首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biological effects of a nano red elemental selenium.   总被引:27,自引:0,他引:27  
A novel selenium form, nano red elemental selenium (Nano-Se) was prepared by adding bovine serum albumin to the redox system of selenite and glutathione. Nano-Se has a 7-fold lower acute toxicity than sodium selenite in mice (LD(50) 113 and 15 mg Se/kg body weight respectively). In Se-deficient rat, both Nano-Se and selenite can increase tissue selenium and GPx activity. The biological activities of Nano-Se and selenite were compared in terms of cell proliferation, enzyme induction and protection against free racial-mediated damage in human hepatoma HepG2 cells. Nano-Se and selenite are similarly cell growth inhibited and stimulated synthesis of glutathione peroxidase (GPx), phospholipid hydroperoxide glutathione peroxidase (PHGPx) and thioredoxin reductase (TR). When HepG2 cells were co-treated with selenium and glutathione, Nano-Se showed less pro-oxidative effects than selenite, as measured by cell growth. These results demonstrate that Nano-Se has a similar bioavailability in the rat and antioxidant effects on cells.  相似文献   

2.
The synthesis of glutathione peroxidase from [75Se]selenite was studied in slices and cell-free extracts from rat liver. The incorporation of [75Se]selenocysteine at the active site was detected by carboxymethylation and hydrolysis of partially purified glutathione peroxidase (glutathione:hydrogen peroxide oxidoreductase, EC 1.11.1.9) in the presence of [3H]selenocysteine and subsequent amino acid analysis. The synthesis of glutathione peroxidase in slices was inhibited by cycloheximide or puromycin and 75Se was incorporated from [75Se]selenite into free selenocysteine and selenocysteyl tRNA. Increasing concentrations of selenocystine caused a progressive dilution of the 75Se and a corresponding decrease in glutathione peroxidase labeling. In cell-free systems, [75Se]selenocysteyl tRNA was the best substrate for glutathione peroxidase synthesis. These results indicate the existence in rat liver of the de novo synthesis of free selenocysteine and a translational pathway of selenocysteine incorporation into glutathione peroxidase.  相似文献   

3.
The synthesis of glutathione peroxidase from [75Se]selenite was studied in slices and cell-free extracts from rat liver. The incorporation of [75Se]selenocysteine at the active site was detected by carboxymethylation and hydrolysis of partially purified glutathione peroxidase (glutathione:hydrogen peroxide oxidoreductase, EC 1.11.1.9) in the presence of [3H]selenocysteine and subsequent amino acid analysis. The synthesis of glutathione peroxidase in slices was inhibited by cycloheximide or puromycin and 75Se was incorporated from [75Se]selenite into free selenocysteine and selenocysteyl tRNA. Increasing concentrations of selenocystine caused a progressive dilution of the 75Se and a corresponding decrease in glutathione peroxidase labeling. In cell-free systems, [75Se]selenocysteyl tRNA was the best substrate for glutathione peroxidase synthesis. These results indicate the existence in rat liver of the de novo synthesis of free selenocysteine and a translational pathway of selenocysteine incorporation into glutathione peroxidase  相似文献   

4.
The aim of this study was to devise conditions for manipulation of the activity of selenium-dependent glutathione peroxidase in cell lines by means of variation in culture medium contents of selenite and fetal calf serum. Nine different cell lines were studied. A low glutathione peroxidase activity was, in most cases, obtained by the use of a medium with a low (2%) serum content. Selenite induced in most of the cell lines an increase in glutathione peroxidase activity, with a plateau ranging from 10 nM to 300-1000 nM. Growth-retarding effects of selenite became apparent at 300-2000 nM, showing a large cell line variation. Supplementation with 50-100 nM selenite for 1 week should generally be suitable for maximal glutathione peroxidase induction. The selenium contents of serum batches were highly variable, pointing to the importance of using only one well-defined, preferably low-selenium, batch. The glutathione peroxidase activities varied considerably between cell lines and the selenite-induced increases ranged from negligible to more than 10-fold. The availability of cell lines with such variable responses should be valuable for experiments aimed at evaluating the importance of glutathione peroxidase and selenium compounds independently of glutathione peroxidase for the protection against oxidative insult.  相似文献   

5.
The relationship between coelomic injections of mercuric chloride doses and osmoregulatory responses was measured. Response parameters were weight increases and blood osmolarity decreases 72 hr after dose administration. Massive edema and large decreases in blood osmolarity could be completely prevented by subcutaneous injections of equimolar sodium selenite. Mercury induced damage did not involve alterations of either selenium-dependent or non-selenium-dependent glutathione peroxidase activities.  相似文献   

6.
The erythrocyte-free, isolated perfused rat liver was used to study the incorporation of selenium into glutathione peroxidase. Gel filtration and ion exchange chromatography of liver supernatant demonstrated 75Se incorporation into glutathione peroxidase. A 9-fold excess of unlabelled selenium as selenite or selenide very effectively reduced 75Se incorporation from L[75Se]-selenocystine, but a 100-fold excess of unlabelled selenium as selenocystine was relatively ineffective as compared to selenite or selenide in diluting 75Se incorporation from [75Se]selenite. These results indicate that selenide and selenite are more readily metabolized than is selenocysteine to the immediate selenium precursor used for glutathione peroxidase synthesis, and suggest a posttranslational modification at another amino acid residue, rather than direct incorporation of selenocysteine, as the mechanism for formation of the presumed selenocysteine moiety of the enzyme.  相似文献   

7.
The selenium-dependent glutathione peroxidase activities of three mammalian cell lines, HT29, P31, and N-18, cultured in medium with low serum content, increased about 2-, 5-, and 40-fold, respectively, after supplementation with 100 nM selenite. Catalase, CuZn superoxide dismutase, and Mn superoxide dismutase activities were not generally influenced by selenite supplementation, and there was only a minor nonselenium-dependent glutathione peroxidase activity in the investigated cell lines. Gamma-irradiated control and selenite-supplemented cells showed no changes in the surviving fractions, as estimated by clonogenic survival or [3H]-thymidine uptake, nor were there any significant differences between the two groups in the induction of DNA strand breaks after gamma irradiation under repairing (37 degrees C) or nonrepairing (0 degrees C) conditions. The results suggest that selenium-dependent glutathione peroxidase does not contribute significantly to the radiation resistance of cultured mammalian cells.  相似文献   

8.
Mouse neuroblastoma cells grown in medium containing 10 percent fetal bovine serum have negligible amounts of glutathione peroxidase activity. Introduction of selenite to the medium to produce a concentration of 600 nM resulted in a 30-fold increase in the enzyme activity. This increase is directly proportional to the concentration below 60 nM and levels off at concentrations above this value. Selenate produces no increase in enzyme activity when present alone nor does it inhibit induction when present with selenite. Tellurite produces no increase in enzyme activity when present alone but does inhibit induction when present with selenite.  相似文献   

9.
Comparison of short-term toxicity between Nano-Se and selenite in mice   总被引:10,自引:0,他引:10  
Zhang J  Wang H  Yan X  Zhang L 《Life sciences》2005,76(10):1099-1109
We previously reported that, as compared with selenite, nano red elemental selenium (Nano-Se) had lower acute toxicity in mice and similar bioavailability in terms of up-regulating seleno-enzymes. The short-term toxicity of both selenite and Nano-Se in mice was further compared in this study. At an oral dose of 6 mg/kg bw per day administered for consecutive 12 days, selenite and Nano-Se completely and partially suppressed mice growth respectively. Abnormal liver function was more pronounced with selenite treatment than Nano-Se as indicated by the increase of both alanine aminotransferase and aspartate aminotransferase in serum. Selenite inhibited liver catalase and superoxide dismutase activities, whereas, Nano-Se did not affect these two antioxidant enzymes. Selenite increased the malondialdehyde content of liver, but Nano-Se decreased it. Both Se forms had similar effects on depletion of reduced glutathione and up-regulated glutathione peroxidase. Nano-Se was more potent than selenite in the induction of glutathione S-transferase. At oral doses of 2 or 4 mg/kg bw per day for consecutive 15 days, selenite was more active than Nano-Se in supressing growth, deleting reduced glutathione, and inhibiting superoxide dismutase activities. Taken together, these results indicate that over a short-term, a high-dose of selenite caused more pronounced oxidative stress, greater liver injury, and prominent retardation of growth as compared to Nano-Se.  相似文献   

10.
The form and distribution of selenium (Se) in proteins from selected tissues of the rat were studied by measuring 75Se radioactivity in animals provided for 5 months with [75Se]selenite as the main dietary source of Se. Equilibration of the animals to a constant specific activity of 75Se allowed the measurement of 75Se to be used as a specific elemental assay for Se. Skeletal muscle, liver and blood accounted for 73% of the whole-body Se and 95% of the total Se-dependent glutathione peroxidase activity. Over 80% of the whole-body Se was in protein in the form of the selenoamino acid, selenocysteine. All other forms of Se that were measured accounted for less than 3% of the whole-body Se. The Se in protein was distributed in seven subunit sizes and nine chromatographic forms. The Se in glutathione peroxidase accounted for one-third of the whole-body Se. These results show that the main use of dietary Se, as selenite, in rats is for the synthesis of selenocysteine-containing proteins. Furthermore, the presence of two-thirds of the whole-body Se in nonglutathione peroxidase, selenocysteine-containing proteins suggests that there may be other important mammalian selenoenzymes besides glutathione peroxidase.  相似文献   

11.
Zhang J  Wang H  Bao Y  Zhang L 《Life sciences》2004,75(2):237-244
We previous reported that a nano red elemental selenium (Nano-Se) in the range from 20 approximately 60 nm had similar bioavailability to sodium selenite (BioFactors 15 (2001) 27). We recently found that Nano-Se with different size had marked difference in scavenging an array of free radicals in vitro, the smaller the particle, the better scavenging activity (Free Radic. Biol. Med. 35 (2003) 805). In order to examine whether there is a size effect of Nano-Se in the induction of Se-dependent enzymes, a range of Nano-Se (5 approximately 200 nm) have been prepared based on the control of elemental Se atom aggregation. The sizes of Nano-Se particles were inversely correlated with protein levels in the redox system of selenite and glutathione. Different sizes of red elemental Se were prepared by adding varying amount of bovine serum albumin (BSA). Three different sizes of Nano-Se (5 approximately 15 nm, 20 approximately 60 nm, and 80 approximately 200 nm) have been chosen for the comparison of biological activity in terms of the induction of seleno-enzyme activities. Results showed that there was no significant size effect of Nano-Se from 5 to 200 nm in the induction of glutathione peroxidase (GPx), phospholipid hydroperoxide glutathione peroxidase (PHGPx) and thioredoxin reductase-1 (TrxR-1) in human hepatoma HepG2 cells and the livers of mice.  相似文献   

12.
The mechanisms involved in the anti-carcinogenic activity of selenium remained to be elucidated. In the present study, we examined sodium selenite induced apoptosis and oxidative stress in human acute promyelocytic leukemia cell lines (NB4). Cell growth and viability were assessed by trypan blue exclusion and cell counting; apoptosis by DNA electrophoresis and analysis of intracellular DNA contents; reactive oxygen species and reduced glutathione in the cell were measured by lucigenin dependent chemoluminescent (CL) test and spectrophotometer; mitochondrial transmembrane potential was measured by flow cytometry. Sodium selenite could inhibit the growth and induce apoptosis of NB4 cells. Sodium selenite could increase the production of reactive oxygen species (ROS) in NB4 cells and decrease the level of intracellular reduced glutathione, but caused no change in the activity of antioxidant enzymes, superoxide dismutase (SOD), glutathione peroxidase (GPx). Sodium selenite enhanced the collapse of mitochondrial transmembrane potential (MTP), in parallel with the production of ROS. Finally antioxidant N-acetylcysteine (NAC) could inhibit the ROS production, MTP collapse and apoptosis in NB4 cells. Our results suggested that sodium selenite could induce apoptosis of NB4 cells through mitochondrial change mediated by production of reactive oxygen species within the cells.  相似文献   

13.
14.
The activation of lipid peroxidation in ophthalmoherpes may be determined by the reduction in glutathione peroxidase and superoxide dismutase activity. The activity was less depressed in the contralateral eye. Administration of sodium selenite stimulated glutathione peroxidase activity and normalized superoxide dismutase activity.  相似文献   

15.
Culture of the green alga Chlamydomonas reinhardtii in the medium containing sodium selenite caused the activity of ascorbate peroxidase to disappear and the appearance of glutathione peroxidase. The induced maximum activity of glutathione peroxidase reached 350 micromole (milligram chlorophyll hour)−1 under assay conditions used. The enzymic properties of the selenite-induced glutathione peroxidase closely resembled those of animal glutathione peroxidase that contains selenium.  相似文献   

16.
In order to investigate the effect of selenium supplementation on RNA in the rat pancreas, the rate of in vitro incorporation of [3H]uridine into RNA by pancreas slices derived from two groups of rats fed either a low-selenium diet or a diet supplemented with 0.25 mg/kg selenium as selenite was examined. The RNA and lipid peroxide contents and glutathione peroxidase activity in homogenates from the pancreas were also determined. After feeding for 12-14 weeks, the rates of [3H]uridine incorporation were significantly higher in the pancreatic tissue from the selenium-supplemented diet group. Concomitantly, an increase in glutathione peroxidase activities and RNA content, and a reduction of lipid peroxides, were also found in the pancreatic tissue of the selenium-supplemented group. The results suggest that selenium supplementation at a level of 0.25 mg/kg selenium could promote RNA synthesis with an increase in glutathione peroxidase activity and a decrease of lipid peroxides.  相似文献   

17.
The metabolism of selenite, selenocysteine (SeCys), and selenomethionine (SeMet) was studied in three human lymphoblast cell lines with defects in the transsulfuration pathway and in control cells without this defect. There were very little differences in the induction of glutathione peroxidase (GPX) activity by selenite and SeCys among these cells. However, markedly higher levels of SeMet were required to induce GPX activity in transsulfuration defective cells than in control cells. Surprisingly, the addition of pyridoxal phosphate (PLP) to the media resulted in elevated GPX activity in all cells regardless of the chemical form of Se used. There is no explanation for this effect of PLP, but it is not through direct reaction with GPX or on the alteration of sulfhydryl groups.  相似文献   

18.
The effects of inorganic selenium (Se) compounds (sodium selenite and selenate) on the activities of glutathione-related enzymes (glutathione peroxidase, glutathione-S-transferase [GST] and glutathione reductase [GR]) in pig blood platelets were investigated in vitro. GST activity in blood platelets treated with 10−4 M of selenite was reduced to 50%, whereas no decrease GST activity was observed after the treatment of platelets with the same dose of selenate. In platelets incubated with physiological doses (10−7, and 10−6 M) of Se compounds, the activity of glutathione peroxidase (GSH-Px) was enhanced (about 20%). GR activity after the exposure of platelets to tested Se compounds was unaffected.  相似文献   

19.
Selenium (Se) in selenite is present in an oxidized state, and must be reduced for it to be incorporated as selenocysteine into selenoenzymes such as glutathione peroxidase (GPx). In vitro, Se, as in selenite, can be reduced utilizing glutathione (GSH) and glutathione reductase (GRed). We determined the effects of decreasing GSH levels, inhibiting GRed activity, and decreasing cellular NADPH on the selenite-dependent rate of GPx synthesis in cultured cells: PC3, CHO, and the E89 glucose-6-phosphate dehydrogenase (G-6-PD)-deficient cell line. A novel statistical analysis method was developed (using Box Cox transformed regression and a bootstrap method) in order to assess the effects of these manipulations singly and in combinations. Buthionine sulfoximine (BSO) was used to decrease GSH levels, 1,3 bis-(2 chloroethyl)-1-nitrosourea (BCNU) was used to inhibit GRed activity and methylene blue (MB) was used to decrease cellular NADPH levels. This statistical method evaluates the effects of BSO, BCNU, MB and selenite alone and in combinations on GPx activity. Decreasing the GSH level (< 5% of control) did not have an effect on the selenite-dependent rate of GPx synthesis in PC3 or CHO cells, but did have a small inhibitory effect on the rate of GPx synthesis in E89 cells. Inhibiting GRed activity was also associated with either no effect (CHO, E89) or a small effect (PC3) on GPx activity. In contrast, decreasing NADPH levels in cells treated with MB was associated with a large decrease in the selenite-dependent rate of GPx synthesis to 36, 34 and 25% of control in PC3, CHO, and E89 cells, respectively. The effects of BSO plus BCNU were not synergistic in any of the cell lines. The effects of BSO plus MB were synergistic in G-6-PD-deficient E89 cells, but not in PC3 or CHO cells. We therefore conclude that under normal culture conditions, NADPH, and not glutathione, is the primary reductant of Se in selenite to forms that are eventually incorporated into GPx. For cells with abnormal ability to generate NADPH, lowering the GSH levels had a small effect on selenite-dependent GPx synthesis. GRed activity is not required for the selenite-dependent synthesis of GPx.  相似文献   

20.
To determine which of a variety of inorganic and organic selenium compounds could best stimulate glutathione peroxidase, human lymphocytes were cultured with a number of selenium sources. The phytohemagglutinin-transformed lymphocytes were cultured in the presence of75Se bound to serum proteins (25% v/v) or 10?7 M concentrations of [75Se]-selenite, [75Se]-selenate, [75Se]-selenocystine, and [75Se]-selenomethionine. Organic forms of selenium were taken up in preference to inorganic forms. Control cultures, from which exogenous selenium had been omitted, showed a decreased level of glutathione peroxidase activity at the end of a 4 d culture period. Of the Se sources tested, [75Se]-selenocystine and [75Se]-labeled fetal calf serum proteins increased enzyme activity significantly, 79 and 47%, respectively, but selenite increased activity only by 7%. These results indicate that selenium from the two organic sources is most readily available for glutathione peroxidase synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号