首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Thirty-five hexaploid and twenty octoploid primary triticales (xTriticosecale Wittmack) derived from homozygous wheat and rye inbred lines were used (1) to investigate the parental wheat, rye, and interaction effects and (2) to estimate quantitative genetic parameters for agronomic traits. The winter triticales were tested in four environments in a three-replicate split-plot design with drilled 1 m2 plots. Superior performance of hexaploid triticales as compared to the octoploids was revealed. Substantial genetic variation and high heritability estimates were found for nearly all of the characters investigated. Estimates of wheat, rye, and wheat×rye interaction variance components disclosed parental main effects to be the most important source of genetic variation in primary triticales. The rye parent was dominant for all characters affecting fertility, and the wheat parent was more important for vegetative development. Character correlations were very similar for triticales of both ploidy levels. The lack of association between grain yield and tillering and the positive correlation between kernels per spike and thousand kernel weight indicated physiological disorders specific for primary triticales.  相似文献   

2.
C-banded wheat chromosomes in wheat and triticale   总被引:4,自引:0,他引:4  
Summary The C-banding patterns of wheat chromosomes in 7 hexaploid triticale and 7 wheat genotypes are described and compared. All 14 wheat chromosome pairs were individually identified in the triticales and a tetraploid wheat, and all the B and two A genome chromosome pairs in the hexaploid wheat genotypes. Little variation was found between genotypes in the distribution of C-bands but considerable variation was found in their size, total number and total length.  相似文献   

3.
Summary Further data on the inheritance of seed peroxidases of hexaploid wheat (Triticum aestivum L.) and rye (Secale cereale L.) have been obtained from the genetic analysis of several progenies of both species. Additional data on the inheritance and the chromosomal location and linkage have been obtained for peroxidases of wheat embryo and rye endosperm. The general presence of null alleles in peroxidase loci has been confirmed in both species. In addition to simple monogenic inheritance, epistatic segregations have been observed in both species. These epistatic segregations again suggest the presence of regulatory genes controlling the expression of individual peroxidases in both species and also the existence of several duplicate homoeologous genes in wheat. Known linkage relationships have been confirmed and new ones are indicated. Loci for embryo wheat peroxidases seem to be in chromosomes of the homoeology group 3. The rye endosperm ones should be in chromosome 7R, although it is hypothesized that a duplication of gene EPer1 is located in chromosomes 4R and 7R.  相似文献   

4.
Summary Six primary triticale lines were produced from two advanced breeding lines of Triticum durum and three inbred genotypes of Secale cereale. The wheat and rye parents and the triticale derivatives were crossed in all possible combinations within each species group. Chiasma and univalent frequency of parents and hybrids were determined. The primary triticale lines had more univalents and less chiasmata per pollen mother cell than the corresponding wheat and rye parents together. The parental wheat F1 exhibited negative heterosis for chiasma frequency whereas all rye hybrids had much higher chiasma frequencies than their inbred parents. Triticale F1s generally showed lower chiasma frequencies and more univalents than their parents, but the degree of pairing failure was dependent upon which of the parental species within the triticale, wheat or rye, was in the heterozygous state. F1s with heterozygous wheat genome only showed the least reduction in chiasma number (presumably caused by gene actions within the wheat genome), while F1s with heterozygous rye genome showed high reduction in chiasma frequency and an increase in pairing failure (induced by negative interactions between the heterozygous rye and the wheat genome in triticale). A high correlation was found between the frequency of undisturbed pollen mother cells and the frequency of aneuploids in the subsequent generation. A higher number of aneuploids occurred in those populations which were heterozygous for the rye genome.  相似文献   

5.

Background

Hexaploid triticale could be either synthesized by crossing tetraploid wheat with rye, or developed by crossing hexaploid wheat with a hexaploid triticale or an octoploid triticale.

Methodology/Principal Findings

Here two hexaploid triticales with great morphologic divergence derived from common wheat cultivar M8003 (Triticum aestivum L.) × Austrian rye (Secale cereale L.) were reported, exhibiting high resistance for powdery mildew and stripe rust and potential for wheat improvement. Sequential fluorescence in situ hybridization (FISH) and genomic in situ hybridization (GISH) karyotyping revealed that D-genome chromosomes were completely eliminated and the whole A-genome, B-genome and R-genome chromosomes were retained in both lines. Furthermore, plentiful alterations of wheat chromosomes including 5A and 7B were detected in both triticales and additionally altered 5B, 7A chromosome and restructured chromosome 2A was assayed in N9116H and N9116M, respectively, even after selfing for several decades. Besides, meiotic asynchrony was displayed and a variety of storage protein variations were assayed, especially in the HMW/LMW-GS region and secalins region in both triticales.

Conclusion

This study confirms that whole D-genome chromosomes could be preferentially eliminated in the hybrid of common wheat × rye, “genome shock” was accompanying the allopolyploidization of nascent triticales, and great morphologic divergence might result from the genetic variations. Moreover, new hexaploid triticale lines contributing potential resistance resources for wheat improvement were produced.  相似文献   

6.
Final grain dry weight, a component of yield in wheat, is dependent on the duration and the rate of grain filling. The purpose of the study was to compare the grain filling patterns between common wheat, (Triticum aestivum L.), and durum wheat, (Triticum turgidum L. var. durum), and investigate relationships among grain filling parameters, yield components and the yield itself. The most important variables in differentiating among grain filling curves were final grain dry weight (W) for common wheat genotypes and grain filling rate (R) for durum wheat genotypes; however, in all cases the sets of variables important in differentiating among grain filling curves were extended to either two or all three parameters. Furthermore, in one out of three environmental conditions and for both groups of genotypes, the most important parameter in the set was grain filling duration (T). It indicates significant impact of environmental conditions on dry matter accumulation and the mutual effect of grain filling duration and its rate on the final grain dry weight. The medium early anthesis date could be associated with further grain weight and yield improvements in wheat. Grain filling of earlier genotypes occurs in more temperate environments, which provides enough time for gradual grain fill and avoids the extremes of temperature and the stress of dry conditions.  相似文献   

7.
In crosses between hexaploid wheat and inbred lines of rye, a small number of rye genotypes produce seeds carrying undifferentiated, non-viable embryos. Hybrids between such lines and those not showing this phenotype were used as pollen donors in crosses with bread wheat in order to determine the genetic basis of disturbed embryo development. A single gene, designated Eml-R1b, is causing this character. Molecular markers associated with F2 genotypes derived from a contrasting rye inbred progeny were used for a linkage study. Recombinant inbred lines of an F5 population served as testers. Eml-R1b maps to chromosome arm 6RL, along with two co-segregating microsatellite loci, Xgwm1103 and Xgwm732. Complementary interactions of deleterious genes in wheat and rye are discussed.  相似文献   

8.
Summary A complete set of isogenic wheat/rye D-genome substitutions were produced by crossing an inbred line of spring rye Secale cereale L. cv. Prolific to a tetraploid wheat, the A-and B-genomes of which had previously been extracted from hexaploid wheat, Triticum aestivum L. em Thell. cv. Thatcher. After chromosome doubling, the derived hexaploid triticale (x Triticosecale Wittmack) was backcrossed to 6x Thatcher and selection for wheat/rye substitution lines was carried out in BCF3 to BCF6 families by using Giemsa C-banding. Five fertile disomic wheat/rye D-genome substitution lines were obtained and their chromosomal constitution was determined to be 1D/1R, 2D/2R, 7D/4R, 6D/6R, 7D/7R. The two remaining 3R and 5R substitutions are at the moment in a monosomic condition. Another 1D/7R substitution was detected but this plant was very weak and sterile, indicating that only substitutions between homoeologous chromosomes result in fertile, vigorous plants. Furthermore, many rye telocentrics as well as rye-rye and rye-wheat translocations were selected. Since all lines selected in this program share the same genetic background of Thatcher wheat, genetic heterogeneity is excluded. The material is very useful, therefore, for analyzing the effects of different rye chromosomes or chromosome segments in an otherwise homozygous background.Contribution No. 797  相似文献   

9.
Genomic in-situ hybridization (GISH) was used to determine the amount of wheat-rye chromosome pairing in wheat (Triticum aestivum) x rye (Secale cereale) hybrids having chromosome 5B present, absent, or replaced by an extra dose of chromosome 5D. The levels of overall chromosome pairing were similar to those reported earlier but the levels of wheat-rye pairing were higher than earlier determinations using C-banding. Significant differences in chromosome pairing were found between the three genotypes studied. Both of the chromosome-5B-deficient hybrid genotypes showed much higher pairing than the euploid wheat hybrid. However, the 5B-deficient hybrid carrying an extra chromosome 5D had significantly less wheat-rye pairing than the simple 5B-deficient genotype, indicating the presence of a suppressing factor on chromosome 5D. Non-homologous/non-homoeologous chromosome pairing was observed in all three hybrid genotypes. The value of GISH for assessing the level of wheat-alien chromosome pairing in wheat/alien hybrids and the effectiveness of wheat genotypes that affect homoeologous chromosome pairing is demonstrated.  相似文献   

10.
Polyploidy has been found to be common in plants. Bread or common wheat (Triticum aestivum L., 2n=42) is a good example of allopolyploid made up of three diploid genomes A, B and D. In recent years, by the study of mimicking the origination of common wheat, it was found that changes of DNA sequence and gene expression occurred at the early stages of artificial allohexaploid between tetraploid wheat and Aegilops tauschii, which was probably favorable to genetic diploidization of new synthetic hexaploid wheat. Common wheat 99L2 is a new line stable in genetic, which was derived from the early self-pollinated generation of wide hybrids between common wheat and rye. In this study, it was found that at least two rye DNA segments had been introgressed into 99L2. This result suggested that a mechanism of alien DNA introgression may exist, which was different from the traditional mechanism of chromosome pairing and DNA recombination between wheat and alien species. Meanwhile, during the introgression process of alien rye DNA segments, the changes in DNA sequences of wheat itself occurred.  相似文献   

11.
Summary Screening large populations of plant species for Al tolerance requires simple and rapid tests. In this study, root characteristics of 12 cultivars of triticale (X Triticosecale, Witt Mack), wheat (Triticum aestivum L.), and rye (Secale cereale L.) were measured in nutrient solution with 0 or 6 ppm Al added. Aluminum injury to roots of triticale and wheat was characterized by decreases in root length, increases in the number of roots, and in Al-sensitive Redcoat and Arthur wheats by decrease in root weight. Root length and number of roots were correlated in triticale (r=−0.73*) and in wheat (r=−0.85*). Root length was also correlated with root weight in wheat (r=0.65*); there was no relationship between the number of roots and weight. Differences in Al tolerance of cultivars of the three species were greater when the solution was adjusted to pH 4.8 only on the first day of the experiment than when pH was maintained at pH 4.8 throughout the growing period. Triticale and rye cultivars low in ability to increase solution pH gradually overcame Al toxicity by increasing the nutrient solution pH between 12 and 22 days. Aluminum sensitive triticale and wheat accumulated more Al in roots than tolerant cultivars when the solution pH was not adjusted daily; but no differences in Al accumulation were obtained between wheat cultivars at constant pH value. This study indicated that root length and number of roots can be reliably used for screening triticales for Al tolerance within 12 days of exposure to Al. Root length, Al concentration, and dry weight after 22 days of Al treatment were also reliable criteria for evaluating differential Al tolerances among triticale cultivars.  相似文献   

12.
Transferability of SSR markers among wheat,rye, and triticale   总被引:14,自引:0,他引:14  
Simple sequence repeat (SSR) markers are a valuable tool for many purposes, such as mapping, fingerprinting, and breeding. However, they are only available in some economically important crops because of the high cost and labor intensity involved in their development. Comparative mapping reveals a high degree of colinearity between closely related species, which allows the exchange of markers between them. Our objective was to examine the transferability of SSR markers among wheat (Triticum aestivum L.), rye (Secale cereale L.), and triticale (X Triticosecale Wittmack). One hundred forty-eight wheat and 28 rye SSR markers were used to amplify genomic DNA extracted from five lines each of wheat, rye, and triticale. Transferability of wheat SSR markers to rye was 17%, whereas 25% of rye markers were amplifiable in wheat. In triticale, 58% and 39% transferability was achieved for wheat and rye markers, respectively. Wheat markers gave an average of 2.6, 2.7, and 2.4 polymorphic bands in wheat, rye, and triticale, respectively, while rye markers gave an average of 2.0 in rye and none in wheat and triticale. These transferable markers can now be exploited for further genetic and breeding studies in these species.Nebraska Agricultural Research Division, Journal Series No. 14243Communicated by B. Friebe  相似文献   

13.
The effect of rye chromosomes on polyembryony was studied for reciprocal hybrid combinations between (Hordeum vulgare L.)-Triticum aestivum L. alloplasmic recombinant lines and five wheat T. aestivum L. (cultivar Saratovskaya 29)-rye Secale cereale L. (cultivar Onokhosikaya) substitution lines: 1R(1D), 2R(2D), 3R(3B), 5R(5A), and 6R(6A), and for direct hybrid combinations between the [H. marinum ssp. gussoneanum (H. geniculatum All.)]-T. aestivum alloplasmic recombinant line and the wheat-rye substitution lines 1R(1A), 1R(1D), and 3R(3B). Chromosomes 1R and 3R of rye cultivar Onokhoiskaya proved to affect the expression of polyembryony in the hybrid combinations that involved the alloplasmic recombinant lines of common wheat as maternal genotypes. Based on this finding, polyembryony was regarded as a phenotypic expression of nuclear-cytoplasmic interactions where an important role is played by rye chromosomes 1R and 3R and the H. vulgare cytoplasm. Consideration is given to the association between the effect of rye chromosomes 1R and 3R on polyembryony in the [(Hordeum)-T. aestivum × wheat-rye substitution lines] hybrid combinations and their stimulating effect on the development on androgenic embryoids in isolated anther cultures of the wheat-rye substitution lines. Original Russian Text ? L.A. Pershina, T.S. Rakovtseva, L.I. Belova, E.P. Devyatkina, O.G. Silkova, L.A. Kravisova, A.I. Shchapova, 2007, published in Genetika, 2007, Vol. 43, No. 7, pp. 955–962.  相似文献   

14.
Induction of recombination between rye chromosome 1RL and wheat chromosomes   总被引:2,自引:0,他引:2  
Summary The ph1b mutant in bread wheat has been used to induce homoeologous pairing and recombination between chromosome arm 1RL of cereal rye and wheat chromosome/s. A figure of 2.87% was estimated for the maximal frequency of recombination between a rye glutelin locus tightly linked to the centromere and the heterochromatic telomere on the long arm of rye chromosome 1R in the progeny of ph1b homozygotes. This equates to a gametic recombination frequency of 1.44%. This is the first substantiated genetic evidence for homoeologous recombination between wheat and rye chromosomes. No recombinants were confirmed in control populations heterozygous for ph1b. The ph1b mutant was also observed to generate recombination between wheat homoeologues.  相似文献   

15.
Chromosome painting using multicolor fluorescence in situ hybridization showed that, in addition to the T1AL·1RS translocation derived from rye, a segment from chromosome 3Ae#1 of Agropyron elongatum (2n=10x =70), is present in Amigo wheat. The Agropyron chromosome segment is located on the satellite of chromosome 1B and the translocation chromosome is designated as T1BL·1BS-3Ae#1L. T1BL·1BS-3Ae#1L was inherited from Teewon wheat and carries resistance genes to stem rust (Sr24) and leaf rust (Lr24). The Agropyron chromosome segments in different Sr24/Lr24 carrier wheat lines, including Agent, TAP 48, TAP 67, Teewon, and Amigo, showed a diagnostic C-band, and were derived from the same chromosome, 3Ae#1.  相似文献   

16.
The role of individual chromosomes of rye in the manifestation of crossability and seedling development in hybrid combinations between cultivated barley Hordeum vulgare L., cultivar Nepolegayushchii (2n = 14) and five wheat-rye substitution lines Triticum aestivum L., cultivar Saratovskaya 29/Secale cereale L., cultivar Onokhoiskaya (2n = 40 wheat + 2 rye chromosomes). Crossability, which was measured by two parameters—frequency of set grains and frequency of grains with embryos—was shown to be significantly affected by each of the five rye chromosomes examined: 1R, 2R, 3R, 5R, and 6R; the development of barley haploids was affected by rye chromosomes 1R, 3R, and 5R. We were the first to demonstrate that polyembryony could be induced by mutual effects of barley cytoplasm and rye chromosome 1R. Possible mechanisms controlling the development of haploids and twins in hybrid combinations H. vulgare × T. aestivum/S. cereale are discussed. The conclusion is drawn that hybrid combinations between cultivated barley and wheat-rye substitution lines can serve as new models for studying incompatibility mechanisms in distant crosses and genetic control of parthenogenesis.__________Translated from Genetika, Vol. 41, No. 6, 2005, pp. 784–792.Original Russian Text Copyright © 2005 by Pershina, Belova, Devyatkina, Rakovtseva, Kravtsova, Shchapova.  相似文献   

17.
Wheat-rye chromosome associations at metaphase I studied by Naranjo and Fernández-Rueda (1991) in ph1b ABDR hybrids have been reanalysed to establish the frequency of pairing between individual chromosomes of wheat and rye. Wheat chromosomes, except for 2A and 2D, and their arms were identified by C-banding. Diagnostic C-bands and other cytological markers such as telocentrics or translocations were used to identify each one of the rye chromosomes and their arms. Both the amount of telomeric C-heterochromatin and the structure of the rye chromosomes relative to wheat affected the level of wheatrye pairing. The degree to which rye chromosomes paired with their wheat homoeologues varied with each of the three wheat genomes; in most groups, the B-R association was more frequent than the A-R or D-R associations. Recombination between arms 1RL and 2RL and their homoeologues of wheat possessing a different telomeric C-banding pattern was detected and quantified at anaphase I. The frequency of recombinant chromosomes obtained supports the premise that recombination between wheat and rye chromosomes may be estimated from wheat-rye pairing.  相似文献   

18.
The Russian wheat aphid is a significant pest problem in wheat and barley in North America. Genetic resistance in wheat is the most effective and economical means to control the damage caused by the aphid. Dn7 is a rye gene located on chromosome 1RS that confers resistance to the Russian wheat aphid. The gene was previously transferred from rye into a wheat background via a 1RS/1BL translocation. This study was conducted to genetically map Dn7 and to characterize the type of resistance the gene confers. The resistant line '94M370' was crossed with a susceptible wheat cultivar that also contains a pair of 1RS/1BL translocation chromosomes. The F2 progeny from this cross segregated for resistance in a ratio of 3 resistant: 1 susceptible, indicating a single dominant gene. One-hundred and eleven RFLP markers previously mapped on wheat chromosomes 1A, 1B and 1D, barley chromosome 1H and rye chromosome 1R, were used to screen the parents for polymorphism. A genetic map containing six markers linked to Dn7, encompassing 28.2 cM, was constructed. The markers flanking Dn7 were Xbcd1434 and XksuD14, which mapped 1.4 cM and 7.4 cM from Dn7, respectively. Dn7 confers antixenosis, and provides a higher level of resistance than that provided by Dn4. The applications of Dn7 and the linked markers in wheat breeding are discussed.Communicated by J. Dvorak  相似文献   

19.
Summary The effects of A1 on the growth and mineral composition of different cultivars of triticale (X Triticosecale, Wittmack), wheat (Triticum aestivum L.) and rye (Secale cereale L.) growing in 1/5 strength Steinberg solutions containing 0 or 6 ppm A1 were evaluated after 32 days. Aluminum increased the concentrations of P and K in the roots and K in the tops of most of the cultivars tested. A1 tolerant triticale retained a lower concentration of Mg in the roots and tops than the A1 sensitive triticale, when subjected to A1 stress. In addition, A1 treatments resulted in smaller increases in root P for the A1 tolerant triticale than for the A1 sensitive cultivars.The concentration of root Ca and P of the A1 tolerant wheat cultivars were significantly below that of the more sensitive plants. Aluminum tolerance in rye appeared to be associated with lower Ca and higher Mg concentrations in the tops. The accumulation of P and A1 in the roots was characteristic of sensitivity in triticale, wheat and rye.  相似文献   

20.
The interactive effect on homoeologous pairing of rye B-chromosomes with the absence of both pairing suppressor (3A, 3D, 5B) and promotor (3B, 5A, 5D) chromosomes of common wheat (Triticum aestivum L.) is analyzed by comparison of pairing at Metaphase I of 27-, 27+2B, 28- and 28+2B-chromosome plants. These plants were obtained from crosses between the respective wheat monosomics (2n=41) and rye plants (Secale cereale L.) carrying or not carrying two B-chromosomes (2n=14 or 14+2Bs). —The effect of rye B-chromosomes on pairing depends on the function of the wheat chromosome which is absent in the appropriate hybrids, i.e., rye B-chromosomes have a suppressor effect on pairing when the pairing suppressing wheat chromosomes 3A, 3D or 5B are absent, while they behave as promotors when the pairing promoting chromosomes 3B, 5A or 5D are absent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号