首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The photoactivable glycolipid probes, 2-(4-azido-2-nitrophenoxy)palmitoyl[1-14C]glucosamine (compound A) and 12-(4-azido-2-nitrophenoxy)stearoyl[1-14C]glucosamine (compound B) were synthesized essentially as described before [Iwata, K. K. et al. (1978) Prog. Clin. Biol. Res. 22, 579-589]. These probes were used to label phospholipid vesicles and erythrocyte membranes. A chromatographic method was developed to quantify the individual probe-phospholipid adducts involving both phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine. For both membranes as well as for both probes a phospholipid labeling pattern was obtained which appeared to reflect the relative content of fatty acid double bonds in each phospholipid class. The distinct labeling of phosphatidylserine in intact erythrocytes strongly suggested that the probes spontaneously and rapidly redistributed between the two halves of the membrane bilayer. In addition, both probes yielded an extensive labeling of the membrane proteins. Analysis by dodecylsulfate-polyacrylamide gel electrophoresis and autoradiography has indicated that the protein labeling pattern was different, depending on whether the 'shallow' probe (compound A) or 'depth' probe (compound B) were used.  相似文献   

2.
This study was designed to identify a method for the measurement of human high density lipoprotein subfraction (HDL2 and HDL3) metabolism. Apolipoproteins A-I, A-II, and C, the major HDL apoproteins, were radioiodinated and incorporated individually into HDL2 and HDL3 in vitro. Using a double label technique, the turnover of apoA-I in HDL2 and HDL3 was measured simultaneously in a normal male. The apoprotein exchanged rapidly between the two subfractions, evidenced by equilibration of their apoA-I specific activity. Radiolabeled apoA-II, incorporated into the subfractions, showed a similar exchange in vitro. Incubation of 131I-labeled very low density lipoproteins (VLDL) with HDL or its subfractions resulted in transfer of C proteins from VLDL to the HDL moiety. The extent of transfer was dependent on the HDL subfraction present; 50% of the VLDL apoC was transferred to HDL3, while the transfer to total HDL and HDL2 was 69% and 78%, respectively. ApoC also exchanged between HDL2 and HDL3, again showing a preference for the former and suggesting a primary metabolic relationship between VLDL and HDL2. Overall, the study indicates that apoA-I, apoA-II, and the C proteins exist in equilibrium between HDL2 and HDL3. This phenomenon precludes their use as probes for HDL subfraction metabolism in humans.  相似文献   

3.
Eight stable murine monoclonal antibodies (mabs) were raised against human high-density lipoproteins (HDL). Three different antibody reactivities were demonstrated by immunoblotting. A group of five antibodies were specific for apolipoprotein A-I (apoA-I) and bound to similar or overlapping epitopes. The second type of reactivity, shown by mab-32, was specific for apoA-II. In the third group, two antibodies showed high reactivity with apoA-II and slight cross-reactivity with apoA-I. The properties of two antibodies, mab M-30 specific for apoA-I and mab M-32 specific for apoAII, were characterized in detail as probes of HDL structure. The association of 125I-labeled HDL or synthetic complexes of apoA-I and phosphatidylcholine with mab M-30 was lipid dependent. Mab M-32 binding to apoA-II was independent of lipid. The lipid-dependent epitope bound by mab M-30 has been localized to an 18 amino acid synthetic apoA-I peptide. Moreover, studies with HDL2, HDL3, and immunoadsorbed HDL subfractions indicate that binding of mab M-30 to HDL is influenced by some component within the microenvironment individual HDL particles. These lines of evidence suggest that the molar ratio of apoA-I to apoA-II is the critical determinant. Binding of mab M-32 to HDL increased the reactivity of HDL to mab M-30 in a dose-dependent manner, indicating an unusual form of cooperativity between two mabs that recognize different proteins in HDL. These monoclonal antibodies will be valuable in studies of the metabolic significance of protein-protein and lipid-protein interactions in HDL.  相似文献   

4.
The precise nature and origin(s) of the abnormalities in lipoprotein and apolipoprotein profile associated with severe hepatic dysfunction and the presence of spur cells remain poorly defined. To shed light on this question, we have analyzed the plasma lipoprotein and apolipoprotein profiles in five patients with alcoholic cirrhosis and spur cells, and compared them with those of a group with similar hepatocellular dysfunction, but lacking spur cells, and with that of a control group. Lipoproteins were subfractionated by density gradient ultracentrifugation and their physicochemical properties were determined; apolipoprotein A-I, A-II, and B contents in plasma and the respective subfractions were quantitated by radial immunodiffusion, while the complement of low molecular weight apolipoproteins in each subfraction was analyzed by isoelectric focusing and electrophoresis in alkaline-urea polyacrylamide gels. Spur cell plasma was distinguished by reduced levels of apoA-II and elevated ratios of apoA-I/apoA-II (approximately 13:1 as compared to 3.3-3.9:1 in the other two groups), and by reduced concentrations of HDL3. Gradient fractionation showed the apoA-II content of HDL3 to be dramatically and significantly diminished in spur cell plasma; in addition, apoA-II content was reduced relative to apoA-I in this subclass (4.7:1 as compared to 1:1 in cirrhotics lacking spur cells and 1.9:1 in controls). Spur cell HDL2 was similarly deficient in apoA-II, with elevated ratios of apoA-I:apoA-II (9.8:1 in comparison with 1.9-2.5:1 in the two other groups). Nonetheless, high HDL2 concentrations were seen in both series of cirrhotic patients, irrespective of red cell morphology. Spur cell HDL2 thus appears to consist primarily of particles possessing only apoA-I, with a minor population containing both apoA-I and apoA-II. The free cholesterol content of all lipoprotein subfractions from spur cell plasma was increased, as indeed was the molar ratio of free cholesterol to phospholipid, in comparison with that of corresponding fractions from alcoholic cirrhotics lacking spur cells and of control subjects. LDL levels were reduced in spur cell plasma, thereby distinguishing this group from the cirrhotics without spur cells who displayed elevated LDL levels. Markedly reduced plasma levels of apoA-II, HDL3, and LDL appear characteristic of alcoholic cirrhotics presenting with spur cells. Our findings suggest that apoA-II may be essential to the normal function and metabolism of HDL, one aspect of which may be the transport of free cholesterol and thereby the direct or indirect maintenance of red cell morphology.  相似文献   

5.
The monolayer system was employed to investigate the relative affinities of apolipoproteins A-I and A-II for the lipid/water interface. The adsorption of reductively 14C-methylated apolipoproteins to phospholipid monolayers spread at the air/water interface was determined by monitoring the surface pressure of the mixed monolayer and the surface concentration of the apoprotein. ApoA-II has a higher affinity than apoA-I for lipid monolayers; for a given initial surface pressure, apoA-II adsorbs more than apoA-I to monolayers of egg phosphatidylcholine (PC), distearoyl-PC and human high-density lipoprotein (HDL3) surface lipids. Comparison of the molecular packing of apolipoproteins A-I and A-II suggests that apoA-II adopts a more condensed conformation at the lipid/water interface compared to apoA-I. The ability of apoA-II to displace apoA-I from egg PC and HDL3 surface lipid monolayers was studied by following the adsorption and desorption of the reductively 14C-methylated apolipoproteins. At saturating subphase concentrations of the apoproteins (3.10(-5) g/100 ml), two molecules of apoA-II absorbed for each molecule of apoA-I displaced. This displacement was accompanied by an increase in surface pressure. An identical stoichiometry for the displacement of apoA-I from HDL particles by apoA-II has been reported by others. At low subphase concentrations of apoproteins (5.10(-6) g/100 ml), the apoA-I/lipid monolayer was not fully compressed and could accommodate the adsorbing apoA-II molecules without displacement of apoA-I molecules. ApoA-I molecules were unable to displace apoA-II from the lipid/water interface. The average residue hydrophobicity of apoA-II is higher than that of apoA-I; this may contribute to the higher affinity of apoA-II for lipids compared to apoA-I. The probable helical regions in apolipoproteins A-I and A-II were located using a secondary structure prediction algorithm. The analysis suggests that the amphiphilic properties of the alpha-helical regions of apoA-I and apoA-II are probably not significantly different. Further understanding of the differences in surface activity of these apolipoproteins will require more knowledge of their secondary and tertiary structures.  相似文献   

6.
Overnight chair restraint results in a dramatic increase in serum amyloid A protein (apoSAA) of nonhuman primate high density lipoprotein (HDL). To determine whether apoSAA induction resulted in a displacement of indigenous HDL protein or a change in the subfraction distribution of HDL, we analyzed the characteristics of HDL subfractions in eight vervet monkeys before and 24 hr after apoSAA induction. Blood was taken from each animal before and after chair restraint to induce apoSAA. HDL was isolated from the plasma by ultracentrifugation and agarose column chromatography. The isolated HDL was subfractionated by density gradient centrifugation and five resulting subfractions were analyzed for protein and lipid content. With apoSAA induction there was a significant increase in d less than 1.09 g/ml protein, phospholipid, and free and esterified cholesterol which resulted in a 44% increase in the total mass of this subfraction. Concomitantly, there was a significant decrease in d 1.10-1.11 g/ml protein, total cholesterol, and cholesteryl ester, which resulted in a 16% decrease in the total mass of the subfraction. The response of the d 1.10-1.11 and d greater than 1.12 g/ml subfraction protein, cholesterol, and phospholipid concentrations to chair restraint for individual animals was directly proportional to their plasma HDL concentrations. Although there was a change in the HDL subfraction concentrations after chair restraint, there was no change in the lipid composition of the HDL subfractions nor in the total amount of HDL protein. However, the apoSAA/A-I ratio was significantly increased with induction while the apoA-II + C's/A-I ratio remained unchanged. The apoSAA/A-I ratio progressively increased with the density of the HDL subfraction. The protein composition of the d greater than 1.12 g/ml subfraction was changed from an average of three apoA-I and two apoA-II (or C's) molecules per particle to an average of two apoA-I, one apoA-II (or C's), and three or four apoSAA molecules per particle after chair restraint. Thus, apoSAA was predominantly associated with the denser HDL subfractions even though the lighter HDL subfractions were the most responsive in terms of changes in concentration. These data suggest that chair restraint of nonhuman primates induces apoSAA which displaces apoA-I and apoA-II or C's from HDL without altering the overall lipid and protein composition of the particle. In addition, chair restraint alters the concentration of HDL subfractions in ways that may be independent of apoSAA induction.  相似文献   

7.
It is expected that the attendant structural heterogeneity of human high-density lipoprotein (HDL) complexes is a determinant of its varied metabolic functions. To determine the structural heterogeneity of HDL, we determined major apolipoprotein stoichiometry profiles in human HDL. First, HDL was separated into two main populations, with and without apolipoprotein (apo) A-II, LpA-I and LpA-I/A-II, respectively. Each main population was further separated into six individual subfractions using size exclusion chromatography (SEC). Protein proximity profiles (PPPs) of major apolipoproteins in each individual subfraction was determined by optimally cross-linking apolipoproteins within individual particles with bis(sulfosuccinimidyl) suberate (BS(3)), a bifunctional cross-linker, followed by molecular mass determination by MALDI-MS. The PPPs of LpA-I subfractions indicated that the number of apoA-I molecules increased from two to three to four with an increase in the LpA-I particle size. On the other hand, the entire population of LpA-I/A-II demonstrated the presence of only two proximal apoA-I molecules per particle, while the number of apoA-II molecules varied from one dimeric apoA-II to two and then to three. For most of the PPPs described above, an additional population that contained a single molecule of apoC-III in addition to apoA-I and/or apoA-II was detected. Upon composition analyses of individual subpopulations, LpA-I/A-II exhibited comparable proportions for total protein (~58%), phospholipids (~21%), total cholesterol (~16%), triglycerides (~5%), and free cholesterol (~4%) across subfractions. LpA-I components, on the other hand, showed significant variability. This novel information about HDL subfractions will form a basis for an improved understanding of particle-specific functions of HDL.  相似文献   

8.
Gao X  Yuan S  Jayaraman S  Gursky O 《Biochemistry》2012,51(23):4633-4641
High-density lipoproteins (HDL, or "good cholesterol") are heterogeneous nanoparticles that remove excess cell cholesterol and protect against atherosclerosis. The cardioprotective action of HDL and its major protein, apolipoprotein A-I (apoA-I), is well-established, yet the function of the second major protein, apolipoprotein A-II (apoA-II), is less clear. In this review, we postulate an ensemble of apolipoprotein conformations on various HDL. This ensemble is based on the crystal structure of Δ(185-243)apoA-I determined by Mei and Atkinson combined with the "double-hairpin" conformation of apoA-II(dimer) proposed in the cross-linking studies by Silva's team, and is supported by the wide array of low-resolution structural, biophysical, and biochemical data obtained by many teams over decades. The proposed conformational ensemble helps integrate and improve several existing HDL models, including the "buckle-belt" conformation of apoA-I on the midsize disks and the "trefoil/tetrafoil" arrangement on spherical HDL. This ensemble prompts us to hypothesize that endogenous apoA-II (i) helps confer lipid surface curvature during conversion of nascent discoidal HDL(A-I) and HDL(A-II) containing either apoA-I or apoA-II to mature spherical HDL(A-I/A-II) containing both proteins, and (ii) hinders remodeling of HDL(A-I/A-II) by hindering the expansion of the apoA-I conformation. Also, we report that, although endogenous apoA-II circulates mainly on the midsize spherical HDL(A-I/A-II), exogenous apoA-II can bind to HDL of any size, thereby slightly increasing this size and stabilizing the HDL assembly. This suggests distinctly different effects of the endogenous and exogenous apoA-II on HDL. Taken together, the existing results and models prompt us to postulate a new structural and functional role of apoA-II on human HDL.  相似文献   

9.
The ability of the glycolipid photoprobe, 12-(4-azido-2-nitrophenoxy)-stearoyl[1-14C]glucosamine (12-APS-GlcN), to undergo transbilayer flip-flop and intermembrane transfer between liposomes was examined. It was found that probe which was incorporated into membranes during the preparation of large unilamellar vesicles (LUVs) could be rapidly and completely extracted by incubation of these donor vesicles (in the liquid-crystalline state) with probe-free acceptor vesicles.  相似文献   

10.
A photoactivable glycolipid probe, 12-(4-azido-2-nitrophenoxy)stearoyl[1-14C]glucosamine, was used to label proteins and lipids of platelet membranes. The proteins were analyzed by two-dimensional high-resolution gelelectrophoresis. The labeling patterns showed that three membrane proteins were labeled which were not previously identified by ectolabeling (Sixma, J.J. and Schiphorst, M.E. (1980) Biochim. Biophys. Acta 603, 70-83). Analysis of the lipid fraction showed that phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine were labeled by the probe. The distinct labeling of phosphatidylserine strongly suggests that the probe redistributes between the two halves of the bilayer.  相似文献   

11.
It is well accepted that high levels of high density lipoproteins (HDL) reduce the risk of atherosclerosis in humans. Apolipoprotein A-I (apoA-I) and apoA-II are the first and second most common protein constituents of HDL. Unlike apoA-I, detailed structural models for apoA-II in HDL are not available. Here, we present a structural model of apoA-II in reconstituted HDL (rHDL) based on two well established experimental approaches: chemical cross-linking/mass spectrometry (MS) and internal reflection infrared spectroscopy. Homogeneous apoA-II rHDL were reacted with a cross-linking agent to link proximal lysine residues. Upon tryptic digestion, cross-linked peptides were identified by electrospray mass spectrometry. 14 cross-links were identified and confirmed by tandem mass spectrometry (MS/MS). Infrared spectroscopy indicated a beltlike molecular arrangement for apoA-II in which the protein helices wrap around the lipid bilayer rHDL disc. The cross-links were then evaluated on three potential belt arrangements. The data clearly refute a parallel model but support two antiparallel models, especially a "double hairpin" form. These models form the basis for understanding apoA-II structure in more complex HDL particles.  相似文献   

12.
Using immunoaffinity chromatography, we separated human high density lipoprotein (HDL) into two subfractions: LP-AI, in which all particles contain apolipoprotein A-I (apoA-I) but no apoA-II, and LP-AI/AII, in which all particles contain both apoA-I and apoA-II. To compare LP-AI and LP-AI/AII as acceptors of cell cholesterol, the isolated subfractions were diluted to 50 micrograms phospholipid/ml, and then incubated with monolayer cultures of cells in which whole-cell and lysosomal cholesterol has been labeled with 14C and 3H, respectively. We used three cell types (Fu5AH rat hepatoma cells, normal human skin fibroblasts, and rabbit aortic smooth muscle cells). When these cells were prepared to contain normal physiological quantities of cholesterol (20-35 micrograms/mg protein), LP-AI and LP-AI/AII were nearly equally efficient in promoting efflux of both whole-cell and lysosomal cholesterol. For whole-cell cholesterol, the rate constants for efflux to LP-AI and LP-AI/AII were: 0.050/h and 0.053/h, respectively, with Fu5AH cells; 0.0063/h and 0.0074/h with GM3468 human skin fibroblasts; and 0.0076/h and 0.0079/h with rabbit aortic smooth muscle cells. When cholesterol in hepatoma cells or fibroblasts was elevated two- to threefold above normal, there was still not difference in efflux of whole-cell cholesterol to LP-AI and LP-AI/AII. In longterm incubations, the net depletion of cholesterol mass from cholesterol-enriched cells was either identical with the two HDL subfractions, or somewhat greater with LP-AI/AII.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
It is well accepted that HDL has the ability to reduce risks for several chronic diseases. To gain insights into the functional properties of HDL, it is critical to understand the HDL structure in detail. To understand interactions between the two major apolipoproteins (apos), apoA-I and apoA-II in HDL, we generated highly defined benchmark discoidal HDL particles. These particles were reconstituted using a physiologically relevant phospholipid, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) incorporating two molecules of apoA-I and one homodimer of apoA-II per particle. We utilized two independent mass spectrometry techniques to study these particles. The techniques are both sensitive to protein conformation and interactions and are namely: 1) hydrogen deuterium exchange combined with mass spectrometry and 2) partial acetylation of lysine residues combined with MS. Comparison of mixed particles with apoA-I only particles of similar diameter revealed that the changes in apoA-I conformation in the presence of apoA-II are confined to apoA-I helices 3-4 and 7-9. We discuss these findings with respect to the relative reactivity of these two particle types toward a major plasma enzyme, lecithin:cholesterol acyltransferase responsible for the HDL maturation process.  相似文献   

14.
Studies with mice have revealed that increased expression of apolipoprotein A-II (apoA-II) results in elevations in high density lipoprotein (HDL), the formation of larger HDL, and the development of early atherosclerosis. We now show that the increased size of HDL results in part from an inhibition of the ability of hepatic lipase (HL) to hydrolyze phospholipids and triglycerides in the HDL and that the ratio of apoA-I to apoA-II determines HDL functional and antiatherogenic properties. HDL from apoA-II transgenic mice was relatively resistant to the action of HL in vitro. To test whether HL and apoA-II influence HDL size independently, combined apoA-II transgenic/HL knockout (HLko) mice were examined. These mice had HDL similar in size to apoA-II transgenic mice and HLko mice, suggesting that they do not increase HDL side by independent mechanisms. Overexpression of apoA-I from a transgene reversed many of the effects of apoA-II overexpression, including the ability of HDL to serve as a substrate for HL. Combined apoA-I/apoA-II transgenic mice exhibited significantly less atherosclerotic lesion formation than did apoA-II transgenic mice. These results were paralleled by the effects of the transgenes on the ability of HDL to protect against the proinflammatory effects of oxidized low density lipoprotein (LDL). Whereas nontransgenic HDL protected against oxidized LDL induction of adhesion molecules in endothelial cells, HDL from apoA-II transgenic mice was proinflammatory. HDL from combined apoA-I/apoA-II transgenic mice was equally as protective as HDL from nontransgenic mice. Our data suggest that as the ratio of apoA-II to apoA-I is increased, the HDL become larger because of inhibition of HL, and lose their antiatherogenic properties.  相似文献   

15.
Six week-old female mice (Balb/c) injected intraperitonealy with 50 μg of eel high density lipoprotein (HDL) emulsified with equal volume of adjuvant three times every two weeks. Three weeks after the third injection, hyperimmunized mice were boosted by injection of 100 μg of HDL. After 5 days, the best responding mouse to injected HDL was sacrificed, and spleen cells were fused with mouse myeloma cells (Sp2/O–Ag14), and hybridomas were cultured in a selection medium. Monoclonal antibodies specific to apolipoprotein A-I or A-II (apoA-I or apoA-II) of HDL were obtained by cloning and recloning the hybridomas. Eighteen monoclonal antibodies specific to apoA-I and/or apoApII were isolated. Antibodies in the culture medium were purified by a HiTrap Protein G or an eel-HDL column. These purified antibodies belong to the subclass IgG1. The monoclonal antibodies specific to eel apoA-I and apoA-II secreted by clone 10D12 and 2G3, respectively, interact with serum proteins of some fish species such as red-sea bream and carp. The anti-eel apoA-I antibody of 10D12 did not bind to serum proteins of rat, rabbit, and chicken, while the anti-eel apoA-II of 2G3 antibody did.  相似文献   

16.
Mast cell chymase, a chymotrypsin-like neutral protease, can proteolyze HDL3. Here we studied the ability of rat and human chymase to proteolyze discoidal pre beta-migrating reconstituted HDL particles (rHDLs) containing either apolipoprotein A-I (apoA-I) or apoA-II. Both chymases cleaved apoA-I in rHDL at identical sites, either at the N-terminus (Tyr18 or Phe33) or at the C-terminus (Phe225), so generating three major truncated polypeptides that remained bound to the rHDL. The cleavage sites were independent of the size of the rHDL particles, but small particles were more susceptible to degradation than bigger ones. Chymase-induced truncation of apoA-I yielded functionally compromised rHDL with reduced ability to promote cellular cholesterol efflux. In sharp contrast to apoA-I, apoA-II was resistant to degradation. However, when apoA-II was present in rHDL that also contained apoA-I, it was degraded by chymase. We conclude that chymase reduces the ability of apoA-I in discoidal rHDL particles to induce cholesterol efflux by cleaving off either its amino- or carboxy-terminal portion. This observation supports the concept that limited extracellular proteolysis of apoA-I is one pathophysiologic mechanism leading to the generation and maintenance of foam cells in atherosclerotic lesions.  相似文献   

17.
Isolated livers from rhesus monkeys (Macaca mulatta) were perfused in order to asses the nature of newly synthesized hepatic lipoprotein. Perfusate containing [3H]leucine was recirculated for 1.5 hr, followed by an additional 2.5-hr perfusion with fresh perfusate. Equilibrium density gradient ultracentrifugation clearly separated VLDL from LDL. The apoprotein composition of VLDL secreted by the liver was similar to that of serum VLDL. The perfusate LDL contained some poorly radiolabeled, apoB-rich material, which appeared to be contaminating serum LDL. There was also some material of an LDL-like density, which was rich in radiolabeled apoE. Rate zonal density gradient ultracentrifugation fractionated HDL. All perfusate HDL fractions had a decreased cholesteryl ester/unesterified cholesterol ratio, compared to serum HDL. Serum HDL distributed in one symmetric peak near the middle of the gradient, with coincident peaks of apoA-I and apoA-II. The least dense fractions of the perfusate gradient were rich in radiolabeled apoE. The middle of the perfusate gradient contained particles rich in radiolabeled apoA-I and apoA-II. The peak of apoA-I was offset from the apoA-II peak towards the denser end of the gradient. The dense end of the HDL gradient contained lipoprotein-free apoA-I, apoE, and small amounts of apoA-II, probably resulting from the relative instability of nascent lipoprotein compared to serum lipoprotein. Perfusate HDL apoA-I isoforms were more basic than serum apoA-I isoforms. Preliminary experiments, using noncentrifugal methods, suggest that some hepatic apoA-I is secreted in a lipoprotein-free form. In conclusion, the isolated rhesus monkey liver produces VLDL similar to serum VLDL, but produces LDL and HDL which differ in several important aspects from serum LDL and HDL.  相似文献   

18.
It is important to understand HDL heterogeneity because various subspecies possess different functionalities. To understand the origins of HDL heterogeneity arising from the existence of particles containing only apoA-I (LpA-I) and particles containing both apoA-I and apoA-II (LpA-I+A-II), we compared the abilities of both proteins to promote ABCA1-mediated efflux of cholesterol from HepG2 cells and form nascent HDL particles. When added separately, exogenous apoA-I and apoA-II were equally effective in promoting cholesterol efflux, although the resultant LpA-I and LpA-II particles had different sizes. When apoA-I and apoA-II were mixed together at initial molar ratios ranging from 1:1 to 16:1 to generate nascent LpA-I+A-II HDL particles, the particle size distribution altered, and the two proteins were incorporated into the nascent HDL in proportion to their initial ratio. Both proteins formed nascent HDL particles with equal efficiency, and the relative amounts of apoA-I and apoA-II incorporation were driven by mass action. The ratio of lipid-free apoA-I and apoA-II available at the surface of ABCA1-expressing cells is a major factor in determining the contents of these proteins in nascent HDL. Manipulation of this ratio provides a means of altering the relative distribution of LpA-I and LpA-I+A-II HDL particles.  相似文献   

19.
The HDL receptor scavenger receptor class B type I (SR-BI) binds HDL and mediates the selective uptake of cholesteryl ester. We previously showed that remnants, produced when human HDL(2) is catabolized in mice overexpressing SR-BI, become incrementally smaller, ultimately consisting of small alpha-migrating particles, distinct from pre-beta HDL. When mixed with mouse plasma, some remnant particles rapidly increase in size by associating with HDL without the mediation of cholesteryl ester transfer protein, LCAT, or phospholipid transfer protein. Here, we show that processing of HDL(2) by SR-BI-overexpressing mice resulted in the preferential loss of apolipoprotein A-II (apoA-II). Short-term processing generated two distinct, small alpha-migrating particles. One particle (8.0 nm diameter) contained apoA-I and apoA-II; the other particle (7.7 nm diameter) contained only apoA-I. With extensive SR-BI processing, only the 7.7 nm particle remained. Only the 8.0 nm remnants were able to associate with HDL. Compared with HDL(2), this remnant was more readily taken up by the liver than by the kidney. We conclude that SR-BI-generated HDL remnants consist of particles with or without apoA-II and that only those containing apoA-II associate with HDL in an enzyme-independent manner. Extensive SR-BI processing generates small apoA-II-depleted particles unable to reassociate with HDL and readily taken up by the liver. This represents a pathway by which apoA-I and apoA-II catabolism are segregated.  相似文献   

20.
Human high density lipoproteins2 (HDL2) consist of particles that contain both apolipoprotein (apo) A-I and apoA-II (A-I/A-II-HDL2) and others that contain apoA-I but are devoid of apoA-II (A-I-HDL2). When postprandial lipemia is pronounced, a fraction of HDL2 is converted into HDL2-like particles. These HDL3 exhibit lower apoA-I/apoA-II ratios than the parent HDL2, suggesting preferential conversion of A-I/A-II-HDL2 into HDL3 (J. Clin. Invest. 1984. 74: 2017-2023). Triglyceride transfer from triglyceride-rich lipoproteins to HDL2 and subsequent lipolysis by hepatic lipase are thought to mediate the conversion of HDL2 into HDL3. To understand why A-I/A-II-HDL2 are preferentially converted into HDL3, we separated postprandial HDL2 into A-I-HDL2 and A-I/A-II-HDL2 species by immunoaffinity chromatography using a monoclonal antibody for apoA-II, and determined the ability of HDL2 species i) to participate in protein-mediated lipid transfer; and ii) to interact with hepatic lipase in vitro. Triglyceride transfer from/to triglyceride-rich lipoproteins was similar for the two HDL2 species. In contrast, A-I/A-II-HDL2 were twice as effective as A-I-HDL2 in liberating hepatic lipase immobilized on HDL3-Sepharose. Lipolysis of triglycerides by hepatic lipase was 60% higher in postprandial A-I/A-II-HDL2 than in postprandial A-I-HDL2. Hydrolysis of phosphatidylcholine by hepatic lipase was threefold higher in A-II-containing HDL2 when compared with HDL2 devoid of apoA-II. The different lipolytic rates in HDL2 subspecies correlated with the size reduction of substrate lipoproteins. Reconstitution of postprandial A-I-HDL2 with apoA-II enhanced the rate of lipolysis by hepatic lipase to that observed in A-I/A-II-HDL2. We conclude that it is the interaction with hepatic lipase rather than the rate of triglyceride transfer that results in the preferred conversion of postprandial A-II-containing HDL2 into HDL3, and that apoA-II exerts a crucial role in this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号