首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A monoclonal antibody (PL/IM 430), previously found to inhibit the uptake of Ca2+ into highly purified platelet intracellular membrane vesicles (Hack, N., Wilkinson, J. M. and Crawford, N. 1988,Biochem. J. 250, 355–361) has been introduced into saponin-permeabilised platelets. At a saponin concentration (20–25 g/ml) commensurate with total LDH release, sequestration of Ca2+ into intracellular non-mitochondrial stores is inhibited by the antibody (50% inhibition at 20 g/ml IgG). At higher saponin concentrations when intracellular binding of125I-labelled mAb is maximum, inhibition of Ca2+ sequestration approaches 70%. The inhibition is specific, control studies with non-platelet directed mouse IgG and mAbs which immunoblot platelet antigens other than the 100 kDa protein did not affect the Ca2+ sequestration.No effect of the antibody were observed against IP3-induced release of prestored Ca2+, either in permeabilised platelets or with isolated intracellular membrane vesicles. The mAb PL/IM 430 appears to bind only to the Ca2+ translocating channel protein associated with the intracellular membrane (Ca2++Mg2+) ATPase and not to Ca2+ channels responsive to IP3.Abbreviations mAb monoclonal antibody - PBS phosphate buffered saline - LDH lactate dehydrogenase  相似文献   

2.
The monoclonal antibody PL/IM430 has previously been reported to uncouple Ca(2+) transport from ATP hydrolysis in platelet membranes (Hack, N., Wilkinson, J. M., and Crawford, N. (1988) Biochem. J. 250, 355-361). More recently, we have demonstrated that this antibody is specific for human SERCA3 (Poch, E., Leach, S., Snape, S., Cacic, T., MacLennan, D. H., and Lytton, J. (1998) Am. J. Physiol. 275, C1449-C1458). In this paper, we have extended the analysis of the PL/IM430-SERCA3 interaction. Using HEK293 cells to express human SERCA3a, we were able to measure both ATP-mediated, oxalate-dependent (45)Ca(2+) uptake and Ca(2+)-dependent ATP hydrolysis activities due exclusively to SERCA3. Treatment with PL/IM430 inhibited both activities almost identically, with a maximal inhibition of 81 and 73% and a half-maximal concentration of 8.3 and 5.9 microg/ml, for Ca(2+) uptake and ATP hydrolysis, respectively. We conclude that PL/IM430 does inhibit SERCA3 activity but does not uncouple Ca(2+) transport from ATP hydrolysis. Using a combination of partial proteolysis, GST fusion protein expression, and mutation of residues that differ between rat and human SERCA3, we have identified human SERCA3 amino acids Pro(8) and Glu(192) as essential to forming the PL/IM430 epitope. PL/IM430 thus recognizes a linearly noncontiguous set of amino acids within the actuator domain of human SERCA3. We propose that PL/IM430 inhibits SERCA3 activity by sterically preventing movement of the actuator domain into a catalytically critical position in the E2 conformation of the enzyme.  相似文献   

3.
F Zorzato  A Chu    P Volpe 《The Biochemical journal》1989,261(3):863-870
The junctional face membrane plays a key role in excitation-contraction coupling in skeletal muscle. A protein of 350 kDa, tentatively identified as a component of the junctional feet, connects transverse tubules to terminal cisternae of sarcoplasmic reticulum [Kawamoto, Brunschwig, Kim & Caswell (1986) J. Cell Biol. 103, 1405-1414]. The membrane topology and protein composition of sarcoplasmic reticulum Ca2+-release channels of rabbit skeletal muscle were investigated using an immunological approach, with anti-(junctional face membrane) and anti-(350 kDa protein) polyclonal antibodies. Upon preincubation of the terminal cisternae with anti-(junctional face membrane) antibodies, Ca2+-ATPase and Ca2+-loading activities were not affected, whereas anti-(350 kDa protein) antibodies stimulated Ca2+-ATPase activity by 25% and inhibited Ca2+-loading activity by 50% (at an antibody/terminal cisternae protein ratio of 1:1). Specific photolabelling of terminal cisternae proteins with [14C]doxorubicin was prevented by both anti-(junctional face membrane) and anti-(350 kDa protein) antibodies. Stimulation of Ca2+ release by doxorubicin was prevented by both anti-(junctional face membrane) and anti-(350 kDa protein) antibodies. Half-maximal inhibition was obtained at an antibody/terminal cisternae protein ratio of 1:1. Kinetic measurements of Ca2+ release indicated that anti-(350 kDa protein) antibodies prevented Ca2+-induced Ca2+ release, whereas the ATP-stimulation and the inhibition by Mg2+ were not affected. These results suggest that: (i) Ca2+- and doxorubicin-induced Ca2+ release is mediated by Ca2+ channels which are selectively localized in the junctional face membrane; (ii) the 350 kDa protein is a component of the Ca2+-release channel in native terminal cisternae vesicles; and (iii) the Ca2+-activating site of the channel is separate from other allosteric sites.  相似文献   

4.
Structural and functional properties of a Ca2+-ATPase from human platelets   总被引:3,自引:0,他引:3  
An antibody prepared against highly purified rabbit muscle Ca2+-ATPase from sarcoplasmic reticulum has been observed to cross-react with proteins in human platelet membrane vesicles. The antibody specifically precipitated Ca2+-ATPase activity from solubilized human platelet membranes and recognized two platelet polypeptides denatured in sodium dodecyl sulfate with Mr = 107,000 and 101,000. Ca2+-ATPase activity from Brij 78-solubilized platelet membranes was purified up to 10-fold. The purified preparation consisted mainly of two polypeptides with Mr approximately 100,000, and 40,000. The lower molecular weight protein appeared unrelated to Ca2+-ATPase activity. The Ca2+-ATPase in human platelet membrane vesicles exhibited "negative cooperativity" with respect to the kinetics of ATP hydrolysis. The apparent Km for Ca2+ activation of ATPase activity was 0.1 microM. Ca2+-dependent phosphorylation of platelet vesicles by [gamma-32P]ATP at 0 degrees C yielded a maximum of 0.2-0.4 nmol of PO4/mg of protein that was labile at pH 7.0 and 20 degrees C. This result suggests that only about 2-4% of the total protein in platelet membrane vesicles is the Ca2+-ATPase, which agrees with an estimate based on the specific activity of the Ca2+-ATPase in platelet membranes (20-50 nmol of ATP hydrolyzed/min/mg of protein at 30 degrees C). Calmodulin resulted in only a 1.6-fold stimulation of Ca2+-ATPase activity even after extensive washing of membranes with a calcium chelator or chlorpromazine. It is concluded that human platelets contain a Ca2+-ATPase immunochemically related to the Ca2+ pump from rabbit sarcoplasmic reticulum and that the enzymatic characteristics and molecular weight of the platelet ATPase are quite similar to those of the muscle ATPase.  相似文献   

5.
The Ca2+ pumps associated with human platelet plasma and intracellular membranes have been further characterized by their sensitivity to trypsin. (a) Tryptic degradation of the Ca2+-ATPases has been followed by immunoblotting. It resulted in fragmentation into peptides of 80, 55, 35, and 24 kDa for both enzymes. Subcomplete hydrolysis obtained with a ratio of trypsin/membrane protein of 0.05-0.1 for the two Ca2+ pumps resulted in the total disappearance of the 100-, 80-, and 35-kDa fragments. However, maximum degradation was reached within 1 min for the intracellular enzyme but needed 5 min of incubation for the plasma membrane enzyme. (b) This effect of trypsin has been correlated with its effect on both the Ca2+-ATPase activities. The plasma membrane enzyme showed a maximum inhibition of 50-60% which was obtained using a trypsin/protein ratio of 0.1 and 5 min of incubation. A much higher trypsin sensitivity was observed for the intracellular enzyme because the maximum inhibition reached 80% after only 1 min of incubation. (c) Finally, the two Ca2+ transport systems studied showed different trypsin reactivities; the Ca2+ uptake by the plasma membrane vesicles was inhibited by 20-25%, and this maximum inhibition was observed after 5 min of incubation with trypsin. In contrast, the Ca2+ transport associated with the intracellular membrane vesicles was difficult to detect after trypsin treatment. Taken together, the results show that the two Ca2+ pumps can be distinguished by their trypsin sensitivity.  相似文献   

6.
It has been proposed that the plasma membrane Ca2+ pump of smooth muscle tissues may be regulated by cGMP-dependent phosphorylation [Popescu, L. M., Panoiu, C., Hinescu, M. & Nutu, O. (1985) Eur. J. Pharmacol. 107, 393-394; Furukawa, K. & Nakamura, H. (1987) J. Biochem. (Tokyo) 101, 287-290]. This hypothesis has been tested on a smooth muscle sarcolemma preparation from pig thoracic aorta. The actomyosin-extracted membranes showed ATP-dependent Ca2+ uptake as well as cGMP-dependent protein kinase (G-kinase) activity. The molecular masses of the major protein substrates of the G-kinase (G1) and that of the Ca2+ pump were compared. Electrophoretic analysis of the phosphorylated intermediate of the sarcolemmal Ca2+-ATPase and the G1 phosphoprotein showed that these two proteins are not identical. The results were confirmed by using a 125I-calmodulin overlay technique and an antibody against human erythrocyte Ca2+-ATPase. Ca2+-uptake experiments with prephosphorylated membrane vesicles were carried out to elucidate possible effects of cGMP-dependent phosphorylation of membrane proteins on the activity of the Ca2+ pump. The cGMP-dependent phosphorylation was found to be extremely sensitive to temperature leading to very low steady-state phosphorylation levels at 37 degrees C. The difficulty was overcome by ATP[gamma S], which produced full and stable thiophosphorylation of G1 during the Ca2+-uptake experiments at 37 degrees C. However, the cGMP-dependent thiophosphorylation failed to influence the Ca2+-uptake properties of sarcolemmal vesicles. The results show that the Ca2+ pump of smooth muscle plasma membrane is not a direct target of the cGMP-dependent protein kinase and is not regulated by the cGMP-dependent phosphorylation of membrane proteins.  相似文献   

7.
In the cellular slime mold Dictyostelium discoideum, changes in free cytosolic Ca2+ are thought to regulate certain processes during cell aggregation and differentiation. To understand the mechanisms controlling free Ca2+ levels in this organism, we previously isolated and characterized an ATP/Mg2+-dependent, high-affinity Ca2+ pump which appeared to be a component of "inside-out" plasma membrane vesicles [J. L. Milne and M. B. Coukell (1988) Biochem. J. 249. 223-230]. In this report, we demonstrate that a high-affinity Ca2+ pump, with properties virtually identical to the isolated pump, can be detected in filipin- or digitonin-permeabilized cells of Dictyostelium. Moreover, Ca2+-pumping vesicles, which migrate on Percoll/KCl gradients like the vesicles identified earlier, can be isolated from the permeabilized cells. Results of additional experiments suggest that this intracellular Ca2+ transporter is associated with a high-capacity non-IP3-releasable Ca2+ store which is generated by endocytosis. A possible role for this store in maintaining Ca2+ homeostasis in Dictyostelium is discussed.  相似文献   

8.
On addition of ATP to vesicles derived from the sarcoplasmic reticulum (SR) of skeletal muscle, Ca2+ is accumulated from the external medium. Following uptake, spontaneous release of Ca2+ occurs in the presence or in the absence of ATP. These processes of Ca2+ uptake and release were simulated by using the models derived for ATPase activity [Gould, East, Froud, McWhirter, Stefanova & Lee (1986) Biochem. J. 237, 217-227; Stefanova, Napier, East & Lee (1987) Biochem. J. 245, 723-730] and for Ca2+ release from passively loaded vesicles [McWhirter, Gould, East & Lee (1987) Biochem. J. 245, 713-722]. The simulations are consistent with measurements of the effects of pH, K+, Ca2+ and Mg2+ on uptake and release of Ca2+. The increase in maximal Ca2+ accumulation observed in the presence of maleate is explained in terms of complexing of Ca2+ and maleate within the SR. The calculated concentration of ADP generated by hydrolysis of ATP has a large effect on the simulations. The effects of an ATP-regenerating system on the measured Ca2+ uptake is explained in terms of both removal of ADP and precipitation of Ca3(PO4)2 within the vesicles. It is concluded that both the process of Ca2+ uptake and the process of Ca2+ release seen with SR vesicles can be interpreted quantitatively in terms solely of the properties of the Ca2+ + Mg2+-activated ATPase.  相似文献   

9.
Regulated exocytosis involves the Ca(2+)-triggered fusion of secretory vesicles with the plasma membrane, by activation of vesicle membrane Ca(2+)-binding proteins [1]. The Ca(2+)-binding sites of these proteins are likely to lie within 30 nm of the vesicle surface, a domain in which changes in Ca2+ concentration cannot be resolved by conventional fluorescence microscopy. A fluorescent indicator for Ca2+ called a yellow 'cameleon' (Ycam2) - comprising a fusion between a cyan-emitting mutant of the green fluorescent protein (GFP), calmodulin, the calmodulin-binding peptide M13 and an enhanced yellow-emitting GFP - which is targetable to specific intracellular locations, has been described [2]. Here, we generated a fusion between phogrin, a protein that is localised to secretory granule membranes [3], and Ycam2 (phogrin-Ycam2) to monitor changes in Ca2+ concentration ([Ca2+]) at the secretory vesicle surface ([Ca2+]gd) through alterations in fluorescence resonance energy transfer (FRET) between the linked cyan and yellow fluorescent proteins (CFP and YFP, respectively) in Ycam2. In both neuroendocrine PC12 and MIN6 pancreatic beta cells, apparent resting values of cytosolic [Ca2+] and [Ca2+](gd) were similar throughout the cell. In MIN6 cells following the activation of Ca2+ influx, the minority of vesicles that were within approximately 1 microm of the plasma membrane underwent increases in [Ca2+](gd) that were significantly greater than those experienced by deeper vesicles, and greater than the apparent cytosolic [Ca2+] change. The ability to image both global and compartmentalised [Ca2+] changes with recombinant targeted cameleons should extend the usefulness of these new Ca2+ probes.  相似文献   

10.
A plasma membrane-enriched fraction from rat myometrium shows ATP-Mg2+-dependent active calcium uptake which is independent of the presence of oxalate and is abolished by the Ca2+ ionophore A23187. Ca2+ loaded into vesicles via the ATP-dependent Ca2+ uptake was released by extravesicular Na+. This showed that the Na+/Ca2+ exchange and the Ca2+ uptake were both occurring in plasma membrane vesicles. In a medium containing KCl, vanadate readily inhibited the Ca2+ uptake (K1/2 5 microM); when sucrose replaced KCl, 400 microM-vanadate was required for half inhibition. Only a slight stimulation of the calcium pump by calmodulin was observed in untreated membrane vesicles. Extraction of endogenous calmodulin from the membranes by EGTA decreased the activity and Ca2+ affinity of the calcium pump; both activity and affinity were fully restored by adding back calmodulin or by limited proteolysis. A monoclonal antibody (JA3) directed against the human erythrocyte Ca2+ pump reacted with the 140 kDa Ca2+-pump protein of the myometrial plasma membrane. The Ca2+-ATPase activity of these membranes is not specific for ATP, and is not inhibited by mercurial agents, whereas Ca2+ uptake has the opposite properties. Ca2+-ATPase activity is also over 100 times that of calcium transport; it appears that the ATPase responsible for transport is largely masked by the presence of another Ca2+-ATPase of unknown function. Measurements of total Ca2+-ATPase activity are, therefore, probably not directly relevant to the question of intracellular Ca2+ control.  相似文献   

11.
An initial rapid phase and a subsequent slow phase of 45Ca2+ uptake were observed following the addition of 45Ca2+ to Ca2+-deprived hepatocytes. The magnitude of the rapid phase increased 15-fold over the range 0.1-11 mM extracellular Ca2+ (Ca2+o) and was a linear function of [Ca2+]o. The increases in the rate of 45Ca2+ uptake were accompanied by only small increases in the intracellular free Ca2+ concentration. In cells made permeable to Ca2+ by treatment with saponin, the rate of 45Ca2+ uptake (measured at free Ca2+ concentrations equal to those in the cytoplasm of intact cells) increased as the concentration of saponin increased from 1.4 to 2.5 micrograms per mg wet weight cells. Rates of 45Ca2+ uptake by cells permeabilized with an optimal concentration of saponin were comparable with those of intact cells incubated at physiological [Ca2+o], but were substantially lower than those for intact cells incubated at high [Ca2+o]. It is concluded that Ca2+ which enters the hepatocyte across the plasma membrane is rapidly removed by binding and transport to intracellular sites and by the plasma membrane (Ca2+ + Mg2+)-ATPase and the plasma membrane Ca2+ inflow transporter is not readily saturated with Ca2+o.  相似文献   

12.
Human platelet membrane vesicles that accumulated Ca2+ in the presence of ATP were isolated on an isoosmotic KCl-Percoll gradient. ATP-dependent Ca2+ uptake was stimulated by oxalate and phosphate to steady-state levels of greater than 100 nmol/mg protein, and the accumulated Ca2+ could be largely released by ionophore A23187. Inositol 1,4,5-trisphosphate, in a dose-dependent manner (0.5-5.0 microM), caused the rapid release (less than 5 s) of 40-70% of the total A23187-releasable store of accumulated Ca2+. The membrane vesicles that release accumulated Ca2+ in response to inositol 1,4,5-trisphosphate were enriched in enzymes characteristically found in smooth endoplasmic reticulum. These results support the hypothesis that inositol 1,4,5-trisphosphate, produced by the hydrolysis of phosphatidylinositol 1,4-bisphosphate in response to stimulation of cell surface receptors, is a second messenger mediating the release of Ca2+ from intracellular storage sites.  相似文献   

13.
Thapsigargin (Tg) effects on Ca2+ handling in the intact human platelet were studied using Quin2 and chlorotetracycline to measure free cytoplasmic and dense tubular (DT) Ca2+ concentrations ([Ca2+]cyt and [Ca2+]dt, respectively). Tg inhibits Ca2+ uptake by the DT Ca(2+)-ATPase pumps, but incompletely, lowering the Vm to 32% of control (IC50,Tg = 0.18 +/- 0.10 microM). The kinetics of loss of DT Ca2+, transient increases in [Ca2+]cyt, and lowered steady-state [Ca2+]dt after Tg addition are all explained by pump inhibition, with no effect on the rate constant of Ca2+ leakage across the DT membrane (kleak,DT = 1.14 min-1). Tg lowers by 30% the Vm of the Ca2+ extrusion pump located in the plasma membrane (PM), as shown by a Quin2-based method measuring active Ca2+ extrusion (Johansson, J. S., and Haynes, D. H. (1988) J. Membr. Biol. 104, 147-163). This effect (IC50,Tg = 0.45 +/- 0.06 microM), together with a 24 +/- 16% increase in kleak,PM,Ca (to 3 x 10(-4) min-1), accounts for a Tg-dependent sustained elevation [Ca2+]cyt (to 708 +/- 78 nM) which is independent of DT Ca2+ status or history. Thrombin and Tg release 30 and 70% (respectively) of the DT Ca2+ available at any instant, independent of order of challenge, consistent with a single class of DT with respect to these agents.  相似文献   

14.
The addition of arachidonic acid induced a rapid release of 45Ca2+ from human platelet membrane vesicles which accumulated 45Ca2+ in the presence of ATP. Docosahexaenoic acid, eicosapentaenoic acid, linolenic acid and linoleic acid were less active than arachidonic acid. In contrast, oleic acid, myristic acid and palmitic acid were without effect. The thromboxane A2 analogue induced no 45Ca2+ release. The cyclooxygenase/lipoxygenase inhibitor failed to suppress arachidonic acid-induced 45Ca2+ release at the concentration which inhibited the production of lipid peroxides. These data indicate that the activity of arachidonic acid may be due to fatty acid itself and not to its metabolites. The combination of arachidonic acid and inositol 1,4,5-trisphosphate (IP3) resulted in a greater 45Ca2+ release from platelet membrane vesicles than either compound alone. When the intracellular free Ca2+ concentration ([Ca2+]i) was measured using fura-2, the thrombin-induced [Ca2+]i increase was reduced in platelets which had been treated with a phospholipase A2 inhibitor, ONO-RS-082 (2-(p-amylcinnamoyl)amino-4-chlorobenzoic acid). These results provide evidence that arachidonic acid alone may cause Ca2+ increase and also may induce an additional Ca2+ mobilization to IP3-induced Ca2+ release in human platelets.  相似文献   

15.
Ca2+-induced down-regulation of Na+ channels in toad bladder epithelium   总被引:1,自引:0,他引:1  
Regulation of epithelial Na+ channels was investigated by measuring the amiloride-blockable 22Na+ fluxes in apical membrane vesicles, derived from cells exposed to various treatments. Maximal amiloride-blockable 22Na+ uptake into vesicles was obtained if the cells were preincubated at 25 degrees C in a Ca2+-free [ethylenebis(oxyethylenenitrilo)]tetraacetic acid (EGTA) solution. Including 10(-5) M Ca2+ in the cell incubating medium blocked nearly all of the amiloride-sensitive flux in vesicles, even though the Ca2+ was removed before homogenization of the cells. This Ca2+-dependent inhibition of Na+ channels could be induced in whole cells only; incubating cell homogenates with Ca2+ had no effect on the transport in vesicles. The dose-response relationships of this effect were measured by equilibrating cell aliquots with various Ca2+-EGTA buffers, preparing membrane vesicles (in the absence of Ca2+ ions), and assaying them for amiloride-sensitive Na+ permeability. It was found that the Ca2+ blockage is highly cooperative (Hill coefficient of nearly 4) and is characterized by an inhibition constant which varies between 6.4 X 10(-8) to 8.15 X 10(-6)M Ca2+. Thus, it is likely that the above process is involved in the physiological control of Na+ transport. The Ca2+-dependent transport changes were not affected by the calmodulin inhibitor trifluoperasine, vanadate (VO3-), phorbol ester, colchicine, cytochalasin B, 3-deazaadenosine, and 8-bromo-cAMP. Vanadyl (VO2+) ions, on the other hand, produced a "Ca2+-like" inhibition of transport.  相似文献   

16.
The present study was designed to determine the subcellular distribution of the platelet (Ca2+ + Mg2+)-ATPase. Human platelets were surface labeled by the periodate-boro[3H]hydride method. Plasma membrane vesicles were then isolated to a purity of approx. 90% by a procedure utilizing wheat germ agglutinin affinity chromatography. These membranes were found to be 2.6-fold enriched in surface glycoproteins compared to an unfractionated vesicle fraction and almost 7-fold enriched compared to intact platelets. In contrast, the isolated plasma membranes showed a decreased specific activity of the (Ca2+ + Mg2+)-ATPase compared to the unfractionated vesicle fraction. This decrease in specific activity was found to be similar to that of an endoplasmic reticulum marker, glucose-6-phosphatase, and to that of a platelet inner membrane marker, phospholipase A2. We conclude, therefore, that the (Ca2+ + Mg2+)-ATPase is not located in the platelet plasma membrane but is restricted to membranes of intracellular origin.  相似文献   

17.
We present a model for Ca2+ efflux from vesicles of sarcoplasmic reticulum (SR). It is proposed that efflux is mediated by the Ca2+ + Mg2+-activated ATPase that is responsible for Ca2+ uptake in this system. In the normal ATPase cycle of the ATPase, phosphorylation of the ATPase is followed by a conformational change in which the Ca2+-binding sites change from being outward-facing and of high affinity to being inward-facing and of low affinity. To mediate Ca2+ efflux, it is proposed that the ATPase can adopt a conformation in which the Ca2+-binding sites are of low affinity but still outward-facing. It is shown that experimental data on the rates of Ca2+ efflux can be simulated in terms of this model, with Ca2+-binding-site affinities previously proposed to explain ATPase activity [Gould, East, Froud, McWhirter, Stefanova & Lee (1986) Biochem. J. 237, 217-227]. Effects of Mg2+ and adenine nucleotides on efflux rates are explained. It is suggested that Ca2+ efflux from SR mediated by the ATPase could be important in excitation-contraction coupling in skeletal muscle.  相似文献   

18.
A membrane fraction isolated from lactating murine mammary tissue and enriched for the Golgi membrane marker enzyme galactosyltransferase exhibited Ca2+-stimulated ATPase activity (Ca-ATPase) in 20 microM-free Mg2+ and 10 microM-MgATP, with an apparent Km for Ca2+ of 0.8 microM. Exogenous calmodulin did not enhance Ca2+ stimulation, nor could Ca-ATPase activities be detected in millimolar total Mg2+ and ATP. When assayed with micromolar Mg2+ and MgATP the Ca-ATPases of skeletal-muscle sarcoplasmic reticulum and of calmodulin-enriched red blood cell plasma membranes were half-maximally activated by 0.1 microM- and 0.6 microM-Ca2+ respectively. All three Ca-ATPases were inhibited by similar micromolar concentrations of trifluoperazine, but the Golgi activity was unaffected by quercetin in concentrations which completely inhibited both the sarcoplasmic-reticulum and red-blood-cell enzymes. The results are consistent with the hypothesis that the high-affinity Ca-ATPase is responsible for the ATP-dependent Ca2+ transport exhibited by Golgi-enriched vesicles derived from lactating mammary gland [Neville, Selker, Semple & Watters (1981) J. Membr. Biol. 61, 97-105; West (1981) Biochim. Biophys. Acta 673, 374-386].  相似文献   

19.
Certain amiloride analogues 3',4'-dichlorobenzamil 2',4'-dimethylbenzamil and alpha',2'-benzobenzamil hydrochloride (ATBB) stimulate calcium accumulation and motility by epididymal bovine spermatozoa. This stimulation can be seen at a range of 0.1-0.4 mM, while at higher concentration there is inhibition of calcium uptake by these amiloride analogues. The amiloride derivative 5-(4-chlorobenzyl)-2',4'-dimethylbenzamil (CBDMB), which bears a 4-chlorobenzyl substituent on the 5-amino nitrogen atom, did not stimulate calcium uptake. The amiloride analogue 3',4'-dichlorobenzamil inhibits the Na+/Ca2(+)-exchange activity in isolated plasma membrane vesicles, and the stimulatory effect of 3',4'-dichlorobenzamil on calcium uptake into epididymal sperm could be seen in Na(+)-free medium. Thus, the stimulation of Ca2+ accumulation in the cells caused by 3',4'-dichlorobenzamil is not a result of inhibiting the Na(+)-dependent Ca2+ clearance. There is no stimulation of Ca2+ uptake into ejaculated cells by adding 3',4'-dichlorobenzamil, which is not due to the presence of the calcium-transport inhibitor (caltrin) in these cells [Rufo, G.A., Schoff, P.K. & Lardy, H.A. (1984) J. Biol. Chem. 259, 2547-2552]. The stimulatory effect of 3',4'-dichlorobenzamil on Ca2+ uptake is inhibited by the voltage-dependent Ca2(+)-channel blockers nifedipin and diltiazem. This indicates that the stimulation of Ca2+ uptake by the amiloride analogues is due to the activation of a voltage-dependent Ca2+ channel of the plasma membrane.  相似文献   

20.
In non-excitable cells, one major route for Ca2+ influx is through store-operated Ca2+ channels in the plasma membrane. These channels are activated by the emptying of intracellular Ca2+ stores, and in some cell types store-operated influx occurs through Ca2+ release-activated Ca2+ (CRAC) channels. Here, we report that intracellular Ca2+ modulates CRAC channel activity through both positive and negative feedback steps in RBL-1 cells. Under conditions in which cytoplasmic Ca2+ concentration can fluctuate freely, we find that store-operated Ca2+ entry is impaired either following overexpression of a dominant negative calmodulin mutant or following whole-cell dialysis with a calmodulin inhibitory peptide. The peptide had no inhibitory effect when intracellular Ca2+ was buffered strongly at low levels. Hence, Ca2+-calmodulin is not required for the activation of CRAC channels per se but is an important regulator under physiological conditions. We also find that the plasma membrane Ca2+ATPase is the dominant Ca2+ efflux pathway in these cells. Although the activity of the Ca2+ pump is regulated by calmodulin, the store-operated Ca2+ entry is more sensitive to inhibition by the calmodulin mutant than by Ca2+ extrusion. Hence, these two plasmalemmal Ca2+ transport systems may differ in their sensitivities to endogenous calmodulin. Following the activation of Ca2+ entry, the rise in intracellular Ca2+ subsequently feeds back to further inhibit Ca2+ influx. This slow inactivation can be activated by a relatively brief Ca2+ influx (30-60 s); it reverses slowly and is not altered by overexpression of the calmodulin mutant. Hence, the same messenger, intracellular Ca2+, can both facilitate and inactivate Ca2+ entry through store-operated CRAC channels and through different mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号