首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ryanodine receptor type 1 (RyR1) and type 2 (RyR2), but not type 3 (RyR3), are efficiently activated by 4-chloro-m-cresol (4-CmC). We previously showed that a 173-amino acid segment of RyR1 (residues 4007-4180) is required for channel activation by 4-CmC (Fessenden, J. D., Perez, C. F., Goth, S., Pessah, I. N., and Allen, P. D. (2003) J. Biol. Chem. 278, 28727-28735). In the present study, we used site-directed mutagenesis to identify individual amino acid(s) within this region that mediate 4-CmC activation. In RyR1, substitution of 11 amino acids conserved between RyR1 and RyR2, but divergent in RyR3, with their RyR3 counterparts reduced 4-CmC sensitivity to the same degree as substitution of the entire 173-amino acid segment. Further analysis of various RyR1 mutants containing successively smaller numbers of these mutations identified 2 amino acid residues (Gln(4020) and Lys(4021)) that, when mutated to their RyR3 counterparts (Leu(3873) and Gln(3874)), abolished 4-CmC activation of RyR1. Mutation of either of these residues alone did not abolish 4-CmC sensitivity, although Q4020L partially reduced 4-CmC-induced Ca(2+) transients. In addition, mutation of the corresponding residues in RyR3 to their RyR1 counterparts (L3873Q/Q3874K) imparted 4-CmC sensitivity to RyR3. Recordings of single RyR1 channels indicated that 4-CmC applied to either the luminal or cytoplasmic side activated the channel with equal potency. Secondary structure modeling in the vicinity of the Gln(4020)-Lys(4021) dipeptide suggests that the region contains a surface-exposed region adjacent to a hydrophobic segment, indicating that both hydrophilic and hydrophobic regions of RyR1 are necessary for 4-CmC binding to the channel and/or to translate allosteric 4-CmC binding into channel activation.  相似文献   

2.
To identify domains of the ryanodine receptor (RyR1) that are functionally relevant for excitation-contraction (EC) coupling in vivo, we have studied the ability of RyR1/RyR3 chimera to rescue skeletal EC coupling in dyspedic myotubes. In this work we show that chimeric receptors containing amino acids 1-1,680 of RyR1 were able to render depolarization-induced Ca2+ release to RyR3. Within this region, residues 1,272-1,455, containing divergent domain D2 of RyR1, proved to be a critical element because the absence of this region selectively abolished depolarization-evoked Ca2+ transients without affecting chemically induced activation. Although the D2 domain by itself failed to restore skeletal EC coupling to RyR3, the addition of the D2 region resulted in a dramatic enhancement of EC coupling restored by an RyR3 chimera containing amino acids 1,681-3,770 of RyR1. These results suggest that although the D2 domain of RyR1 plays a key role during EC coupling, additional region(s) from the N-terminal end of RyR1 as well as previously identified regions of the central portion of the receptor are needed in order to allow normal EC coupling.  相似文献   

3.
L-type Ca(2+) channel (L-channel) activity of the skeletal muscle dihydropyridine receptor is markedly enhanced by the skeletal muscle isoform of the ryanodine receptor (RyR1) (Nakai, J., R.T. Dirksen, H. T. Nguyen, I.N. Pessah, K.G. Beam, and P.D. Allen. 1996. Nature. 380:72-75.). However, the dependence of the biophysical and pharmacological properties of skeletal L-current on RyR1 has yet to be fully elucidated. Thus, we have evaluated the influence of RyR1 on the properties of macroscopic L-currents and intracellular charge movements in cultured skeletal myotubes derived from normal and "RyR1-knockout" (dyspedic) mice. Compared with normal myotubes, dyspedic myotubes exhibited a 40% reduction in the amount of maximal immobilization-resistant charge movement (Q(max), 7.5 +/- 0.8 and 4.5 +/- 0.4 nC/muF for normal and dyspedic myotubes, respectively) and an approximately fivefold reduction in the ratio of maximal L-channel conductance to charge movement (G(max)/Q(max)). Thus, RyR1 enhances both the expression level and Ca(2+) conducting activity of the skeletal L-channel. For both normal and dyspedic myotubes, the sum of two exponentials was required to fit L-current activation and resulted in extraction of the amplitudes (A(fast) and A(slow)) and time constants (tau(slow) and tau(fast)) for each component of the macroscopic current. In spite of a >10-fold in difference current density, L-currents in normal and dyspedic myotubes exhibited similar relative contributions of fast and slow components (at +40 mV; A(fast)/[A(fast) + A(slow)] approximately 0.25). However, both tau(fast) and tau(slow) were significantly (P < 0.02) faster for myotubes lacking the RyR1 protein (tau(fast), 8.5 +/- 1.2 and 4.4 +/- 0.5 ms; tau(slow), 79.5 +/- 10.5 and 34.6 +/- 3.7 ms at +40 mV for normal and dyspedic myotubes, respectively). In both normal and dyspedic myotubes, (-) Bay K 8644 (5 microM) caused a hyperpolarizing shift (approximately 10 mV) in the voltage dependence of channel activation and an 80% increase in peak L-current. However, the increase in peak L-current correlated with moderate increases in both A(slow) and A(fast) in normal myotubes, but a large increase in only A(fast) in dyspedic myotubes. Equimolar substitution of Ba(2+) for extracellular Ca(2+) increased both A(fast) and A(slow) in normal myotubes. The identical substitution in dyspedic myotubes failed to significantly alter the magnitude of either A(fast) or A(slow). These results demonstrate that RyR1 influences essential properties of skeletal L-channels (expression level, activation kinetics, modulation by dihydropyridine agonist, and divalent conductance) and supports the notion that RyR1 acts as an important allosteric modulator of the skeletal L-channel, analogous to that of a Ca(2+) channel accessory subunit.  相似文献   

4.
Calmodulin (CaM) inhibits the skeletal muscle ryanodine receptor-1 (RyR1) and cardiac muscle RyR2 at micromolar Ca(2+) but activates RyR1 and inhibits RyR2 at submicromolar Ca(2+) by binding to a single, highly conserved CaM-binding site. To identify regions responsible for the differential regulation of RyR1 and RyR2 by CaM, we generated chimeras encompassing and flanking the CaM-binding domain. We found that the exchange of the N- and C-terminal flanking regions differentially affected RyR1 and RyR2. A RyR1/RyR2 chimera with an N-terminal flanking RyR2 substitution (RyR2 amino acid (aa) 3537-3579) was activated by CaM in single channel measurements at both submicromolar and micromolar Ca(2+). A RyR2/RyR1 chimera with a C-terminal flanking the 86-amino acid RyR1 substitution (RyR1 aa 3640-3725) bound (35)S-CaM but was not inhibited by CaM at submicromolar Ca(2+). In this region, five non-conserved amino acid residues (RyR1 aa 3680 and 3682-3685 and RyR2 aa 3647 and 3649-3652) differentially affect RyR helical probability. Substitution of the five amino acid residues in RyR1 with those of RyR2 showed responses to CaM comparable with wild type RyR1. In contrast, substitution of the five amino acid residues in RyR2 with those of RyR1 showed loss of CaM inhibition, whereas substitution of the five RyR2 sequence residues in the RyR2 chimera containing the RyR1 calmodulin-binding domain and C-flanking sequence restored wild type RyR2 inhibition by CaM at submicromolar Ca(2+). The results suggest that different regions are involved in CaM modulation of RyR1 and RyR2. They further suggest that five non-conserved amino acids in the C-terminal region flanking the CaM-binding domain have a key role in CaM inhibition of RyR2.  相似文献   

5.
A synthetic peptide (CaMBP) matching amino acids 3614-3643 of the skeletal ryanodine receptor (RyR1) binds to both Ca2+-free calmodulin (CaM) and Ca2+-bound CaM with nanomolar affinity [J. Biol. Chem. 276 (2001) 2069]. We report here that CaMBP increases [3H]ryanodine binding to RyR1 in a dose- and Ca2+-dependent manner; it also induces Ca2+ release from SR vesicles, and increases open probability (P(o)) of single RyR channels reconstituted in planar lipid bilayers. Further, CaMBP removes CaM associated with SR vesicles and increases [3H]ryanodine binding to purified RyR1, suggesting that its mechanism of action is two-fold: it removes endogenous inhibitors and also interacts directly with complementary regions in RyR1. Remarkably, the N-terminus of CaMBP activates RyRs while the C-terminus of CaMBP inhibits RyR activity, suggesting the presence of two discrete functional subdomains within this region. A ryr1 mutant lacking this region, RyR1-Delta3614-3643, was constructed and expressed in dyspedic myoblasts (RyR1-knockout). The depolarization-, caffeine- and 4-chloro-m-cresol (4-CmC)-induced Ca2+ transients in these cells were dramatically reduced compared with cells expressing wild type RyR1. Deletion of the 3614-3643 region also resulted in profound changes in unitary conductance and channel gating. We thus propose that the RyR1 3614-3643 region acts not only as the CaM binding site, but also as an important modulatory domain for RyR1 function.  相似文献   

6.
Skeletal-type E-C coupling is thought to require a direct interaction between RyR1 and the alpha(1S)-DHPR. Most available evidence suggests that the cytoplasmic II-III loop of the dihydropyridine receptor (DHPR) is the primary source of the orthograde signal. However, identification of the region(s) of RyR1 involved in bidirectional signaling with the alpha(1S)-DHPR remains elusive. To identify these regions we have designed a series of chimeric RyR cDNAs in which different segments of RyR1 were inserted into the corresponding region of RyR3 and expressed in dyspedic 1B5 myotubes. RyR3 provides a preferable background than RyR2 for defining domains essential for E-C coupling because it possesses less sequence homology to RyR1 than the RyR2 backbone used in previous studies. Our data show that two regions of RyR1 (chimera Ch-10 aa 1681-2641 and Ch-9 aa 2642-3770), were independently able to restore skeletal-type E-C coupling to RyR3. These two regions were further mapped and the critical RyR1 residues were 1924-2446 (Ch-21) and 2644-3223 (Ch-19). These results both support and refine the previous hypothesis that multiple domains of RyR1 combine to functionally interact with the DHPR during E-C coupling.  相似文献   

7.
Calmodulin is a ubiquitous Ca(2+) binding protein that modulates the in vitro activity of the skeletal muscle ryanodine receptor (RyR1). Residues 3614-3643 of RyR1 comprise the CaM binding domain and mutations within this region result in a loss of both high-affinity Ca(2+)-bound calmodulin (CaCaM) and Ca(2+)-free CaM (apoCaM) binding (L3624D) or only CaCaM binding (W3620A). To investigate the functional role of CaM binding to this region of RyR1 in intact skeletal muscle, we compared the ability of RyR1, L3624D, and W3620A to restore excitation-contraction (EC) coupling after expression in RyR1-deficient (dyspedic) myotubes. W3620A-expressing cells responded normally to 10 mM caffeine and 500 microM 4-chloro-m-cresol (4-cmc). Interestingly, L3624D-expressing cells displayed a bimodal response to caffeine, with a large proportion of cells ( approximately 44%) showing a greatly attenuated response to caffeine. However, high and low caffeine-responsive L3624D-expressing myotubes exhibited Ca(2+) transients of similar magnitude after activation by 4-cmc (500 microM) and electrical stimulation. Expression of either L3624D or W3620A in dyspedic myotubes restored both L-type Ca(2+) currents (retrograde coupling) and voltage-gated SR Ca(2+) release (orthograde coupling) to a similar degree as that observed for wild-type RyR1, although L-current density was somewhat larger and activated at more hyperpolarized potentials in W3620A-expressing myotubes. The results indicate that CaM binding to the 3614-3643 region of RyR1 is not essential for voltage sensor activation of RyR1.  相似文献   

8.
Replacement of amino acids 4187-4628 in the skeletal muscle Ca(2+) release channel (skeletal ryanodine receptor (RyR1)), including nearly all of divergent region 1 (amino acids 4254-4631), with the corresponding cardiac ryanodine receptor (RyR2) sequence leads to increased sensitivity of channel activation by caffeine and Ca(2+) and to decreased sensitivity of channel inactivation by elevated Ca(2+) (Du, G. G., and MacLennan, D. H. (1999) J. Biol. Chem. 274, 26120-26126). In further investigations, this region was subdivided by the construction of new chimeras, and alterations in channel function were detected by measurement of the caffeine dependence of in vivo Ca(2+) release and the Ca(2+) dependence of [(3)H]ryanodine binding. Chimera RF10a (amino acids 4187-4381) had a lower EC(50) value for activation by caffeine, and RF10c (4557-4628) had a higher EC(50) value, whereas the EC(50) value for chimera RF10b (4382-4556) was unchanged. Chimeras RF10b and RF10c were more sensitive to activation by Ca(2+), whereas RF10a was less sensitive to inactivation by Ca(2+), implicating RF10b and RF10c in Ca(2+) activation and RF10a in Ca(2+) inactivation. Deletion of much of divergent region 1 sequence to create mutant Delta4274-4535 led to higher caffeine and Ca(2+) sensitivity of channel activation and to lower Ca(2+) sensitivity for inactivation. Thus, deletion results demonstrate that caffeine, Ca(2+), and ryanodine binding sites are not located in amino acids 4274-4535. Nevertheless, the properties of the deletion and chimeric mutants demonstrate that amino acids 4274-4535 and three shorter sequences in this region (F10a, amino acids 4187-4381; F10b, 4382-4556; and F10c, 4557-4628) in RyR1 modulate Ca(2+) and caffeine sensitivity of the Ca(2+) release channel.  相似文献   

9.
We studied cation regulation of wild-type ryanodine receptor type 1 (WTRyR1), type 3 (WTRyR3), and RyR3/RyR1 chimeras (Ch) expressed in 1B5 dyspedic myotubes. Using [3H]ryanodine binding to sarcoplasmic reticulum (SR) membranes, Ca2+ titrations with WTRyR3 and three chimeras show biphasic activation that is allosterically coupled to an attenuated inhibition relative to WTRyR1. Chimeras show biphasic Mg2+ inhibition profiles at 3 and 10 μM Ca2+, no observable inhibition at 20 μM Ca2+ and monophasic inhibition at 100 μM Ca2+. Ca2+ imaging of intact myotubes expressing Ch-4 exhibit caffeine-induced Ca2+ transients with inhibition kinetics that are significantly slower than those expressing WTRyR1 or WTRyR3. Four new aspects of RyR regulation are evident: (1) high affinity (H) activation and low affinity (L) inhibition sites are allosterically coupled, (2) Ca2+ facilitates removal of the inherent Mg2+ block, (3) WTRyR3 exhibits reduced cooperativity between H activation sites when compared to WTRyR1, and (4) uncoupling of these sites in Ch-4 results in decreased rates of inactivation of caffeine-induced Ca2+ transients.  相似文献   

10.
In skeletal muscle, an anterograde signal from the dihydropyridine receptor (DHPR) to the ryanodine receptor (RyR1) is required for excitation-contraction (EC) coupling and a retrograde signal from RyR1 to the DHPR regulates the magnitude of the calcium current carried by the DHPR. As a tool for studying biosynthesis and targeting, we constructed a cDNA encoding green fluorescent protein (GFP) fused to the amino terminal of RyR1 and expressed it in dyspedic myotubes. The GFP-RyR1 was present in a restricted domain near the nucleus injected with cDNA and was fully functional, which places constraints on the location of the amino terminal in the folded structure of RyR1.  相似文献   

11.
Central core disease (CCD) is a human myopathy that involves a dysregulation in muscle Ca(2)+ homeostasis caused by mutations in the gene encoding the skeletal muscle ryanodine receptor (RyR1), the protein that comprises the calcium release channel of the SR. Although genetic studies have clearly demonstrated linkage between mutations in RyR1 and CCD, the impact of these mutations on release channel function and excitation-contraction coupling in skeletal muscle is unknown. Toward this goal, we have engineered the different CCD mutations found in the NH(2)-terminal region of RyR1 into a rabbit RyR1 cDNA (R164C, I404M, Y523S, R2163H, and R2435H) and characterized the functional effects of these mutations after expression in myotubes derived from RyR1-knockout (dyspedic) mice. Resting Ca(2)+ levels were elevated in dyspedic myotubes expressing four of these mutants (Y523S > R2163H > R2435H R164C > I404M RyR1). A similar rank order was also found for the degree of SR Ca(2)+ depletion assessed using maximal concentrations of caffeine (10 mM) or cyclopiazonic acid (CPA, 30 microM). Although all of the CCD mutants fully restored L-current density, voltage-gated SR Ca(2)+ release was smaller and activated at more negative potentials for myotubes expressing the NH(2)-terminal CCD mutations. The shift in the voltage dependence of SR Ca(2)+ release correlated strongly with changes in resting Ca(2)+, SR Ca(2)+ store depletion, and peak voltage-gated release, indicating that increased release channel activity at negative membrane potentials promotes SR Ca(2)+ leak. Coexpression of wild-type and Y523S RyR1 proteins in dyspedic myotubes resulted in release channels that exhibited an intermediate degree of SR Ca(2)+ leak. These results demonstrate that the NH(2)-terminal CCD mutants enhance release channel sensitivity to activation by voltage in a manner that leads to increased SR Ca(2)+ leak, store depletion, and a reduction in voltage-gated Ca(2)+ release. Two fundamentally distinct cellular mechanisms (leaky channels and EC uncoupling) are proposed to explain how altered release channel function caused by different mutations in RyR1 could result in muscle weakness in CCD.  相似文献   

12.
In this investigation we use a "dyspedic" myogenic cell line, which does not express any ryanodine receptor (RyR) isoform, to examine the local Ca(2+) release behavior of RyR3 and RyR1 in a homologous cellular system. Expression of RyR3 restored caffeine-sensitive, global Ca(2+) release and causes the appearance of relatively frequent, spontaneous, spatially localized elevations of [Ca(2+)], as well as occasional spontaneous, propagating Ca(2+) release, in both intact and saponin-permeabilized myotubes. Intact myotubes expressing RyR3 did not, however, respond to K(+) depolarization. Expression of RyR1 restored depolarization-induced global Ca(2+) release in intact myotubes and caffeine-induced global release in both intact and permeabilized myotubes. Both intact and permeabilized RyR1-expressing myotubes exhibited relatively infrequent spontaneous Ca(2+) release events. In intact myotubes, the frequency of occurrence and properties of these RyR1-induced events were not altered by partial K(+) depolarization or by application of nifedipine, suggesting that these RyR1 events are independent of the voltage sensor. The events seen in RyR1-expressing myotubes were spatially more extensive than those seen in RyR3-expressing myotubes; however, when analysis was limited to spatially restricted "Ca(2+) spark"-like events, events in RyR3-expressing myotubes were larger in amplitude and duration compared with those in RyR1. Thus, in this skeletal muscle context, differences exist in the spatiotemporal properties and frequency of occurrence of spontaneous release events generated by RyR1 and RyR3. These differences underscore functional differences between the Ca(2+) release behavior of RyR1 and RyR3 in this homologous expression system.  相似文献   

13.
Skeletal muscle obtained from mice that lack the type 1 ryanodine receptor (RyR-1), termed dyspedic mice, exhibit a 2-fold reduction in the number of dihydropyridine binding sites (DHPRs) compared with skeletal muscle obtained from wild-type mice (Buck, E. D., Nguyen, H. T., Pessah, I. N., and Allen, P. D. (1997) J. Biol. Chem. 272, 7360-7367 and Fleig, A., Takeshima, H., and Penner, R. (1996) J. Physiol. (Lond.) 496, 339-345). To probe the role of RyR-1 in influencing L-type Ca(2+) channel (L-channel) expression, we have monitored functional L-channel expression in the sarcolemma using the whole-cell patch clamp technique in normal, dyspedic, and RyR-1-expressing dyspedic myotubes. Our results indicate that dyspedic myotubes exhibit a 45% reduction in maximum immobilization-resistant charge movement (Q(max)) and a 90% reduction in peak Ca(2+) current density. Calcium current density was significantly increased in dyspedic myotubes 3 days after injection of cDNA encoding either wild-type RyR-1 or E4032A, a mutant RyR-1 that is unable to restore robust voltage-activated release of Ca(2+) from the sarcoplasmic reticulum (SR) following expression in dyspedic myotubes (O'Brien, J. J., Allen, P. D., Beam, K., and Chen, S. R. W. (1999) Biophys. J. 76, A302 (abstr.)). The increase in L-current density 3 days after expression of either RyR-1 or E4032A occurred in the absence of a change in Q(max). However, Q(max) was increased 85% 6 days after injection of dyspedic myotubes with cDNA encoding the wild-type RyR-1 but not E4032A. Because normal and dyspedic myotubes exhibited a similar density of T-type Ca(2+) current (T-current), the presence of RyR-1 does not appear to cause a general overall increase in protein synthesis. Thus, long-term expression of L-channels in skeletal myotubes is promoted by Ca(2+) released through RyRs occurring either spontaneously or during excitation-contraction coupling.  相似文献   

14.
Human central core disease (CCD) is caused by mutations/deletions in the gene that encodes the skeletal muscle ryanodine receptor (RyR1). Previous studies have shown that CCD mutations in the NH2-terminal region of RyR1 lead to the formation of leaky SR Ca2+ release channels when expressed in myotubes derived from RyR1-knockout (dyspedic) mice, whereas a COOH-terminal mutant (I4897T) results in channels that are not leaky to Ca2+ but lack depolarization-induced Ca2+ release (termed excitation-contraction [EC] uncoupling). We show here that store depletion resulting from NH2-terminal (Y523S) and COOH-terminal (Y4795C) leaky CCD mutant release channels is eliminated after incorporation of the I4897T mutation into the channel (Y523S/I4897T and Y4795C/I4897T). In spite of normal SR Ca2+ content, myotubes expressing the double mutants lacked voltage-gated Ca2+ release and thus exhibited an EC uncoupling phenotype similar to that of I4897T-expressing myotubes. We also show that dyspedic myotubes expressing each of seven recently identified CCD mutations located in exon 102 of the RyR1 gene (G4890R, R4892W, I4897T, G4898E, G4898R, A4905V, R4913G) behave as EC-uncoupled release channels. Interestingly, voltage-gated Ca2+ release was nearly abolished (reduced approximately 90%) while caffeine-induced Ca2+ release was only marginally reduced in R4892W-expressing myotubes, indicating that this mutation preferentially disrupts voltage-sensor activation of release. These data demonstrate that CCD mutations in exon 102 disrupt release channel permeation to Ca2+ during EC coupling and that this region represents a primary molecular locus for EC uncoupling in CCD.  相似文献   

15.
Malignant hyperthermia (MH) is a potentially fatal pharmacogenetic disorder of skeletal muscle that segregates with >60 mutations within the MHS-1 locus on chromosome 19 coding for ryanodine receptor type 1 (RyR1). Although some MHRyR1s have been shown to enhance sensitivity to caffeine and halothane when expressed in non-muscle cells, their influence on EC coupling can only be studied in skeletal myotubes. We therefore expressed WTRyR1, six of the most common human MHRyR1s (R163C, G341R, R614C, R2163C, V2168M, and R2458H), and a newly identified C-terminal mutation (T4826I) in dyspedic myotubes to study their functional defects and how they influence EC coupling. Myotubes expressing any MHRyR1 were significantly more sensitive to stimulation by caffeine and 4-CmC than those expressing WTRyR1. The hypersensitivity of MH myotubes extended to K+ depolarization. MH myotubes responded to direct channel activators with maximum Ca2+ amplitudes consistently smaller than WT myotubes, whereas the amplitude of their responses to depolarization were consistently larger than WT myotubes. The magnitudes of responses attainable from myotubes expressing MHRyR1s are therefore related to the nature of the stimulus rather than size of the Ca2+ store. The functional changes of MHRyR1s were directly analyzed using [3H]ryanodine binding analysis of isolated myotube membranes. Although none of the MHRyR1s examined significantly altered EC50 for Ca2+ activation, many failed to be completely inhibited by a low Ca2+ (相似文献   

16.
The skeletal muscle sarcoplasmic reticulum (SR) Ca2+ release channel or ryanodine receptor (RyR1) binds four molecules of FKBP12, and the interaction of FKBP12 with RyR1 regulates both unitary and coupled gating of the channel. We have characterized the physiologic effects of previously identified mutations in RyR1 that disrupt FKBP12 binding (V2461G and V2461I) on excitation-contraction (EC) coupling and intracellular Ca2+ homeostasis following their expression in skeletal myotubes derived from RyR1-knockout (dyspedic) mice. Wild-type RyR1-, V246I-, and V2461G-expressing myotubes exhibited similar resting Ca2+ levels and maximal responses to caffeine (10 mm) and cyclopiazonic acid (30 microm). However, maximal voltage-gated Ca2+ release in V2461G-expressing myotubes was reduced by approximately 50% compared with that attributable to wild-type RyR1 (deltaF/Fmax = 1.6 +/- 0.2 and 3.1 +/- 0.4, respectively). Dyspedic myotubes expressing the V2461I mutant protein, that binds FKBP12.6 but not FKBP12, exhibited a comparable reduction in voltage-gated SR Ca2+ release (deltaF/Fmax = 1.0 +/- 0.1). However, voltage-gated Ca2+ release in V2461I-expressing myotubes was restored to a normal level (deltaF/Fmax = 2.9 +/- 0.6) following co-expression of FKBP12.6. None of the mutations that disrupted FKBP binding to RyR1 significantly affected RyR1-mediated enhancement of L-type Ca2+ channel activity (retrograde coupling). These data demonstrate that FKBP12 binding to RyR1 enhances the gain of skeletal muscle EC coupling.  相似文献   

17.
Excitation-contraction (e-c) coupling in muscle relies on the interaction between dihydropyridine receptors (DHPRs) and RyRs within Ca(2+) release units (CRUs). In skeletal muscle this interaction is bidirectional: alpha(1S)DHPRs trigger RyR1 (the skeletal form of the ryanodine receptor) to release Ca(2+) in the absence of Ca(2+) permeation through the DHPR, and RyR1s, in turn, affect the open probability of alpha(1S)DHPRs. alpha(1S)DHPR and RyR1 are linked to each other, organizing alpha(1S)-DHPRs into groups of four, or tetrads. In cardiac muscle, however, alpha(1C)DHPR Ca(2+) current is important for activation of RyR2 (the cardiac isoform of the ryanodine receptor) and alpha(1C)-DHPRs are not organized into tetrads. We expressed RyR1, RyR2, and four different RyR1/RyR2 chimeras (R4: Sk1635-3720, R9: Sk2659-3720, R10: Sk1635-2559, R16: Sk1837-2154) in 1B5 dyspedic myotubes to test their ability to restore skeletal-type e-c coupling and DHPR tetrads. The rank-order for restoring skeletal e-c coupling, indicated by Ca(2+) transients in the absence of extracellular Ca(2+), is RyR1 > R4 > R10 > R16 > R9 > RyR2. The rank-order for restoration of DHPR tetrads is RyR1 > R4 = R9 > R10 = R16 > RyR2. Because the skeletal segment in R9 does not overlap with that in either R10 or R16, our results indicate that multiple regions of RyR1 may interact with alpha(1S)DHPRs and that the regions responsible for tetrad formation do not correspond exactly to the ones required for functional coupling.  相似文献   

18.
Four ryanodine receptor type 1 and 2 chimeras (R4, R9, R10, and R16) and their respective wild-type ryanodine receptors (type 1 and 2; wtRyR1 and wtRyR2) were expressed in dyspedic 1B5 to identify possible negative regulatory modules of the Ca2+ release channel that are under the influence of the dihydropyridine receptor (DHPR). Responses of intact 1B5 myotubes expressing each construct to caffeine in the absence or presence of either La3+ and Cd2+ or the organic DHPR blocker nifedipine were determined by imaging single 1B5 myotubes loaded with fluo 4. The presence of La3+ and Cd2+ or nifedipine in the external medium at concentrations known to block Ca2+ entry through the DHPRs significantly decreased the caffeine EC50 of wtRyR1 (2.80 ± 0.12 to 0.83 ± 0.09 mM; P < 0.05). On the other hand, DHPR blockade did not significantly alter the caffeine EC50 values of wtRyR2, chimeras R10 and R16, whereas the caffeine EC50 values of chimeras R4 and R9 were significantly increased (1.27 ± 0.05 to 2.60 ± 0.16 mM, and 1.15 ± 0.03 to 2.11 ± 0.32 mM, respectively; P < 0.05). Despite the fact that all the chimeras form fully functional Ca2+ release channels in situ, sarcoplasmic reticulum (SR) containing R4, R10, and R16 did not possess high-affinity binding of [3H]ryanodine regardless of Ca2+ concentration. These results suggest the presence of an interaction between RyR1 and the DHPR, which is not present in RyR2, that contributes negative control of SR Ca2+ release induced by direct agonists such as caffeine. Although we were unable to define the negative module using RyR1-RyR2 chimeras, they further demonstrated that the RyR is very sensitive to long-range allosterism. ryanodine receptor type 1; dihydropyridine receptor; excitation-contraction coupling; negative module  相似文献   

19.
The role of the sequence surrounding M4 in ryanodine receptors (RyR) in membrane association and function was investigated. This sequence contains a basic, 19-amino acid M3/M4 loop, a hydrophobic 44-49 amino acid sequence designated M4 (or M4a/M4b), and a hydrophilic M4/M5 loop. Enhanced green fluorescent protein (EGFP) was inserted into RyR1 and truncated just after the basic sequence, just after M4, within the M4/M5 loop, just before M5 and just after M5. The A52 epitope was inserted into RyR2 and truncated just after M4a. Analysis of these constructs ruled out a M3/M4 transmembrane hairpin and narrowed the region of membrane association to M4a/M4b. EGFP inserted between M4a and M4b in full-length RyR2 was altered conformationally, losing fluorescence and gaining trypsin sensitivity. Although it was accessible to an antibody from the cytosolic side, tryptic fragments were membrane-bound. The expressed protein containing EGFP retained caffeine-induced Ca(2+) release channel function. These results suggest that M4a/M4b either forms a transmembrane hairpin or associates in an unorthodox fashion with the cytosolic leaflet of the membrane, possibly involving the basic M3/M4 loop. The expression of a mutant RyR1, Delta4274-4535, deleted in the sequence surrounding both M3 and M4, restored robust, voltage-gated L-type Ca(2+) currents and Ca(2+) transients in dyspedic myotubes, demonstrating that this sequence is not required for either orthograde (DHPR activation of sarcoplasmic reticulum Ca(2+) release) or retrograde (RyR1 increase in DHPR Ca(2+) channel activity) signals of excitation-contraction coupling. Maximal amplitudes of L-currents and Ca(2+) transients with Delta4274-4535 were larger than with wild-type RyR1, and voltage-gated sarcoplasmic reticulum Ca(2+) release was more sensitive to activation by sarcolemmal voltage sensors. Thus, this region may act as a negative regulatory module that increases the energy barrier for Ca(2+) release channel opening.  相似文献   

20.
Interactions of the II-III loop of the voltage-gated Ca(2+) channel alpha(1S) subunit with the Ca(2+) release channel (RyR1) are essential for skeletal-type excitation-contraction (EC) coupling. Here, we characterized the binding site of the monoclonal alpha(1S) antibody mAB 1A and used it to probe the structure of the II-III loop in chimeras with different EC coupling properties. Phage-display epitope mapping of mAB 1A revealed a minimal consensus binding sequence X-P-X-X-D-X-P. Immunofluorescence labeling of (1S), alpha(1C), alpha(1D), and of II-III loop chimeras expressed in dysgenic myotubes established that mAB 1A reacted specifically with amino acids 737-744 in the II-III loop of alpha(1S), which is within the domain (D734-L764) critical for bidirectional coupling with RyR1. Comparing mAB 1A immunoreactivity with known structural and functional properties of II-III loop chimeras in which the non-conserved skeletal residues were systematically mutated to their cardiac counterparts indicated a correlation of mAB 1A immunoreactivity and skeletal-type EC coupling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号