首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effects of reducing glutathione peroxidase activity in the lung by changing dietary selenium intake has been investigated. In animals that were exposed to room air, selenium effects were confined to glutathione peroxidase activity, whereas under conditions of oxidant stress (ozone) the decrease in glutathione peroxidase activity prevented the stimulation of the pentose phosphate cycle (assayed by measuring glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase activities) which has been reported to increase in response to oxidant stress. The suppression of glutathione peroxidase activity was found to depend on dietary selenium concentration. The physiological significance of this observation may be related to the process of injury and repair in the lung.  相似文献   

2.
3.
In this study, we investigated inhibitory effects of some metal ions on human erythrocyte glutathione reductase. For this purpose, initially human erythrocyte glutathione reductase was purified 1051-fold in a yield of 41% by using 2', 5'-ADP Sepharose 4B affinity gel and Sephadex G-200 gel filtration chromatography. SDS polyacrylamide gel electrophoresis was done in order to control the purification of enzyme. SDS polyacrylamide gel electrophoresis showed a single band for enzyme. A constant temperature (4 degrees C) was maintained during the purification process. Enzyme activity was determined with the Beutler method by using a spectrophotometer at 340 nm. Hg(2+), Cd(2+), Pb(2+), Cu(2+), Fe(3+) and Al3+ exhibited inhibitory effects on the enzyme in vitro. K(i) constants and IC(50) values for metal ions were determined by Lineweaver-Burk graphs and plotting activity % vs. [I]. IC(50) values of Pb(2+), Hg(2+), Cu(2+), Cd(2+), Fe(3+) and Al(3+) were 0.011, 0.020, 0.0252, 0.0373, 0.209 and 0.229 mM, and the Ki constants 0.0254+/-0.0027, 0.0378+/-0.0043, 0.0409+/-0.0048, 0.0558+/-0.0083, 0.403+/-0.043 and 1.137+/-0.2 mM, respectively. While Pb(2+), Hg(2+), Cd(2+) and Fe(3+) showed competitive inhibition, others displayed noncompetitive inhibition.  相似文献   

4.
Garlic oil, onion oil and one of its constituents, dipropenyl sulfide, all increase, to diverse degrees, glutathione (GSH) peroxidase (GSH:H2O2 oxidoreductase, EC 1.11.1.9) activity in isolated epidermal cells incubated in the presence or absence of the potent tumor promoter 12-0-tetradecanoylphorbol-13-acetate (TPA). The stimulatory effects of these oils on epidermal GSH peroxidase activity are concentration-dependent and long-lasting, and thus, abolish totally the prolonged inhibitory effect of TPA on this enzyme. Moreover, garlic oil (5 micrograms/ml) inhibits by about 50% TPA-induced ornithine decarboxylase (ODC, L-ornithine carboxy-lyase, EC 4.1.1.17) activity in the same epidermal cell system. This concentration of garlic oil also increases remarkably GSH peroxidase activity and inhibits ODC induction in the presence of various nonphorbol ester tumor promoters. Since the same oil treatments inhibit dramatically the sharp decline in the intracellular ratio of reduced (GSH)/oxidized (GSSG) glutathione caused by TPA, it is suggested that some of the inhibitory effects of garlic and onion oils on skin tumor promotion may result from their enhancement of the natural GSH-dependent antioxidant protective system of the epidermal cells.  相似文献   

5.
6.
Acetaldehyde, the primary ethanol metabolite, has been implicated in the pathogenesis of alcoholic liver disease, but the mechanism involved is still under investigation. This study aims at the search for direct in vitro effects of different concentrations of acetaldehyde (30, 100 and 300microM) on the activities of glutathione reductase (GR), glutathione peroxidase (GPx) from liver supernatants, and the thiol-peroxidase activity of ebselen. They did not change after pre-incubation with acetaldehyde, which suggests that acetaldehyde does not have any direct effect. Nor were direct effects of acetaldehyde toward thiols, such as dithioerythritol and glutathione (GSH), observed either, even though GSH - measured as non-protein thiols from liver supernatants - were oxidized in the presence of acetaldehyde. In addition, acetaldehyde (up to 300microM) significantly oxidized GSH when incubated in the presence of commercially available gamma-glutamyltranspeptidase (GGT), but not in the presence of glutathione-S-transferase. The interaction between ebselen and GSH was also evaluated in an attempt to better understand the possible link between acetaldehyde and nucleophilic selenol groups. The formation and stability of ebselen intermediaries, produced in the chemical interaction between GSH and ebselen, were not affected by acetaldehyde either. Overall, the acetaldehyde oxidation of hepatic low-molecular thiols depends on mouse liver constituents and GGT is proposed as an important enzyme involved in this phenomenon. Thiol depletion, a phenomenon usually observed in the livers of alcoholic patients, can be related to GSH metabolism, and the involvement of GGT may reflect a molecular mechanism involved in thiol oxidation.  相似文献   

7.
The effects of Triton X-100, deoxycholate, and fatty acids were studied on the two steps of the ping-pong reaction catalyzed by Se-dependent glutathione peroxidases. The study was carried out by analyzing the single progression curves where the specific glutathione oxidation was monitored using glutathione reductase and NADPH. While the "classic" glutathione peroxidase was inhibited only by Triton, the newly discovered "phospholipid hydroperoxide glutathione peroxidase" was inhibited by deoxycholate and by unsaturated fatty acids. The kinetic analysis showed that in the case of glutathione peroxidase only the interaction of the lipophilic peroxidic substrate was hampered by Triton, indicating that the enzyme is not active at the interface. Phospholipid hydroperoxide glutathione peroxidase activity measured with linoleic acid hydroperoxide as substrate, on the other hand, was not stimulated by the Triton concentrations which have been shown to stimulate the activity on phospholipid hydroperoxides. Furthermore a slight inhibition was apparent at high Triton concentrations and the effect could be attributed to a surface dilution of the substrate. Deoxycholate and unsaturated fatty acids were not inhibitory on glutathione peroxidase but inhibited both steps of the peroxidic reaction of phospholipid hydroperoxide glutathione peroxidase, in the presence of either amphiphilic or hydrophilic substrates. This inhibition pattern suggests an interaction of anionic detergents with the active site of this enzyme. These results are in agreement with the different roles played by these peroxidases in the control of lipid peroxide concentrations in the cells. While glutathione peroxidase reduces the peroxides in the water phase (mainly hydrogen peroxide), the new peroxidase reduces the amphyphilic peroxides, possibly at the water-lipid interface.  相似文献   

8.
9.
Plasma glutathione peroxidase (pGPx) is an extracellular antioxidative selenoenzyme which has been detected in various adult tissues, but little is known about the expression and distribution of pGPx during embryogenesis. To investigate the expression patterns of pGPx during embryogenesis, we performed quantitative real-time PCR, in situ hybridization, Western blot, and immunohistochemistry analyses in whole embryos or each developing organ of mice on embryonic days (E)7.5–18.5. In whole embryos of E7.5–8.5, pGPx mRNA was more typically expressed in extra-embryonic tissues including ectoplacental cone, trophectoderm, and decidual cells than in embryos. However, after E9.5, pGPx mRNA and protein levels were increased in the embryos with differentiation and growth, but trended to gradually decrease in the extra-embryonic tissues until E18.5. In sectioned embryonic tissues on E13.5–18.5, pGPx mRNA and protein were mainly expressed in the developing nervous tissues, the sensory organs, and the epithelia of lung, skin, and intestine, the heart and artery, and the kidney. In particular, pGPx immunoreactivity was very strong in the developing liver. These results indicate that pGPx is spatio-temporally expressed in various embryonic organs as well as extra-embryonic tissues, suggesting that pGPx may function to protect the embryos against endogenous and exogenous reactive oxygen species during organogenesis.  相似文献   

10.
Glutathione S-transferase enzyme (GST) (EC 2.5.1.18) was purified from rainbow trout erythrocytes, and some characteristics of the enzyme and effects of some metal ions on enzyme activity were investigated. For this purpose, erythrocyte glutathione S-transferase enzyme which has 16.54 EU/mg protein specific activities was purified 11,026-fold by glutathione-agarose affinity chromatography with a yield of 59%. Temperature was kept under control (+4°C) during purification. Enzyme purification was checked by performing SDS-PAGE. Optimal pH, stable pH, optimal temperature, and KM and Vmax values for GSH and 1-chloro-2, 4-dinitrobenzene (CDNB) were also determined for the enzyme. In addition, IC50 values, Ki constants and the type of inhibition were determined by means of Line-Weaver-Burk graphs obtained for such inhibitors as Ag+; Cd2+, Cr2+ and Mg2+.  相似文献   

11.
Excess iron (Fe) intake has been associated with an increased risk of cardiovascular disease in humans, presumably the result of increased oxidative stress. Previous work by us has shown that feeding a high-Fe diet to selenium (Se)-deficient weanling mice for 4 wk resulted in elevated plasma cholesterol and triglycerides and increased hepatic thiobarbituric acid reactive substances (TBARS). Here, we report the effect of Fe overload in mice lacking cellular glutathione peroxidase (GPX1 knockout [KO] mice), the selenoenzyme thought to account for much of the antioxidant action of Se. Four groups of 9–13 weanling wild-type (WT) or GPX1 KO mice were randomly assigned, then fed either an Fe-adequate (35 ppm Fe) or high-Fe (1100 ppm Fe) casein-based diet for 4 wk. Iron was added as ferric citrate. Both diets also contained 0.2 ppm Se added as sodium selenite. As expected, liver GPX1 activity was essentially absent in the KO mice. Another Se parameter measured (hepatic thioredoxin reductase activity) did not vary across groups. Although liver Fe was elevated in mice fed the high-Fe diet, liver TBARS was largely unaffected either by mouse genotype or diet fed. Moreover, plasma lipids were not elevated in the Fe-overloaded GPX1 KO mice. Thus, decreased GPX1 activity cannot account for the pro-oxidant hyperlipidemic effects observed earlier in mice fed the high-Fe Se-deficient diet. This suggests that impairment of Se functions other than GPX1 activity may be responsible for the elevated plasma lipids and hepatic TBARS seen in the Fe-overloaded Se-deficient mice.  相似文献   

12.
Severe steroidogenic and spermatogenic alterations are reported in association with diabetic manifestations in humans and experimental animals. This study was planned to determine whether oxidative stress is involved in diabetes-induced alterations in the testes. Diabetes was induced in male rats by injection of 50 mg/kg of streptozotocin (STZ). Ten weeks after injection of STZ, levels of selenium and activities of selenium dependent-glutathione peroxidase (GPx) and phospholipid hydroperoxide glutathione peroxidase (PHGPx) were measured in rat testis. Lipid and protein oxidations were evaluated as measurements of testis malondialdehyde (MDA) and protein carbonyl levels, respectively. Testis sulfydryl (SH) levels were also determined. The control levels of GPx and PHGPx activities were found to be 46.5 +/- 6.2 and 108.8 +/- 19.8 nmol GSH/mg protein/min, respectively. Diabetes caused an increase in testis GPx (65.0 +/- 21.1) and PHGPx (155.9 +/- 43.1) activities but did not affect the levels of selenium or SH. However, the testis MDA and protein carbonyl levels as markers of lipid and protein oxidation, respectively, did not increase in the diabetic group. Aminoguanidine (AG) treatment of diabetic rats returned the testis PHGPx activity (136.5 +/- 24.9) to the control level but did not change the value of GPx activity (69.2 +/- 17.4) compared with diabetic group. MDA and protein carbonyl levels in testis were not affected by AG treatment of diabetic rats, but interestingly AG caused SH levels to increase. The results indicate that reactive oxygen radicals were not involved in possible testicular complications of diabetes because diabetes-induced activations of GPx and PHGPx provided protection against oxidative stress, which was reported to be related to some diabetic complications.  相似文献   

13.
为考察金属离子和氨基酸对Eupenicillium sp.E-UN41菌体生长及其产生的次级代谢产物咪唑立宾(MZ)的生物合成影响,在培养基中添加了无机盐和氨基酸.结果表明在发酵培养基中添加适量的镁、钠、锰、钾、钙等金属离子可提高咪唑立宾产量5%~15%,添加1.0%L-组氨酸,MZ产量提高94%.添加适宜的L-天门冬氨酸和L-甘氨酸对产MZ亦有促进作用,而L-精氨酸明显抑制Eupenicillium sp.E-UN41生物合成MZ.本研究为咪唑立宾发酵的产业化奠定了基础.  相似文献   

14.
Apoptosis, a genetically controlled programmed cell death, has been found to play a role in ischemic reperfusion injury in several animal species including rats and rabbits. To examine whether this is also true for other animals, an isolated perfused mouse heart was subjected to 30 min of ischemia followed by 2 h of reperfusion. Experiments were terminated before ischemia (baseline), after ischemia, and at 30, 60, 90 and 120 min of reperfusion. At the end of each experiment, hearts were processed for the evaluation of apoptosis and DNA laddering. The in situ end labeling (ISEL) technique was used to detect apoptotic cardiomyocyte nuclei while DNA laddering was evaluated by subjecting the DNA obtained from the cardiomyocytes to 1.8% agarose gel electrophoresis followed by photographing under UV illumination. The results of our study revealed that apoptotic cells appear only after 60 min of reperfusion as demonstrated by the intense fluorescence of the immunostained genomic DNA when observed under fluorescence microscopy. None of the ischemic hearts showed any evidence of apoptosis. These results were corroborated with the findings of DNA fragmentation showing increased ladders of DNA bands in the same reperfused hearts representing integer multiples of the internucleosomal DNA length (about 180 bp). Since our previous studies showed a role of glutathione peroxidase (GSHPx) in apoptotic cell death, we performed identical experiments using isolated hearts from GSHPx-l knockout mice and transgenic mice overexpressing GSHPx-l. GSHPx-l knockout mice showed evidence of apoptotic cell death even after 30 min of reperfusion. Significant number of apoptotic cells were found in the cardiomyocytes as compared to non-transgenic control animals. To the contrary, very few apoptotic cells were found in the hearts of the transgenic mice overexpressing GSHPx-l. Hearts of GSHPx-l knockout mice were more susceptible to ischemia/reperfusion injury while transgenic mice overexpressing GSHPx- 1 were less susceptible to ischemia reperfusion injury compared to non-transgenic control animals. The results of this study clearly demonstrate a role of GSHPx in ischemia/reperfusion-induced apoptosis in mouse heart.  相似文献   

15.
The human CuZn superoxide dismutase (superoxide dismutase 1) a key enzyme in the metabolism of oxygen free-radicals, is encoded by a gene located on chromosome 21 in the region 21 q 22.1 known to be involved in Down's syndrome. A gene dosage effect for this enzyme has been reported in trisomy 21. To assess the biological consequences of superoxide dismutase 1 overproduction within cells, the human superoxide dismutase 1 gene and a human superoxide dismutase 1 cDNA were introduced into mouse L cells and NS20Y neuroblastoma cells. Both cell types expressed elevated levels (up to 3-fold) of enzymatically active human superoxide dismutase 1. These human superoxide dismutase 1 overproducers, especially neuronal cell lines, showed an increased activity in the selenodependent glutathione peroxidase. These data are consistent with the possibility that gene dosage of superoxide dismutase 1 contributes to oxygen metabolism modifications previously described in Down's syndrome.  相似文献   

16.
Since the enhancement of the activity of the natural glutathione (GSH)-dependent antioxidant protective system of the epidermal cells appears to inhibit the oxidative challenge presumably linked to skin tumor promotion by 12-O-tetradecanoylphorbol-13-acetate (TPA), we have compared the effectiveness of diverse intracellular thiol delivery agents as inhibitors of the effects of TPA on GSH metabolism and ornithine decarboxylase (ODC; L-ornithine carboxylase, EC 4.1.1.17) induction in isolated mouse epidermal cells. Here we report at a 2-mM concentration, the monoethyl and monomethyl esters of GSH, N-acetyl-L-cysteine, and L-2-oxothiazolidine-4-carboxylate are all significantly more effective than GSH in inhibiting the sharp decline in the intracellular ratio of reduced GSH/oxidized glutathione (GSSG), the prolonged decrease in GSH peroxidase (GSH:H2O2 oxidoreductase, EC 1.11.1.9) activity, and the induction of ODC activity caused by 1 microM TPA. Moreover, diethyldithiocarbamate prevents totally the initial drop in the GSH/GSSG ratio of TPA-treated cells and is the most potent inhibitor of TPA-decreased GSH peroxidase activity in relation with its remarkable 98% inhibition of TPA-induced ODC activity, suggesting that the potential antitumor-promoting activity of this compound in mouse skin may be far superior to that previously demonstrated by GSH in the initiation-promotion protocol.  相似文献   

17.
An assay for the determination of the newly discovered selenoenzyme, phospholipid hydroperoxide glutathione peroxidase (PH-GPx) in biological material is described. Dietary selenium deficiency and repletion was used as a tool in order to modify this enzyme activity in various mouse organs and to compare it to the activity of the 'classical' selenium-dependent glutathione peroxidase (GPx) (EC 1.11.1.9). A semipurified diet containing less than 12 ppb Se was used for depletion. Controls received this diet supplemented with 500 ppb Se in the form of Na2SeO3. The results showed that a rapid loss of GPx activity occurred in liver, kidney and lungs of selenium-deficient mice which reached undetectable levels within 130 days. In the heart, about 24% of control GPx activity was still present. In contrast, PH-GPx activity was more slowly depleted by Se deficiency and resulted in residual activities ranging from 30 to 70% in the different organs even after 250 days of depletion. In repletion experiments with a single application of 10 or 500 micrograms/kg Se, only the high dose restored either enzyme activity. The data demonstrate that the need for selenium of the two glutathione peroxidases is different. A markedly distinct organ distribution of both enzymes suggests that the heart may be the organ more sensitive to oxidative stress.  相似文献   

18.
19.
The cardiac toxicity of doxorubicin (DOX), a potent anticancer anthracycline antibiotic, is believed to be mediated through the generation of reactive oxygen species (ROS) in cardiomyocytes. This study aims to determine the function of cellular glutathione peroxidase (Gpx1), which is located in both mitochondria and cytosol, in defense against DOX-induced cardiomyopathy using a line of transgenic mice with cardiac overexpression of Gpx1. The Gpx1-overexpressing hearts were markedly more resistant than nontransgenic hearts to DOX-induced acute functional derangements, including impaired contractility and diastolic properties, decreased coronary flow rate, and reduced heart rate. In addition, DOX treatment impairs mitochondrial function of nontransgenic hearts as evident in a decreased rate of NAD-linked State 3 respiration, presumably a result of inactivation of complex I activity. This is associated with increases in the rates of NAD- and FAD-linked State 4 respiration and declines in P/O ratio, suggesting that the electron transfer and oxidative phosphorylation are uncoupled in these mitochondrial samples. These functional deficits of mitochondria could be largely prevented by Gpx1 overexpression. Taken together, these studies provide new evidence to further support the role of ROS, particularly H(2)O(2) and/or fatty acid hydroperoxides, in causing contractile and mitochondrial dysfunction in mouse hearts acutely exposed to DOX.  相似文献   

20.
《FEBS letters》2014,588(9):1580-1589
Glutathione peroxidase 3 (GPX3) is an important member of antioxidant enzymes for reducing reactive oxygen species and maintaining the oxygen balance. Gpx3 mRNA is strongly expressed in decidual cells from days 5 to 8 of pregnancy. After pregnant mice are treated with GPX inhibitor for 3 days, pregnancy rate is significantly reduced. Progesterone stimulates Gpx3 expression through PR/HIF1α in mouse endometrial stromal cells. In the decidua, the high level of GPX3 expression is closely associated with the reduction of hydrogen peroxide (H2O2). Based on our data, GPX3 may play a major role in reducing H2O2 during decidualization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号