfected G protein compared to the wild type TPalpha, co-transfection of Galpha(s) did not augment cAMP generation by TP(Delta328). Hence, from these studies involving the wild type TPalpha, TPbeta and TP(Delta328), we conclude that the C-tail sequences of TP are not a major determinant of G protein coupling specificity to Galpha(11) and Galpha(16) members of the G(q) family or to Galpha(12); it may play a role in determining G(s) versus G(i) coupling and may act as a determinant of coupling efficiency.  相似文献   

19.
Classically, the FSH receptor (FSH-R) mediates its effects through coupling to guanine nucleotide-binding protein alpha S subunit (Galpha(s)) and activation of the cAMP/protein kinase A (PKA) signaling pathway. beta-Arrestins are rapidly recruited to the FSH-activated receptor and play key roles in its desensitization and internalization. Here, we show that the FSH-R expressed in HEK 293 cells activated ERK by two temporally distinct pathways dependent, respectively, on Galpha(s)/PKA and beta-arrestins. Galpha(s)/PKA-dependent ERK activation was rapid, transient, and blocked by H89 (a PKA inhibitor), but it was insensitive to small interfering RNA-mediated depletion of beta-arrestins. beta-Arrestin-dependent ERK activation was slower but more sustained and was insensitive to H89. We identified five Ser/Thr residues in the C terminus of the receptor (638-644) as a major phosphorylation site. Mutation of these residues into Ala (5A FSH-R) significantly reduced the stability of FSH-induced beta-arrestin 1 and 2 interaction when compared with the wild-type receptor. As expected, the 5A FSH-R-mediated cAMP accumulation was enhanced, and its internalization was reduced. In striking contrast, the ability of the 5A FSH-R to activate ERK via the beta-arrestin-dependent pathway was increased. G protein-coupled receptor kinase 5 (GRK5) and GRK6 were required for beta-arrestin-dependent ERK activation by both the wild-type and 5A FSH-R. By contrast, GRK2 depletion enhanced ERK activation by the wild-type FSH-R but not by the 5A FSH-R. In conclusion, we demonstrate the existence of a beta-arrestin-dependent, GRK-regulated mechanism for ERK activation by the FSH-R. A phosphorylation cluster in the C terminus of the FSH-R, identified as a site of beta-arrestin recruitment, positively regulated both desensitization and internalization but negatively regulated beta-arrestin-dependent ERK activation.  相似文献   

20.
The activation of the protein kinase C (PKC) family of serine/threonine kinases contributes to the modulation of insulin signaling, and the PKC-dependent phosphorylation of insulin receptor substrate (IRS)-1 has been implicated in the development of insulin resistance. Here we demonstrate Ser(357) of rat IRS-1 as a novel PKC-delta-dependent phosphorylation site in skeletal muscle cells upon stimulation with insulin and phorbol ester using Ser(P)(357) antibodies and active and kinase dead mutants of PKC-delta. Phosphorylation of this site was simulated using IRS-1 Glu(357) and shown to reduce insulin-induced tyrosine phosphorylation of IRS-1, to decrease activation of Akt, and to subsequently diminish phosphorylation of glycogen synthase kinase-3. When the phosphorylation was prevented by mutation of Ser(357) to alanine, these effects of insulin were enhanced. When the adjacent Ser(358), present in mouse and rat IRS-1, was mutated to alanine, which is homologous to the human sequence, the insulin-induced phosphorylation of glycogen synthase kinase-3 or tyrosine phosphorylation of IRS-1 was not increased. Moreover, both active PKC-delta and phosphorylation of Ser(357) were shown to be necessary for the attenuation of insulin-stimulated Akt phosphorylation. The phosphorylation of Ser(357) could lead to increased association of PKC-delta to IRS-1 upon insulin stimulation, which was demonstrated with IRS-1 Glu(357). Together, these data suggest that phosphorylation of Ser(357) mediates at least in part the adverse effects of PKC-delta activation on insulin action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号