首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kaposi's sarcoma herpesvirus oncoprotein vFLIP K13 is a potent activator of NF-kappaB and plays a key role in viral pathogenesis. K13 contains a putative TRAF-interacting motif, which is reportedly required for its interaction with TRAF2. The K13-TRAF2 interaction is believed to be essential for the recruitment of K13 to the I-kappaB kinase (IKK) complex and for K13-induced NF-kappaB and JNK activation. In addition, TRAF3 has been reported to be required for K13-induced NF-kappaB and JNK activation. We have re-examined the role of the TRAFs in K13 signaling and report that mutations in the putative TRAF-interacting motif of K13 have no deleterious effect on its ability to interact with the IKK complex or activation of the NF-kappaB pathway. Furthermore, endogenously expressed TRAF2 and TRAF3 do not interact with K13 and play no role in K13-induced NF-kappaB activation or its interaction with the IKK complex. Finally, K13 does not activate the JNK pathway. Our results support a model in which K13 bypasses the upstream components of the tumor necrosis factor receptor signaling pathway and directly interacts with the IKK complex to selectively activate the NF-kappaB pathway without affecting the JNK pathway. Selective NF-kappaB activation by K13 might represent a novel strategy employed by the virus to promote latency.  相似文献   

2.
Various members of the tumor necrosis factor (TNF) receptor superfamily activate nuclear factor kappaB (NF-kappaB) and the c-Jun N-terminal kinase (JNK) pathways through their interaction with TNF receptor-associated factors (TRAFs) and NF-kappaB-inducing kinase (NIK). We have previously shown that the cytoplasmic domain of receptor activator of NF-kappaB (RANK) interacts with TRAF2, TRAF5, and TRAF6 and that its overexpression activates NF-kappaB and JNK pathways. Through a detailed mutational analysis of the cytoplasmic domain of RANK, we demonstrate that TRAF2 and TRAF5 bind to consensus TRAF binding motifs located in the C terminus at positions 565-568 and 606-611, respectively. In contrast, TRAF6 interacts with a novel motif located between residues 340 and 358 of RANK. Furthermore, transfection experiments with RANK and its deletion mutants in human embryonic 293 cells revealed that the TRAF6-binding region (340-358), but not the TRAF2 or TRAF5-binding region, is necessary and sufficient for RANK-induced NF-kappaB activation. Moreover, a kinase mutant of NIK (NIK-KM) inhibited RANK-induced NF-kappaB activation. However, RANK-mediated JNK activation required a distal portion (427-603) of RANK containing the TRAF2-binding domain. Thus, our results indicate that RANK interacts with various TRAFs through distinct motifs and activates NF-kappaB via a novel TRAF6 interaction motif, which then activates NIK, thus leading to NF-kappaB activation, whereas RANK most likely activates JNK through a TRAF2-interacting region in RANK.  相似文献   

3.
Tumor necrosis factor (TNF) receptor-associated factors (TRAFs) are critical signaling adaptors downstream of many receptors in the TNF receptor and interleukin-1 receptor/Toll-like receptor superfamilies. Whereas TRAF2, 5, and 6 are activators of the canonical NF-kappaB signaling pathway, TRAF3 is an inhibitor of the noncanonical NF-kappaB pathway. The contribution of the different domains in TRAFs to their respective functions remains unclear. To elucidate the structural and functional specificities of TRAF3, we reconstituted TRAF3-deficient cells with a series of TRAF3 mutants and assessed their abilities to restore TRAF3-mediated inhibition of the noncanonical NF-kappaB pathway as measured by NF-kappaB-inducing kinase (NIK) protein levels and processing of p100 to p52. We found that a structurally intact RING finger domain of TRAF3 is required for inhibition of the noncanonical NF-kappaB pathway. In addition, the three N-terminal domains, but not the C-terminal TRAF domain, of the highly homologous TRAF5 can functionally replace the corresponding domains of TRAF3 in suppression of the noncanonical NF-kappaB pathway. This functional specificity correlates with the specific binding of TRAF3, but not TRAF5, to the previously reported TRAF3 binding motif in NIK. Our studies suggest that both the RING finger domain activity and the specific binding of the TRAF domain to NIK are two critical components of TRAF3 suppression of NIK protein levels and the processing of p100 to p52.  相似文献   

4.
The Epstein-Barr virus (EBV) transforming protein LMP1 appears to be a constitutively activated tumor necrosis factor receptor (TNFR) on the basis of an intrinsic ability to aggregate in the plasma membrane and an association of its cytoplasmic carboxyl terminus (CT) with TNFR-associated factors (TRAFs). We now show that in EBV-transformed B lymphocytes most of TRAF1 or TRAF3 and 5% of TRAF2 are associated with LMP1 and that most of LMP1 is associated with TRAF1 or TRAF3. TRAF1, TRAF2, and TRAF3 bind to a single site in the LMP1 CT corresponding to amino acids (aa) 199 to 214, within a domain which is important for B-lymphocyte growth transformation (aa 187 to 231). Further deletional and alanine mutagenesis analyses and comparison with TRAF binding sequences in CD40, in CD30, and in the LMP1 of other lymphycryptoviruses provide the first evidence that PXQXT/S is a core TRAF binding motif. The negative effects of point mutations in the LMP1(1-231) core TRAF binding motif on TRAF binding and NF-kappaB activation genetically link the TRAFs to LMP1(1-231)-mediated NF-kappaB activation. NF-kappaB activation by LMP1(1-231) is likely to be mediated by TRAF1/TRAF2 heteroaggregates since TRAF1 is unique among the TRAFs in coactivating NF-kappaB with LMP1(1-231), a TRAF2 dominant-negative mutant can block LMP1(1-231)-mediated NF-kappaB activation as well as TRAF1 coactivation, and 30% of TRAF2 is associated with TRAF1 in EBV-transformed B cells. TRAF3 is a negative modulator of LMP1(1-231)-mediated NF-kappaB activation. Surprisingly, TRAF1, -2, or -3 does not interact with the terminal LMP1 CT aa 333 to 386 which can independently mediate NF-kappaB activation. The constitutive association of TRAFs with LMP1 through the aa 187 to 231 domain which is important in NF-kappaB activation and primary B-lymphocyte growth transformation implicates TRAF aggregation in LMP1 signaling.  相似文献   

5.
Tumor necrosis factor (TNF) receptor-associated factors (TRAFs) are mediators of many members of the TNF receptor superfamily and can activate both the nuclear factor kappaB (NF-kappaB) and stress-activated protein kinase (SAPK; also known as c-Jun N-terminal kinase) signal transduction pathways. We previously described the involvement of a TRAF-interacting molecule, TRAF-associated NF-kappaB activator (TANK), in TRAF2-mediated NF-kappaB activation. Here we show that TANK synergized with TRAF2, TRAF5, and TRAF6 but not with TRAF3 in SAPK activation. TRAF2 and TANK individually formed weak interactions with germinal center kinase (GCK)-related kinase (GCKR). However, when coexpressed, they formed a strong complex with GCKR, thereby providing a potential mechanism for TRAF and TANK synergy in GCKR-mediated SAPK activation, which is important in TNF family receptor signaling. Our results also suggest that TANK can form potential intermolecular as well as intramolecular interactions between its amino terminus and carboxyl terminus. This study suggests that TANK is a regulatory molecule controlling the threshold of NF-kappaB and SAPK activities in response to activation of TNF receptors. In addition, CD40 activated endogenous GCKR in primary B cells, implicating GCK family proteins in CD40-mediated B-cell functions.  相似文献   

6.
Tumor necrosis factor (TNF) receptor-associated factors (TRAFs) were identified as signal transducers for the TNF receptor superfamily. However, the exact roles of TRAF2 and TRAF5 in TNF-induced NF-kappaB activation still remain controversial. To address this issue, we generated TRAF2 and TRAF5 double knockout (DKO) mice. TNF- but not interleukin-1-induced nuclear translocation of NF-kappaB was severely impaired in murine embryonic fibroblasts (MEFs) derived from DKO mice. Moreover, DKO MEFs were more susceptible to TNF-induced cytotoxicity than TRAF2 knockout MEFs. Collectively, these results indicate that both TRAF2 and TRAF5 are involved in TNF-induced NF-kappaB activation and protection from cell death.  相似文献   

7.
Signaling by some TNF receptor family members, including CD40, is mediated by TNF receptor-associated factors (TRAFs) that interact with receptor cytoplasmic domains following ligand-induced receptor oligomerization. Here we have defined the oligomeric structure of recombinant TRAF domains that directly interact with CD40 and quantitated the affinities of TRAF2 and TRAF3 for CD40. Biochemical and biophysical analyses demonstrated that TRAF domains of TRAF1, TRAF2, TRAF3, and TRAF6 formed homo-trimers in solution. N-terminal deletions of TRAF2 and TRAF3 defined minimal amino acid sequences necessary for trimer formation and indicated that the coiled coil TRAF-N region is required for trimerization. Consistent with the idea that TRAF trimerization is required for high-affinity interactions with CD40, monomeric TRAF-C domains bound to CD40 significantly weaker than trimeric TRAFs. In surface plasmon resonance studies, a hierarchy of affinity of trimeric TRAFs for trimeric CD40 was found to be TRAF2 > TRAF3 > TRAF1 and TRAF6. CD40 trimerization was demonstrated to be sufficient for optimal NF-kappaB and p38 mitogen activated protein kinase activation through wild-type CD40. In contrast, a higher degree of CD40 multimerization was necessary for maximal signaling in a cell line expressing a mutated CD40 (T254A) that signaled only through TRAF6. The affinities of TRAF proteins for oligomerized receptors as well as different requirements for degree of receptor multimerization appear to contribute to the selectivity of TRAF recruitment to receptor cytoplasmic domains.  相似文献   

8.
9.
The activation of NF-kappaB by receptors in the tumor necrosis factor (TNF) receptor and Toll/interleukin-1 (IL-1) receptor families requires the TRAF family of adaptor proteins. Receptor oligomerization causes the recruitment of TRAFs to the receptor complex, followed by the activation of a kinase cascade that results in the phosphorylation of IkappaB. TANK is a TRAF-binding protein that can inhibit the binding of TRAFs to receptor tails and can also inhibit NF-kappaB activation by these receptors. However, TANK also displays the ability to stimulate TRAF-mediated NF-kappaB activation. In this report, we investigate the mechanism of the stimulatory activity of TANK. We find that TANK interacts with TBK1 (TANK-binding kinase 1), a novel IKK-related kinase that can activate NF-kappaB in a kinase-dependent manner. TBK1, TANK and TRAF2 can form a ternary complex, and complex formation appears to be required for TBK1 activity. Kinase-inactive TBK1 inhibits TANK-mediated NF-kappaB activation but does not block the activation mediated by TNF-alpha, IL-1 or CD40. The TBK1-TANK-TRAF2 signaling complex functions upstream of NIK and the IKK complex and represents an alternative to the receptor signaling complex for TRAF-mediated activation of NF-kappaB.  相似文献   

10.
Tumour necrosis factor receptor (TNFR)-associated factor (TRAF) proteins are essential components of signalling pathways activated by TNFR or Toll-like receptor (TLR) family members. Acting alone or in combination, the seven known TRAFs control many biological processes, including cytokine production and cell survival. The function of one TRAF in particular, TRAF3, remained elusive for many years. Recent work has revealed that TRAF3 is a highly versatile regulator that positively controls type I interferon production, but negatively regulates mitogen-activated protein kinase activation and alternative nuclear factor-κB signalling. In this Review, we discuss our current understanding of the role of TRAF3 in TNFR and TLR signalling pathways, and its role in disease.  相似文献   

11.
12.
TRAF family proteins link PKR with NF-kappa B activation   总被引:1,自引:0,他引:1       下载免费PDF全文
The double-stranded RNA (dsRNA)-dependent protein kinase PKR activates NF-kappa B via the I kappa B kinase (IKK) complex, but little is known about additional molecules that may be involved in this pathway. Analysis of the PKR sequence enabled us to identify two putative TRAF-interacting motifs. The viability of such an interaction was further suggested by computer modeling. Here, we present evidence of the colocalization and physical interaction between PKR and TRAF family proteins in vivo, as shown by immunoprecipitation and confocal microscopy experiments. This interaction is induced upon PKR dimerization. Most importantly, we show that the binding between PKR and TRAFs is functionally relevant, as observed by the absence of NF-kappa B activity upon PKR expression in cells genetically deficient in TRAF2 and TRAF5 or after expression of TRAF dominant negative molecules. On the basis of sequence information and mutational and computer docking analyses, we favored a TRAF-PKR interaction model in which the C-terminal domain of TRAF binds to a predicted TRAF interaction motif present in the PKR kinase domain. Altogether, our data suggest that TRAF family proteins are key components located downstream of PKR that have an important role in mediating activation of NF-kappa B by the dsRNA-dependent protein kinase.  相似文献   

13.
14.
15.
16.
Lymphotoxin-beta receptor (LTbetaR) and CD40 are members of the tumor necrosis factor family of signaling receptors that regulate cell survival or death through activation of NF-kappaB. These receptors transmit signals through downstream adaptor proteins called tumor necrosis factor receptor-associated factors (TRAFs). In this study, the crystal structure of a region of the cytoplasmic domain of LTbetaR bound to TRAF3 has revealed an unexpected new recognition motif, 388IPEEGD393, for TRAF3 binding. Although this motif is distinct in sequence and structure from the PVQET motif in CD40 and PIQCT in the regulator TRAF-associated NF-kappaB activator (TANK), recognition is mediated in the same binding crevice on the surface of TRAF3. The results reveal structurally adaptive "hot spots" in the TRAF3-binding crevice that promote molecular interactions driving specific signaling after contact with LTbetaR, CD40, or the downstream regulator TANK.  相似文献   

17.
NF-kappaB-inducing kinase (NIK) has been implicated as an essential component of NF-kappaB activation. However, the regulatory mechanism of NIK signaling remains elusive. We have identified a novel NIK interacting protein, TNAP (for TRAFs and NIK-associated protein). In mammalian cells, TNAP physically interacts with NIK, TRAF2, and TRAF3 but not IKK1 or IKK2. TNAP specifically inhibits NF-kappaB activation induced by tumor necrosis factor (TNF)-alpha, TNF receptor 1, TRADD, RIP, TRAF2, and NIK but does not affect IKK1- and IKK2-mediated NF-kappaB activation. Knockdown of TNAP by lentiviral-mediated small interference RNA potentiates TNF-alpha-induced NF-kappaB activation. TNAP suppresses NIK kinase activity and subsequently reduces p100 processing, p65 phosphorylation, and IkappaBalpha degradation. These data suggest that TNAP is a repressor of NIK activity and regulates both the classical and alternative NF-kappaB signaling pathways.  相似文献   

18.
The oncogenic latent membrane protein 1 (LMP1) of the Epstein-Barr virus recruits tumor necrosis factor-receptor (TNFR)-associated factors (TRAFs), the TNFR-associated death domain protein (TRADD) and JAK3 to induce intracellular signaling pathways. LMP1 serves as the prototype of a TRADD-binding receptor that transforms cells but does not induce apoptosis. Here we show that TRAF6 critically mediates LMP1 signaling to p38 mitogen-activated protein kinase (MAPK) via a MAPK kinase 6-dependent pathway. In addition, NF-kappaB but not c-Jun N-terminal kinase 1 (JNK1) induction by LMP1 involves TRAF6. The PxQxT motif of the LMP1 C-terminal activator region 1 (CTAR1) and tyrosine 384 of CTAR2 together are essential for full p38 MAPK activation and for TRAF6 recruitment to the LMP1 signaling complex. Dominant-negative TRADD blocks p38 MAPK activation by LMP1. The data suggest that entry of TRAF6 into the LMP1 complex is mediated by TRADD and TRAF2. In TRAF6-knockout fibroblasts, significant induction of p38 MAPK by LMP1 is dependent on the ectopic expression of TRAF6. We describe a novel role of TRAF6 as an essential signaling mediator of a transforming oncogene, downstream of TRADD and TRAF2.  相似文献   

19.
CD40 function is initiated by tumor necrosis factor (TNF) receptor-associated factor (TRAF) adapter proteins, which play important roles in signaling by numerous receptors. Characterizing roles of individual TRAFs has been hampered by limitations of available experimental models and the poor viability of most TRAF-deficient mice. Here, B cell lines made deficient in TRAF2 using a novel homologous recombination system reveal new roles for TRAF2. We demonstrate that TRAF2 participates in synergy between CD40 and B cell antigen receptor signals, and in CD40-mediated, TNF-dependent IgM production. We also find that TRAF2 participates in the degradation of TRAF3 associated with CD40 signaling, a role that may limit inhibitory actions of TRAF3. Finally, we show that TRAF2 and TRAF6 have overlapping functions in CD40-mediated NF-kappaB activation and CD80 up-regulation. These findings demonstrate previously unappreciated roles for TRAF2 in signaling by TNF receptor family members, using an approach that facilitates the analysis of genes critical to the viability of whole organisms.  相似文献   

20.
TRAF-interacting protein (TRIP) is a RING-dependent ubiquitin ligase   总被引:1,自引:0,他引:1  
TRAF-interacting protein (TRIP) was initially identified as a TRAF1- and TRAF2-binding partner that inhibited NF-kappaB activation without a known mechanism. Inspection of the TRIP sequence revealed an N-terminal RING domain, which is found in many E3 ubiquitin (Ub) ligases. We show that TRIP is a RING-dependent Ub ligase that undergoes auto-ubiquitination and requires an intact RING domain. Both TRIP and its RING mutant interact with TRAF1, 2, 3, 5, and 6, but failed to interact with CYLD and NIK. Stable expression of TRIP or a RING mutant did not affect IKK activation induced by TNF or IL-1 and had no affect on TNF-induced apoptosis. Similarly, RANKL-induced signaling and osteoclastogenesis were not affected by TRIP or its RING mutant. Interestingly, TRIP expression was down regulated during the late stages of osteoclastogenesis. Taken together, our results demonstrate that TRIP is a novel RING-dependent Ub ligase and a binding partner for TRAFs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号