共查询到20条相似文献,搜索用时 15 毫秒
1.
Leucine carboxyl methyltransferase-1 is necessary for normal progression through mitosis in mammalian cells 总被引:2,自引:0,他引:2
Protein phosphatase 2A (PP2A) is a multifunctional phosphatase that plays important roles in many cellular processes including regulation of cell cycle and apoptosis. Because PP2A is involved in so many diverse processes, it is highly regulated by both non-covalent and covalent mechanisms that are still being defined. In this study we have investigated the importance of leucine carboxyl methyltransferase-1 (LCMT-1) for PP2A methylation and cell function. We show that reduction of LCMT-1 protein levels by small hairpin RNAs causes up to a 70% reduction in PP2A methylation in HeLa cells, indicating that LCMT-1 is the major mammalian PP2A methyltransferase. In addition, LCMT-1 knockdown reduced the formation of PP2A heterotrimers containing the Balpha regulatory subunit and, in a subset of the cells, induced apoptosis, characterized by caspase activation, nuclear condensation/fragmentation, and membrane blebbing. Knockdown of the PP2A Balpha regulatory subunit induced a similar amount of apoptosis, suggesting that LCMT-1 induces apoptosis in part by disrupting the formation of PP2A(BalphaAC) heterotrimers. Treatment with a pan-caspase inhibitor partially rescued cells from apoptosis induced by LCMT-1 or Balpha knockdown. LCMT-1 knockdown cells and Balpha knockdown cells were more sensitive to the spindle-targeting drug nocodazole, suggesting that LCMT-1 and Balpha are important for spindle checkpoint. Treatment of LCMT-1 and Balpha knockdown cells with thymidine dramatically reduced cell death, presumably by blocking progression through mitosis. Consistent with these results, homozygous gene trap knock-out of LCMT-1 in mice resulted in embryonic lethality. Collectively, our results indicate that LCMT-1 is important for normal progression through mitosis and cell survival and is essential for embryonic development in mice. 相似文献
2.
3.
Background
Regulator of chromosome condensation 1 (RCC1) is the guanine nucleotide exchange factor for Ran GTPase. Localised generation of Ran-GTP by RCC1 on chromatin is critical for nucleocytoplasmic transport, mitotic spindle assembly and nuclear envelope formation. Both the N-terminal tail of RCC1 and its association with Ran are important for its interaction with chromatin in cells. In vitro, the association of Ran with RCC1 induces a conformational change in the N-terminal tail that promotes its interaction with DNA. 相似文献4.
Michikami I Fukushi T Honma S Yoshioka S Itoh S Muragaki Y Kurisu K Ooshima T Wakisaka S Abe M 《Cell and tissue research》2012,348(1):131-140
Mutation of the human TRPS1 gene leads to trichorhinophalangeal syndrome (TRPS), which is characterized by an abnormal development of various organs including the craniofacial skeleton. Trps1 has recently been shown to be expressed in the jaw joints of zebrafish; however, whether Trps1 is expressed in the mammalian temporomandibular joint (TMJ), or whether it is necessary for TMJ development is unknown. We have analyzed (1) the expression pattern of Trps1 during TMJ development in mice and (2) TMJ development in Trps1 knockout animals. Trps1 is expressed in the maxillo-mandibular junction at embryonic day (E) 11.5. At E15.5, expression is restricted to the developing condylar cartilage and to the surrounding joint disc progenitor cells. In Trps1 knockout mice, the glenoid fossa of the temporal bone forms relatively normally but the condylar process is extremely small and the joint disc and cavities do not develop. The initiation of condyle formation is slightly delayed in the mutants at E14.5; however, at E18.5, the flattened chondrocyte layer is narrowed and most of the condylar chondrocytes exhibit precocious chondrocyte maturation. Expression of Runx2 and its target genes is expanded toward the condylar apex in the mutants. These observations underscore the indispensable role played by Trps1 in normal TMJ development in supporting the differentiation of disc and synoviocyte progenitor cells and in coordinating condylar chondrocyte differentiation. 相似文献
5.
RCC1, a guanine nucleotide exchange factor of the small GTPase Ran, plays various roles throughout the cell cycle. However, the functions of RCC1 in biological processes in vivo are still unclear. In particular, although RCC1 has multifunctional domains, the biological significance of each domain is unclear. To examine each domain of RCC1, we established an RCC1 conditional knockout chicken DT40 cell line and introduced various RCC1 mutants into the knockout cells. We found that nuclear reformation did not occur properly in RCC1-deficient cells and examined whether specific RCC1 mutants could rescue this phenotype. Surprisingly, we found that neither the nuclear localization signal nor the chromatin-binding domain of RCC1 is essential for its function. However, codisruption of these domains resulted in defective nuclear reformation, which was rescued by artificial nuclear localization of RCC1. Our data indicate that chromatin association of RCC1 during mitosis is crucial for its proper nuclear localization in the next interphase. Moreover, proper nuclear localization of RCC1 in interphase is essential for its function through its nucleotide exchange activity. 相似文献
6.
A fission yeast RCC1-related protein is required for the mitosis to interphase transition. 总被引:23,自引:4,他引:23
下载免费PDF全文

The isolation and characterization of the mutant dcdts (defect in chromatin decondensation) has led to the identification of two conserved proteins required for the re-establishment of the interphase state following the completion of mitosis. The gene that rescues the dcdts mutant encodes a protein similar to the human chromatin binding protein, RCC1. A suppressor of dcdts encodes a protein nearly identical to the human GTP-binding protein, RAN, encoded by the TC4 gene. These results indicate that completion of mitosis is regulated at least in part by a GTPase molecular switch. The gene and suppressor of dcdts are identical to the previously described Schizosaccharomyces pombe genes pim1 (premature initiation of mitosis) and spi1 (suppressor of pim), but the dcdts mutant does not enter mitosis prematurely, a phenotype that has been reported for the pim1-46ts mutant. Based on our studies we propose that the pim1 gene product is required for regulating chromatin condensation with a primary role at the end of mitosis and pleiotropic effects on other aspects of cell behavior. 相似文献
7.
Pim-1 associates with protein complexes necessary for mitosis 总被引:7,自引:0,他引:7
The proto-oncogene pim-1 is a serine/threonine kinase the over-expression of which promotes lymphoma formation. Neither the normal function of Pim-1 nor the biochemical mechanism for cancer development mediated by the gene has been delineated, although recent studies have provided compelling evidence that Pim-1 is involved in differentiation and cell survival. We now provide the first evidence that Pim-1 may be involved in the proliferative process. By confocal microscopy, we observed a dynamic redistribution of Pim-1 during the cell cycle, the protein moving from the nucleus and cytoplasm in interphase to the spindle poles during mitosis. From a computer search for putative substrates of Pim-1 that are located in the spindle poles, we discovered that the nuclear mitotic apparatus (NuMA) protein has two peptide sequences that contain preferred phosphorylation sites for Pim-1 kinase. Recombinant glutathione-S-transferase-Pim-1 also readily phosphorylates immunoprecipitated NuMA. By confocal microscopy and co-immunoprecipitation we showed the interaction of the Pim-1 and NuMA proteins in HeLa cells that had been arrested during mitosis with nocodazole. Pim-1 also appeared to interact with heterochromatin-associated protein 1beta (HP1beta) and the cytoplasmic proteins dynein and dynactin via complex formation with NuMA. In our studies, overexpressed wild-type-Pim-1-GFP (green fluorescent protein) fusion protein was found to co-localize in the spindle pole with NuMA during mitosis. In contrast, the 'kinase-dead' mut-Pim-1-GFP fusion protein did not co-localize with NuMA, and appeared to promote apoptosis. Further evidence for apoptotic cell death was the observed blebbing and fragmentation of the chromosomes and a decrease in the level of NuMA protein detected by confocal microscopy. These results strongly suggest that Pim-1 kinase plays a role, most likely by phosphorylation, in promoting complex formation between NuMA, HP1beta, dynein and dynactin, a complex that is necessary for mitosis. 相似文献
8.
Sato T Kudo T Ikehara Y Ogawa H Hirano T Kiyohara K Hagiwara K Togayachi A Ema M Takahashi S Kimata K Watanabe H Narimatsu H 《The Journal of biological chemistry》2011,286(7):5803-5812
Chondroitin sulfate (CS) is a glycosaminoglycan, consisting of repeating disaccharide units of N-acetylgalactosamine and glucuronic acid residues, and plays important roles in development and homeostasis of organs and tissues. Here, we generated and analyzed mice lacking chondroitin sulfate N-acetylgalactosaminyltransferase 1 (CSGalNAcT-1). Csgalnact1(-/-) mice were viable and fertile but exhibited slight dwarfism. Biochemically, the level of CS in Csgalnact1(-/-) cartilage was reduced to ~50% that of wild-type cartilage, whereas its chain length was similar to wild-type mice, indicating that CSGalNAcT-1 participates in the CS chain initiation as suggested in the previous study (Sakai, K., Kimata, K., Sato, T., Gotoh, M., Narimatsu, H., Shinomiya, K., and Watanabe, H. (2007) J. Biol. Chem. 282, 4152-4161). Histologically, the growth plate of Csgalnact1(-/-) mice contained shorter and slightly disorganized chondrocyte columns with a reduced volume of the extracellular matrix principally in the proliferative layer. Immunohistochemical analysis revealed that the level of both aggrecan and link protein 1 were decreased in Csgalnact1(-/-) cartilage. Western blot analysis demonstrated an increase in processed forms of aggrecan core protein. These results suggest that CSGalNAcT-1 is required for normal levels of CS biosynthesis in cartilage. Our observations suggest that CSGalNAcT-1 is necessary for normal levels of endochondral ossification, and the decrease in CS amount in the growth plate by its absence causes a rapid catabolism of aggrecan. 相似文献
9.
Tien T. Le 《Developmental biology》2009,328(1):118-229
In mammals, two spatially and temporally distinct waves of fiber cell differentiation are crucial steps for normal lens development. In between these phases, an anterior growth zone forms in which progenitor cells migrate circumferentially, terminally exit the cell cycle and initiate differentiation at the lens equator. Much remains unknown about the molecular pathways orchestrating these processes. Previously, the Notch signal transduction pathway was shown to be critical for anterior lens progenitor cell growth and differentiation. However, the ligand or ligand(s) that direct these events are unknown. Using conditional gene targeting, we show that Jagged1 is required for lens fiber cell genesis, particularly that of secondary fiber cells. In the absence of Jagged1, the anterior growth and equatorial transition zones fail to develop fully, with only a handful of differentiated fiber cells present at birth. Adult Jagged1 conditional mutants completely lack lenses, along with severe anterior chamber deformities. Our data support the hypothesis that Jagged1-Notch signaling conveys a lateral inductive signal, which is indispensable for lens progenitor cell proliferation and differentiation. 相似文献
10.
Caddle LB Hasham MG Schott WH Shirley BJ Mills KD 《Molecular and cellular biology》2008,28(7):2295-2303
Primary immunodeficiencies are rare but serious diseases with diverse genetic causes. Accumulating evidence suggests that defects in DNA double-strand break (DSB) repair can underlie many of these syndromes. In this context, the nonhomologous end joining pathway of DSB repair is absolutely required for lymphoid development, but possible roles for the homologous recombination (HR) pathway have remained more controversial. While recent evidence suggests that HR may indeed be important to suppress lymphoid transformation, the specific relationship of HR to normal lymphocyte development remains unclear. We have investigated roles of the X-ray cross-complementing 2 (Xrcc2) HR gene in lymphocyte development. We show that HR is critical for normal B-cell development, with Xrcc2 nullizygosity leading to p53-dependent early S-phase arrest. In the absence of p53 (encoded by Trp53), Xrcc2-null B cells can fully develop but show high rates of chromosome and chromatid fragmentation. We present a molecular model wherein Xrcc2 is important to preserve or restore replication forks during rapid clonal expansion of developing lymphocytes. Our findings demonstrate a key role for HR in lymphoid development and suggest that Xrcc2 defects could underlie some human primary immunodeficiencies. 相似文献
11.
《Cell cycle (Georgetown, Tex.)》2013,12(13):2476-2485
Centriole disengagement is considered an essential step for licensing a new round of centriole duplication in the next cell cycle. Separase is critical for centriole disengagement. Here, we showed that pericentrin B (PCNTB) is specifically cleaved by separase at the exit of mitosis. The cleavage-resistant PCNTB mutant blocks the centriole disengagement and duplication. We also observed that an artificial cleavage of PCNTB during M phase induced premature disengagement of centrioles. Based on these results, we concluded that the separase-dependent cleavage of PCNTB is necessary and sufficient for centriole disengagement during mitosis. 相似文献
12.
Active Nercc1 protein kinase concentrates at centrosomes early in mitosis and is necessary for proper spindle assembly
下载免费PDF全文

The Nercc1 protein kinase autoactivates in vitro and is activated in vivo during mitosis. Autoactivation in vitro requires phosphorylation of the activation loop at threonine 210. Mitotic activation of Nercc1 in mammalian cells is accompanied by Thr210 phosphorylation and involves a small fraction of total Nercc1. Mammalian Nercc1 coimmunoprecipitates gamma-tubulin and the activated Nercc1 polypeptides localize to the centrosomes and spindle poles during early mitosis, suggesting that active Nercc has important functions at the microtubular organizing center during cell division. To test this hypothesis, we characterized the Xenopus Nercc1 orthologue (XNercc). XNercc endogenous to meiotic egg extracts coprecipitates a multiprotein complex that contains gamma-tubulin and several components of the gamma-tubulin ring complex and localizes to the poles of spindles formed in vitro. Reciprocally, immunoprecipitates of the gamma-tubulin ring complex polypeptide Xgrip109 contain XNercc. Immunodepletion of XNercc from egg extracts results in delayed spindle assembly, fewer bipolar spindles, and the appearance of aberrant microtubule structures, aberrations corrected by addition of purified recombinant XNercc. XNercc immunodepletion also slows aster assembly induced by Ran-GTP, producing Ran-asters of abnormal size and morphology. Thus, Nercc1 contributes to both the centrosomal and the chromatin/Ran pathways that collaborate in the organization of a bipolar spindle. 相似文献
13.
Yeh E Haase J Paliulis LV Joglekar A Bond L Bouck D Salmon ED Bloom KS 《Current biology : CB》2008,18(2):81-90
BACKGROUND: Cohesin proteins link sister chromatids and provide the basis for tension between bioriented sister chomatids in mitosis. Cohesin is concentrated at the centromere region of the chromosome despite the fact that sister centromeres can be separated by 800 nm in vivo. The function of cohesin at sites of separated DNA is unknown. RESULTS: We provide evidence that the kinetochore promotes the organization of pericentric chromatin into a cruciform in mitosis such that centromere-flanking DNA adopts an intramolecular loop, whereas sister-chromatid arms are paired intermolecularly. Visualization of cohesin subunits by fluorescence microscopy revealed a cylindrical structure that encircles the central spindle and spans the distance between sister kinetochores. Kinetochore assembly at the apex of the loop initiates intrastrand loop formation that extends approximately 25 kb (12.5 kb on either side of the centromere). Two centromere loops (one from each sister chromatid) are stretched between the ends of sister-kinetochore microtubules along the spindle axis. At the base of the loop there is a transition to intermolecular sister-chromatid pairing. CONCLUSIONS: The C loop conformation reveals the structural basis for sister-kinetochore clustering in budding yeast and for kinetochore biorientation and thus resolves the paradox of maximal interstrand separation in regions of highest cohesin concentration. 相似文献
14.
Raf-1 N-terminal sequences necessary for Ras-Raf interaction and signal transduction. 总被引:3,自引:3,他引:3
下载免费PDF全文

K Pumiglia Y H Chow J Fabian D Morrison S Decker R Jove 《Molecular and cellular biology》1995,15(1):398-406
Raf-1 is a serine/threonine protein kinase that transduces signals from cell surface receptors to the nucleus. Interaction of Ras with a regulatory domain in the N-terminal half of Raf-1 is postulated to regulate Raf-1 protein kinase and signaling activities. To better understand molecular interactions of Ras with Raf-1 and regulation of the Raf-1 kinase, a panel of Raf-1 N-terminal mutants expressed in the baculovirus-insect cell system was used for mapping the precise region necessary for Ras interaction in the context of full-length, functional Raf-1 kinase. An 80-amino-acid sequence in Raf-1 between positions 53 and 132 was found to confer the ability to bind Ras protein in vitro and in infected insect cells. Deletion of residues 53 to 132 abolished Raf-1 kinase activation by Ras in insect cells, indicating that activation of the Raf-1 kinase by Ras requires the capacity to physically interact with Ras. By contrast, deletion of this Ras-binding site did not diminish activation of Raf-1 kinase by Src, implying that Src and Ras can activate Raf-1 through independent mechanisms. Significantly, Raf-1 mutants lacking the entire zinc finger motif or containing substitutions of two critical cysteine residues in the zinc finger retained the ability to bind Ras and to be activated by this interaction. Consistent with results obtained in the baculovirus-insect cell system, deletion of residues 53 to 132 but not mutations in the zinc finger motif abrogated the ability of kinase-inactive, dominant negative Raf-1 to block Ras-mediated signaling in Xenopus oocytes. Together, these results provide evidence that the direct physical interaction of Ras with Raf-1 amino acids 53 to 132 is required for activation of the Raf-1 kinase and signaling activities by Ras but not by Src. Furthermore, the adjacent zinc finger motif in Raf-1 is not essential either for interaction with Ras or for activation of the Raf-1 kinase. 相似文献
15.
Phosphorylation regulates the dynamic interaction of RCC1 with chromosomes during mitosis 总被引:6,自引:0,他引:6
Hutchins JR Moore WJ Hood FE Wilson JS Andrews PD Swedlow JR Clarke PR 《Current biology : CB》2004,14(12):1099-1104
The small GTPase Ran has multiple roles during the cell division cycle, including nuclear transport, mitotic spindle assembly, and nuclear envelope formation. However, regulation of Ran during cell division is poorly understood. Ran-GTP is generated by the guanine nucleotide exchange factor RCC1, the localization of which to chromosomes is necessary for the fidelity of mitosis in human cells. Using photobleaching techniques, we show that the chromosomal interaction of human RCC1 fused to green fluorescent protein (GFP) changes during progression through mitosis by being highly dynamic during metaphase and more stable toward the end of mitosis. The interaction of RCC1 with chromosomes involves the interface of RCC1 with Ran and requires an N-terminal region containing a nuclear localization signal. We show that this region contains sites phosphorylated by mitotic protein kinases. One site, serine 11, is targeted by CDK1/cyclin B and is phosphorylated in mitotic human cells. Phosphorylation of the N-terminal region of RCC1 inhibits its binding to importin alpha/beta and maintains the mobility of RCC1 during metaphase. This mechanism may be important for the localized generation of Ran-GTP on chromatin after nuclear envelope breakdown and may play a role in the coordination of progression through mitosis. 相似文献
16.
17.
The organization of chromatin in the nucleus is nonrandom. Different genomic regions tend to reside in preferred nuclear locations, relative to radial position and nuclear compartments. Several lines of evidence support a role for chromatin localization in the regulation of gene expression. Therefore, a key problem is how the organization of chromatin is established and maintained in dividing cell populations. There is controversy about the extent to which chromatin organization is inherited from mother to daughter nucleus. We have used time-lapse microscopy to track specific human loci after exit from mitosis. In comparison to later stages of interphase, we detect increased chromatin mobility during the first 2 hr of G1, and during this period association of loci with nuclear compartments is both gained and lost. Although chromatin in daughter nuclei has a rough symmetry in its spatial distribution, we show, for the first time, that the association of loci with nuclear compartments displays significant asymmetry between daughter nuclei and therefore cannot be inherited from the mother nucleus. We conclude that the organization of chromatin in the nucleus is not passed down precisely from one cell to its descendents but is more plastic and becomes refined during early G1. 相似文献
18.
Translation of cyclin mRNA is necessary for extracts of activated xenopus eggs to enter mitosis 总被引:79,自引:0,他引:79
The cyclins are a family of proteins encoded by maternal mRNA. Cyclin polypeptides accumulate during interphase and are destroyed during mitosis at about the time of entry into anaphase. We show here that Xenopus oocytes contain mRNAs encoding two cyclins that are major translation products in a cell-free extract from activated eggs. Cutting these mRNAs with antisense oligonucleotides and endogenous RNAase H blocks entry into mitosis in a cell-free egg extract. The extracts can enter mitosis if either of the cyclin mRNAs is left intact. We conclude that the synthesis of these cyclins is necessary for mitotic cell cycles in cleaving Xenopus embryos. 相似文献
19.
Amagasaki K Kaneto H Heldin CH Lennartsson J 《The Journal of biological chemistry》2006,281(31):22173-22179
c-Jun N-terminal kinase (JNK) is a member of the mitogen-activated protein kinase family. It has become clear that JNK does not only have a role in induction of stress responses but also in processes such as cell movement. In this report we demonstrate that JNK activity is necessary for platelet-derived growth factor (PDGF)-BB-induced chemotaxis of primary foreskin fibroblasts and in other cell types. PDGF-BB stimulation was found to lead to activation of JNK with a maximum after 30 min. Inhibition of JNK reduced Ser178 phosphorylation of the focal adhesion component paxillin. Paxillin phosphorylation at this site has been shown to be involved in the dynamics of focal adhesions and consequently cell migration. Moreover, we observed localization of JNK to the actin-dense membrane ruffles induced by PDGF-BB stimulation both using immunofluorescence staining and green fluorescent protein-tagged JNK. This suggests a role for JNK at the leading edge of the cell compatible with a function in cell migration. Furthermore, we show that phosphatidylinositol 3-kinase (PI 3-kinase), which has an established role in PDGF-stimulated cell migration, is necessary for PDGF-induced activation of JNK. In conclusion, JNK is a critical component downstream of PI 3-kinase that may be involved in PDGF-stimulated chemotaxis presumably by modulating the integrity of focal adhesions by phosphorylating its components. 相似文献
20.
The role of c-Jun N-terminal kinase (JNK) in the regulation of Fas-mediated cell death was investigated. Murine L929 fibroblasts were pretreated with anisomycin for 1 h to activate JNK, followed by exposure to anti-Fas antibodies/actinomycin D (ActD) for 16-24 h. Compared to untreated controls, the induction of JNK activation failed to raise cellular sensitivity to anti-Fas/ActD killing. Notably, a significant increase in anti-Fas/ActD killing as induced by JNK preactivation was observed in L929 cells which were engineered to suppress IkappaBalpha protein expression by antisense mRNA. Restoration of the IkappaBalpha protein level in these cells by ectopic expression of a cDNA construct abolished the JNK-increased anti-Fas/ActD killing. Despite the suppression of IkappaBalpha, no constitutive p65 (RelA) NF-kappaB nuclear translocation was observed in the IkappaBalpha-antisense cells. Also, inhibition of NF-kappaB by curcumin failed to inhibit the JNK-increased Fas cytotoxicity, suggesting that NF-kappaB is not involved in the observed effect. Most interestingly, culturing of L929 cells on extracellular protein matrices resulted in partial suppression of IkappaBalpha expression and constitutive JNK and p42/44 MAPK activation. Upon stimulation with anisomycin, these matrix protein-stimulated cells further exhibited reduced IkappaBalpha expression and p42/44 MAPK activation, as well as became sensitized to JNK-increased anti-Fas/ActD killing. Again, ectopic expression of IkappaBalpha in these cells abolished the enhanced anti-Fas/ActD killing effect. Together, these results indicate that suppression of IkappaBalpha expression is essential for JNK-mediated enhancement of Fas cytotoxicity. 相似文献