首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Endogenous retroviruses (ERVs) are remnants of ancient retroviral infections of the host germline transmitted vertically from generation to generation. It is hypothesized that some ERVs are used by the host as restriction factors to block the infection of pathogenic retroviruses. Indeed, some ERVs efficiently interfere with the replication of related exogenous retroviruses. However, data suggesting that these mechanisms have influenced the coevolution of endogenous and/or exogenous retroviruses and their hosts have been more difficult to obtain. Sheep are an interesting model system to study retrovirus-host coevolution because of the coexistence in this animal species of two exogenous (i.e., horizontally transmitted) oncogenic retroviruses, Jaagsiekte sheep retrovirus and Enzootic nasal tumor virus, with highly related and biologically active endogenous retroviruses (enJSRVs). Here, we isolated and characterized the evolutionary history and molecular virology of 27 enJSRV proviruses. enJSRVs have been integrating in the host genome for the last 5-7 million y. Two enJSRV proviruses (enJS56A1 and enJSRV-20), which entered the host genome within the last 3 million y (before and during speciation within the genus Ovis), acquired in two temporally distinct events a defective Gag polyprotein resulting in a transdominant phenotype able to block late replication steps of related exogenous retroviruses. Both transdominant proviruses became fixed in the host genome before or around sheep domestication (approximately 9,000 y ago). Interestingly, a provirus escaping the transdominant enJSRVs has emerged very recently, most likely within the last 200 y. Thus, we determined sequentially distinct events during evolution that are indicative of an evolutionary antagonism between endogenous and exogenous retroviruses. This study strongly suggests that endogenization and selection of ERVs acting as restriction factors is a mechanism used by the host to fight retroviral infections.  相似文献   

2.
Retrovirus genes have become inserted into the human genome for more than one million years. These retroviruses are now inactivated due to mutation, such as deletions or nonsense mutations. After mutation, retroviruses eventually become fixed in the genome in the endogenous form and exist as traces of ancient viruses. These retroviruses are called human endogenous retroviruses (HERVs). HERVs cannot make fully active viruses, but a number of viral proteins (or even virus particles) are expressed under various conditions. By comparison with ERVs, some exogenous retroviruses are still infectious and cause serious diseases threatening human life. Recent studies have shown that some elements of HERVs are closely related to other exogenous retroviruses, including human immunodeficiency virus (HIV). This review will describe the regulation and interaction between HERVs and other active viral infections. In addition, we introduce the development of vaccines and therapeutic agents against these viral infections through the use of HERV elements.  相似文献   

3.
4.
《Trends in microbiology》2023,31(9):933-946
In humans, retroviruses thrive more as symbionts than as parasites. Apart from the only two modern exogenous human retroviruses (human T-cell lymphotropic and immunodeficiency viruses; HTLV and HIV, respectively), ~8% of the human genome is occupied by ancient retroviral DNA [human endogenous retroviruses (HERVs)]. Here, we review the recent discoveries about the interactions between the two groups, the impact of infection by exogenous retroviruses on the expression of HERVs, the effect of HERVs on the pathogenicity of HIV and HTLV and on the severity of the diseases caused by them, and the antiviral protection that HERVs can allegedly provide to the host. Tracing the crosstalk between contemporary retroviruses and their endogenized ancestors will provide better understanding of the retroviral world.  相似文献   

5.
Retroviruses normally infect the somatic cells of their host and are transmitted horizontally, i.e., in an exogenous way. Occasionally, however, some retroviruses can also infect and integrate into the genome of germ cells, which may allow for their vertical inheritance and fixation in a given species; a process known as endogenization. Lentiviruses, a group of mammalian retroviruses that includes HIV, are known to infect primates, ruminants, horses, and cats. Unlike many other retroviruses, these viruses have not been demonstrably successful at germline infiltration. Here, we report on the discovery of endogenous lentiviral insertions in seven species of Malagasy lemurs from two different genera—Cheirogaleus and Microcebus. Combining molecular clock analyses and cross-species screening of orthologous insertions, we show that the presence of this endogenous lentivirus in six species of Microcebus is the result of one endogenization event that occurred about 4.2 million years ago. In addition, we demonstrate that this lentivirus independently infiltrated the germline of Cheirogaleus and that the two endogenization events occurred quasi-simultaneously. Using multiple proviral copies, we derive and characterize an apparently full length and intact consensus for this lentivirus. These results provide evidence that lentiviruses have repeatedly infiltrated the germline of prosimian species and that primates have been exposed to lentiviruses for a much longer time than what can be inferred based on sequence comparison of circulating lentiviruses. The study sets the stage for an unprecedented opportunity to reconstruct an ancestral primate lentivirus and thereby advance our knowledge of host–virus interactions.  相似文献   

6.
The murine leukemia virus (MuLV)-related retroviruses are one of seven genera which together constitute the family Retroviridae. They are widespread as both endogenous and exogenous agents within vertebrates and have been associated with a variety of malignancies and other disorders. We isolated and characterized 12 endogenous representatives of this genus from a number of mammalian hosts. Subsequent sequence analysis revealed that the isolated viruses cluster into two clearly distinct groups. All of the exogenous MuLV-related retroviruses which have been isolated to date, as well as several endogenous examples, fall into the first group, whereas the second group is represented solely by endogenous representatives, including human endogenous retrovirus type E (HERV.E). The two groups are widespread within mammals, with both often present within one animal species. Despite this, there is no evidence to date that recombination between members of the different groups has occurred. Genetic distances and several other properties of the HERV.E genome suggest that if exogenous members of this subgroup exist, they are likely to have biological properties different from those of the other exogenous viruses of this genus. Several of these viruses are known to have been integrated within their hosts' genomes for a long period of time, and a most recent divergence date for the MuLV and HERV.E subgroups can thus be proposed. This date, approximately 30 million years ago, is the most recent date possible, and it is probable that the actual period of time since their divergence is significantly longer.  相似文献   

7.
Primates emerged about 60 million years ago. Since that time various primate-targeting retroviruses have integrated in the germ line of primate species, and some drifted to fixation. After germ line fixation, continued activity of proviruses resulted in intragenomic spread of so-called endogenous retroviruses (ERVs). Variant ERVs emerged, amplified in the genome and profoundly altered genome structures and potentially functionality. Importantly, ERVs are genome modifiers of exogenous origin. The human genome contains about 8% of sequences of retroviral origin. The human ERVs (HERVs) comprise many distinct families that amplified to copy numbers of up to several thousand. We review here the evolution of several well-characterized HERV families in the human lineage since initial germ line fixation. It is apparent that endogenous retroviruses profoundly affected the genomes of species in the evolutionary lineage leading to Homo sapiens.  相似文献   

8.

Background

The human genome contains about 8% of endogenous retroviral sequences originated from germ cell infections by exogenous retroviruses during evolution. Most of those sequences are inactive because of accumulation of mutations but some of them are still capable to be transcribed and translated. The latter are insertionally polymorphic HERV-K113 and HERV-K115. It has been suggested that their presence and expression was connected with several human diseases. It is also believed that they could interfere with the replication cycle of exogenous retroviruses, including HIV.

Results

Prevalence of endogenous retroviral sequences HERV-K113 and HERV-K115 was determined in the Polish population. The frequencies were found as 11.8% for HERV-K113 and 7.92% for HERV-K115. To verify the hypothesis that the presence of these HERVs sequences could affect susceptibility to HIV infection, comparison of a control group (HIV-negative, not exposed to HIV; n = 303) with HIV-positive patients (n = 470) and exposed but uninfected (EU) individuals (n = 121) was performed. Prevalence of HERV-K113 and HERV-K115 in the EU group was 8.26% and 5.71%, respectively. In the HIV(+) group we detected HERV-K113 sequences in 12.98% of the individuals and HERV-K115 sequences in 7.23% of the individuals. There were no statistically significant differences between groups studied.

Conclusion

The frequency of HERV-K113 and HERV-K115 sequences in Poland were found to be higher than usually shown for European populations. No relation between presence of the HERVs and HIV infection was detected.  相似文献   

9.
10.
A M Krieg  M F Gourley  A Perl 《FASEB journal》1992,6(8):2537-2544
The genomes of all organisms, from yeast to humans, contain thousands of endogenous retroviruses (ERV). In most species all or almost all ERV are noninfectious, but some ERV retain open reading frames capable of encoding proteins. RNA and proteins derived from ERV are expressed in humans and other species. Until recently, there was little evidence that this ERV expression resulted in any immunologic effects. Recent studies make it increasingly clear that some ERV have important immunologic effects. The immune effects of ERV expression raise the question of a possible pathogenic role in idiopathic autoimmune diseases. Interest in this question has been heightened by the observation that some infectious retroviruses cause manifestations of autoimmunity. Nonetheless, attempts to isolate infectious retroviruses from patients with idiopathic autoimmune diseases have generally failed. The possible role of ERV in idiopathic autoimmune diseases has not yet been fully explored. This review focuses on the known and the potential immune effects of ERV, especially as they may relate to autoimmune diseases.  相似文献   

11.
人内源性逆转录病毒(human endogenous retroviruses,HERV)是几百万年前整合至人类基因组并遗传至今的外源性逆转录病毒的残余物。因突变、缺失等导致大多数HERV没有完整的开放读码框,但仍有部分家族成员可编码完整的病毒蛋白,如分离自多发性硬化症患者的γ逆转录病毒相似元件家族成员HERV-W的包膜蛋白基因(HERV-W env,又称ERVWE1)编码的ENV蛋白(又称Syncytin-1),在人胎盘发育过程中起细胞融合以及免疫调节作用。在生理条件下,HERV-W受到表观遗传调控而其转录活性被抑制;但亦可被环境、遗传等因素激活,如自身免疫性疾病、精神疾病及癌症等。研究发现HERV-W可能在疾病的发生、发展中起重要的“桥梁”与“触发”作用,靶向Syncytin-1的单克隆抗体GNbAC1已用于多发性硬化症的临床研究,并且在1型糖尿病中也有良好的应用前景。对HERV-W的深入研究可为某些疾病的诊断和治疗提供重要的途径。  相似文献   

12.
13.
14.
It has become increasingly clear that retrotransposons (RTEs) are more widely expressed in somatic tissues than previously appreciated. RTE expression has been implicated in a myriad of biological processes ranging from normal development and aging, to age related diseases such as cancer and neurodegeneration. Long Terminal Repeat (LTR)-RTEs are evolutionary ancestors to, and share many features with, exogenous retroviruses. In fact, many organisms contain endogenous retroviruses (ERVs) derived from exogenous retroviruses that integrated into the germ line. These ERVs are inherited in Mendelian fashion like RTEs, and some retain the ability to transmit between cells like viruses, while others develop the ability to act as RTEs. The process of evolutionary transition between LTR-RTE and retroviruses is thought to involve multiple steps by which the element loses or gains the ability to transmit copies between cells versus the ability to replicate intracellularly. But, typically, these two modes of transmission are incompatible because they require assembly in different sub-cellular compartments. Like murine IAP/IAP-E elements, the gypsy family of retroelements in arthropods appear to sit along this evolutionary transition. Indeed, there is some evidence that gypsy may exhibit retroviral properties. Given that gypsy elements have been found to actively mobilize in neurons and glial cells during normal aging and in models of neurodegeneration, this raises the question of whether gypsy replication in somatic cells occurs via intracellular retrotransposition, intercellular viral spread, or some combination of the two. These modes of replication in somatic tissues would have quite different biological implications. Here, we demonstrate that Drosophila gypsy is capable of both cell-associated and cell-free viral transmission between cultured S2 cells of somatic origin. Further, we demonstrate that the ability of gypsy to move between cells is dependent upon a functional copy of its viral envelope protein. This argues that the gypsy element has transitioned from an RTE into a functional endogenous retrovirus with the acquisition of its envelope gene. On the other hand, we also find that intracellular retrotransposition of the same genomic copy of gypsy can occur in the absence of the Env protein. Thus, gypsy exhibits both intracellular retrotransposition and intercellular viral transmission as modes of replicating its genome.  相似文献   

15.
16.
17.
18.
A considerable portion of vertebrate genomes are made up of endogenous retroviruses (ERVs). While aberrant or uncontrolled ERV expression has been perceived as a potential cause of disease, there is mounting evidence that some ERVs have become integral components of normal host development and physiology. Here, we revisit the longstanding concept that some of the gene products encoded by ERVs and other endogenous viral elements may offer to the host protection against viral infection. Notably, proteins produced from envelope (env) genes have been shown to act as restriction factors against related exogenous retroviruses in chickens, sheep, mice, and cats. Based on the proposed mode of restriction and the domain architecture of known antiretroviral env, we argue that many more env gene-derived restriction factors await discovery in vertebrate genomes, including the human genome.  相似文献   

19.
Retroviral replication involves the formation of a DNA provirus integrated into the host genome. Through this process, retroviruses can colonize the germ line to form endogenous retroviruses (ERVs). ERV inheritance can have multiple adverse consequences for the host, some resembling those resulting from exogenous retrovirus infection but others arising by mechanisms unique to ERVs. Inherited retroviruses can also confer benefits on the host. To meet the different threats posed by endogenous and exogenous retroviruses, various host defences have arisen during evolution, acting at various stages on the retrovirus life cycle. In this Review, I describe our current understanding of the distribution and architecture of ERVs, the consequences of their acquisition for the host and the emerging details of the intimate evolutionary relationship between virus and vertebrate host.  相似文献   

20.
Various retroviruses have been shown to encode dUTPase. The overall phylogeny of dUTPase is unclear, though. The human genome contains a significant amount of human endogenous retroviruses (HERV) representing fossilized sequences of ancient exogenous retroviruses. A few HERV families have been reported to harbor dUTPase domains. We surveyed the various HERV families for the presence of dUTPase and found that ancestors of all HERV-K families but one encoded dUTPase. With two exceptions phylogenetic analysis shows a monophyletic origin of dUTPase for the different HERV-K dUTPases. Sequences of consensus dUTPase domains suggest that the various exogenous ancestors of HERV-K once encoded active enzymes. Our analysis provides informations on dUTPase phylogeny and further shows that endogenous retroviruses provide important informations regarding retrovirus evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号